Η πλήρης συνέντευξη του ηµήτρη Χριστοδούλου στον Αλκη Γαλδαδά.
|
|
- θάνα Μαλαξός
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Η πλήρης συνέντευξη του ηµήτρη Χριστοδούλου στον Αλκη Γαλδαδά. Ο. Χριστοδούλου βρέθηκε αυτό τον καιρό στην Ελλάδα και µίλησε στο ΒΗΜΑ για την ερευνητική του εργασία που έχει οδηγήσει σε µια σειρά από σηµαντικές βραβεύσεις σε διάφορα σηµεία του πλανήτη. Επίσης ανίχνευσε τη σχέση Μαθηµατικών και Φυσικής και προχώρησε σε µια παρουσίαση της εξέλιξης των Μαθηµατικών µέσα από τις σηµαντικότερες µορφές που έχουν αφήσει τη σφραγίδα τους σε αυτά, από τον Απολλώνιο µέχρι τον Αϊνστάιν. Θα θέλατε να µας αναπτύξετε την άποψή σας για τη σχέση Μαθηµατικών και Φυσικής; Αυτά τα δυο πράγµατα που µερικοί θεωρούν ότι είναι τελείως ξεχωριστά; Αντίθετα από αυτό που πρεσβεύουν ορισµένοι, τα Μαθηµατικά και η Φυσική αποτελούν µια ενιαία επιστήµη. Ακόµη και τοµείς Μαθηµατικών όπως για παράδειγµα η θεωρία των αριθµών που πιστεύεται ότι βρίσκονται µακριά από τη Φυσική ασχολούνται µε φυσικές οντότητες εφ όσον εν προκειµένω οι αριθµοί αποτελούν θεµελιώδη δοµή του φυσικού κόσµου. Από την άλλη µεριά δεν υπάρχει φυσική θεωρία άξια λόγου που δεν αποτελεί ταυτόχρονα µαθηµατική θεωρία. Ο Γαλιλαίος είπε ότι το βιβλίο της φύσεως είναι γραµµένο στη γλώσσα των Μαθηµατικών. Είναι σαφές ότι δεν εννοούσε µε αυτή τη φράση πως τα Μαθηµατικά είναι απλώς µια γλώσσα ανάµεσα σε άλλες η οποία µας χρησιµεύει για να διατυπώσουµε µε σαφήνεια φυσικές θεωρίες. Και ότι οι φυσικές αυτές θεωρίες να έχουν ήδη σχηµατιστεί στο µυαλό µας, όπως από µερικούς παρερµηνεύεται η όλη διαδικασία. Αλλά εννοούσε ότι το αρχιτεκτονικό σχέδιο της κτίσεως είναι σχέδιο µαθηµατικό. Μαθηµατικές δοµές επινοούνται επεκτείνοντας ήδη γνωστές δοµές. Στην αρχή της αλυσίδας τέτοιων γενικεύσεων βρίσκεται πάντοτε µια δοµή που προήλθε από τη φυσική εµπειρία. Οι νέες δοµές που επινοούνται δίνουν αρχικά την εντύπωση πως είναι άσχετες µε το φυσικό κόσµο. Όµως στη συνέχεια αποδεικνύεται ότι όχι µόνο δεν είναι άσχετες αλλά αποτελούν βασικό συστατικό της φυσψ ικής πραγµατικότητας. Θα δώσω τρία παραδείγµατα για να γίνει αυτό κατανοητό: 1. Η Γεωµετρία του Riemann που είναι η Γεωµετρία των πολυδιάστατων χώρων (χώρων δηλαδή µε παραπάνω από τρεις
2 διαστάσεις) προήλθε γενικεύοντας τη Θεωρία του Gauss. Μια θεωρία για την εσωτερική γεωµετρία καµπύλων επιφανειών στον τρισδιάστατο Ευκλίδειο χώρο, µια θεωρία δηλαδή µε άµεση προέλευση από τη φυσική εµπειρία. Αρχικά φαινόταν τελείως άσχετη µε τη Φυσική όµως αργότερα αποτέλεσε την κεντρική δοµή που κατάφερε µε τη βοήθειά της ο Αϊνστάιν να στηρίξει τη Γενική Θεωρία της Σχετικότητας. 2. Ένα άλλο παράδειγµα είναι η Γενική Θεωρία των Συνεχών Οµάδων του Νορβηγού Μαθηµατικού Sophus Lie ( ). Προέκυψε µε τη γενίκευση της µελέτης του Euler για τη νοµάδα των στροφών στον τρισδιάστατο Ευκλίδειο χώρο. Κάτι άρρηκτα συνδεδεµένο µε τη φυσική εµπειρία. Αρχικά φαινόταν ότι η γενίκευση του Lie είχε χάσει την επαφή µε τη φυσική πραγµατικότητα. Όµως από τα µέσα του 20 ου αιώνα οι οµάδες Lie αποτελούν βασικό συστατικό της φυσικής των στοιχειωδών σωµατίων. 3. Οι µιγαδικοί αριθµοί. Έκαναν την πρώτη εµφάνισή τους το 16 ο αιώνα στη λύση του Cardano για την εξίσωση τρίτου βαθµού στην περίπτωση που έχουµε τρεις πραγµατικές ρίζες. Τότε ο τύπος του Cardano εκφράζει κάθε µια από τις λύσεις αυτές ως το άθροισµα δυο συζυγών µιγαδικών. Αργότερα, στην αρχή του 19 ου αιώνα, ο Gauss επεκτείνοντας το πεδίο ορισµού των πολυωνύµων στο µιγαδικό επίπεδο επέδειξε το θεµελιώδες θεώρηµα της Άλγεβρας ότι δηλαδή κάθε πολυώνυµο ν-βαθµού έχει ν ρίζες εποµένως εκφράζεται ως το γινόµενο ν µονονύµων. Κάτι τόσο απλό δεν ισχύει αν περιοριστούµε στους πραγµατικούς αριθµούς. Φαινόταν λοιπόν τότε ότι οι µιγαδικοί αριθµοί επινοήθηκαν χάριν µαθηµατικής ευκολίας και µόνον. Όµως ο 20 ος αιώνας έδειξε ότι οι µιγαδικοί αριθµοί αποτελούν ουσιαστικό συστατικό της κβαντοµηχανικής εποµένως της φυσικής πραγµατικότητας όπως την αντιλαµβανόµαστε σήµερα. Τα Μαθηµατικά και η Φυσική, ως τµήµατα µιας ενιαίας επιστήµης έχουν µια αµφίδροµη σχέση την οποία θα προσπαθήσω τώρα να περιγράψω. Οι πειραµατικοί Φυσικοί έχουν άµεση επαφή µε τη Φύση µελετώντας τα φυσικά φαινόµενα δια της πειραµατικής µεθόδου. Οι Μαθηµατικοί ανακαλύπτουν νέα µαθηµατικές δοµές είτε γενικεύοντας υπάρχουσες δοµές είτε επειδή οδηγούνται σε νέες δοµές στην προσπάθειά τους να επιλύσουν προβλήµατα που προκύπτουν. Οι Θεωρητικοί Φυσικοί καταφεύγουν σε µαθηµατικές δοµές που έχουν προηγουµένως ανακαλυφθεί από τους Μαθηµατικούς αναζητώντας δοµή που να µπορεί να χρησιµεύσει ως πλαίσιο πάνω στο οποίο να στηθεί
3 φυσική θεωρία. ηλαδή θεωρία που αναφέρεται σε µια κλάση φυσικών φαινοµένων τα οποία έχουν προηγουµένως παρατηρηθεί από τους Πειραµατικούς Φυσικούς. Η φυσική θεωρία όχι µόνο προσδίδει µια φυσική ερµηνεία στην µαθηµατική δοµή αλλά και τη συµπληρώνει µε νόµους, δηλαδή συνθήκες υπό τη µορφή εξισώσεων τις οποίες ζητούµε να ικανοποιεί η µαθηµατική δοµή. Οι εξισώσεις αυτές είναι διαφορικές εξισώσεις. Οι Μαθηµατικοί τότε αναπτύσσουν µεθόδους που µας επιτρέπουν την ανάλυση των λύσεων των εξισώσεων αυτών. Κατόπιν τούτου οι λύσεις των εξισώσεων συγκρίνονται µε τα γνωστά πειραµατικά αποτελέσµατα και επιπλέον οδηγούν σε προβλέψεις για τα αποτελέσµατα µελλοντικών πειραµάτων που είναι να σχεδιαστούν και να εκτελεστούν. Από την άλλη µεριά η ανάπτυξη νέων Μαθηµατικών µεθόδων για τη λύση οδηγεί όπως ήδη σηµείωσα στην επινόηση νέων µαθηµατικών δοµών. Βεβαίως υπάρχουν µαθηµατικά προβλήµατα που δεν εµφανίζονται κατά τρόπο που περιέγραψα αλλά είναι ενδογενή, όπως για παράδειγµα προβλήµατα της θεωρίας των αριθµών. Παρ όλα αυτά το σηµαντικότερο τµήµα των µαθηµατικών προβληµάτων εµφανίζεται µέσα από την αλληλεπίδραση µε τη Φυσική. Θα µπορούσατε να µας κάνετε µια σύνοψη αυτών που είπατε στο Ευγενίδειο σχετικά µε τη Γεωµετρία; Πώς θα έπρεπε να διδάσκεται η Γωµετρία στο Γυµνάσιο και το Λύκειο; Το θέµα της οµιλίας µου στο Ευγενίδειο Ίδρυµα είχε σχέση µε τη θεωρία των εστιακών καµπυλών του Απολλωνίου και τη σχέση της µε τα σύγχρονα Μαθηµατικά. Σκοπός της ήταν να καταστεί σαφής η σηµασία που συνεχίζει να έχει η Γεωµετρία σήµερα, ώστε να µην παραµεληθεί η διδασκαλία της στη χώρα µας. Ο Απολλώνιος λοιπόν (από την Πέργη της Παµφυλίας π.χ.) ήταν ο τελευταίος µεγάλος Μαθηµατικός της αρχαιότητας και ένας από τους κορυφαίους όλων των εποχών. Το έργο του για τις κωνικές τοµές (έλλειψη, υπερβολή, παραβολή), έπαιξε σηµαντικότατο ρόλο στην επιστηµονική επανάσταση του 17 ου αιώνα, αφού αποτελεί τη βάση των ανακαλύψεων του Κέπλερ και του Γαλιλαίου και η επίδρασή του είναι φανερή ακόµη και στο κορυφαίο επίτευγµα της επιστηµονικής επανάστασης, την Principia του Νεύτωνα (ενδεικτικό του σκότους που επικρατεί σήµερα στον Ελλαδικό χώρο είναι η απουσία άρθρου για τον
4 Απολλώνιο στην ελληνική εκδοχή της Wikipedia). Εάν µας δοθεί µια καµπύλη στο επίπεδο η αντίστοιχη εστιακή καµπύλη είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου, όπου µιλώντας κάπως χαλαρά, οι απειροστά γειτονικές κάθετοι προς την αρχική καµπύλη συναντώνται. Ένα σηµαντικό θεώρηµα είναι ότι αν ακολουθήσουµε µια οποιαδήποτε κάθετο προς την αρχική καµπύλη τότε για όποιο σηµείο, επί της καθέτου αυτής βρίσκεται πριν το εστιακό σηµείο, δηλαδή το σηµείο όπου η εν λόγω κάθετος συναντά την εστιακή καµπύλη, το τµήµα της καθέτου µεταξύ του σηµείου αυτού και της αρχικής καµπύλης είναι τοπικά το ελάχιστο ευθύγραµµο τµήµα που συνδέει το σηµείο αυτό µε την αρχική καµπύλη. Ο Απολλώνιος αποδεικνύει το θεώρηµα αυτό (στο 5 ο βιβλίο του έργου του «Κωνικά») στην περίπτωση που αρχική καµπύλη είναι κωνική τοµή. Το θεώρηµα αρχικά επεκτάθηκε σε γενικές καµπύλες στο επίπεδο και σε καµπύλες επιφάνειες στον τρισδιάστατο Ευκλείδιο χώρο. Κατά τον 19 ο αιώνα γενικεύθηκε περαιτέρω σε καµπύλους χώρους Riemann και κατά τον 20 ο αιώνα στους καµπύλους χωροχρόνους της γενικής θεωρίας της σχετικότητας. Αυτό οδήγησε τελικά τον Penrose το 1965 σε συνδυασµό µε την υπόθεση που εισήγαγε ο ίδιος της ύπαρξης παγιδευµένης επιφάνειας στο θεώρηµα της µη-πληρότητας του χωροχρόνου, ένα από τα σηµαντικότερα θεωρήµατα της σηµερινής Μαθηµατικής Φυσικής, εφ όσον προβλέπει, µιλώντας χαλαρά, ότι ο χρόνος θα φθάσει σε κάποιο τέλος. Οι αρχαίοι Έλληνες Μαθηµατικοί αποτελούν µια λαµπρή σειρά που αρχίζει µε την ίδρυση της σχολής των Πυθαγορείων το 530 π.χ. στον Κρότωνα και συνεχίζεται µε τους Πυθαγορείους του 5 ου π.χ. αιώνα. Μεταλαµπαδεύεται τον 4 ο π.χ. αιώνα στη Σχολή των Αθηνών, στον Θεαίτητο και τον Εύδοξο. Ο Ευκλείδης που µαθήτευσε στη Σχολή των Αθηνών ιδρύει κατά το τελευταίο τέταρτο του αιώνα την Αλεξανδρινή Σχολή. Τα «Στοιχεία» του Ευκλείδη είναι το αρχαιότερο κείµενο ελληνικών Μαθηµατικών που διασώθηκε πλήρες. Μόνο αποσπάσµατα σώζονται από αρχαιότερα έργα. Στην Αλεξανδρινή Σχολή µαθήτευσε τον 3 ο π.χ. αιώνα ο κορυφαίος όλων των Μαθηµατικών, ο Αρχιµήδης και µετά από αυτόν ο Απολλώνιος, µε τον θάνατο του οποίου το 190 π.χ. κλείνει η πρώτη χρυσή εποχή στην παγκόσµια ιστορία Μαθηµατικών, εποχή των αρχαίων Ελλήνων. Επιγραµµατικά τώρα θα πω ποια ήταν η συνεισφορά του καθενός, παραλείποντας τον τελευταίο. Πριν από τους αρχαίους Έλληνες αναπτύχθηκαν οι πανάρχαιοι πολιτισµοί της Αιγύπτου και της Μεσοποταµίας. Αυτοί οι λαοί ανακάλυψαν εµπειρικούς κανόνες χρήσιµους για την αντιµετώπιση προβληµάτων που παρουσιάζονταν στον γεωργικό και τον αστικό βίο, όπως ο υπολογισµός του εµβαδού χωραφιών και ο όγκος στερεών, πρόβληµα που προκύπτει στην ανέγερση
5 κτιρίων. Ο Πυθαγόρας αφού µαθήτευσε επί µακρόν στην Αίγυπτο, άρχισε να ανακαλύπτει λογικές συνδέσεις µεταξύ των διαφόρων εµπειρικών δεδοµένων κάτι που συνεχίστηκε από τους µαθητές του και κατέληξε στην καθιέρωση ενός καινούριου τρόπου σκέψης, την µαθηµατική απόδειξη και το θεώρηµα. Αυτή ήταν και η αρχή της µαθηµατικής επιστήµης µε τη σηµερινή έννοια. Όµως η εξέλιξη δεν ήταν οµαλή. Και τούτο γιατί η βασική φιλοσοφία των Πυθαγορείων ότι τα πάντα εκφράζονται µέσω των αριθµών, δηλαδή των θετικών ακεραίων και εποµένως η αναλογία δυο µηκών εκφράζεται ως ο λόγος δυο αριθµών, υπέστη καταστροφικό πλήγµα κατά τον 5 ο π.χ. αιώνα όταν ένας Πυθαγόρειος ο Ίππασος έφθασε σε άτοπο προσπαθώντας να βρει το λόγο της διαγωνίου προς την πλευρά ενός τετραγώνου ή ενός κανονικού πενταγώνου, τη λεγόµενη «Χρυσή Τοµή». Αυτή η ανακάλυψη των «αρρήτων» αναλογιών έφερε πρόσκαιρα τα Μαθηµατικά σε τέλµα επειδή συνειδητοποιήθηκε ότι σχεδόν όλες οι µέχρι τότε αποδείξεις στη Γεωµετρία ακόµη και εκείνη του Πυθαγορείου Θεωρήµατος βασίζονταν σε εσφαλµένη φιλοσοφία. Νοµίζω ότι αυτή η πρόσκαιρη καταστροφή ήταν εκείνη που οδήγησε τελικά τα ελληνικά Μαθηµατικά στη λογική αυστηρότητα που θαύµασαν οι αιώνες και που δεν ανακτήθηκε πλήρως παρά µόνο από τα µέσα του 19 ου µ.χ. αιώνα και ύστερα. Το πρώτο βήµα ήταν ότι ο συλλογισµός του Ίππασου αποτελούσε νέο τρόπο µαθηµατικής απόδειξης, την «εις άτοπον απαγωγή». Αυτός είναι ο τρόπος απόδειξης όλων των µεγάλων θεωρηµάτων στα Μαθηµατικά µέχρι σήµερα. Ο Θεαίτητος εισήγαγε τη βασική µέθοδο της ανθυφαίρεσης και έκανε µεγάλες προόδους στη θεωρία των αριθµών και στη µελέτη των αρρήτων αναλογιών. Όµως αυτός που τελικά κατάφερε να ξεπεράσει την κρίση ήταν ο Έυδοξος από την Κνίδο. Σίγουρα ένας από τους µεγαλύτερους Μαθηµατικούς όλων των εποχών. Αυτός ήταν ο δηµιουργός της θεωρίας των αναλογιών, δηλαδή της σχέσης µεταξύ οποιωνδήποτε οµοειδών µεγεθών. Στη σηµερινή ορολογία αυτό λέγεται Θεωρία των Πραγµατικών Αριθµών. Αυτό που έκανε ουσιαστικά ο Εύδοξος ήταν να εισαγάγει τις τοµές Dedekind. Όταν σκεφθούµε ότι ο Γερµανός Μαθηµατικός Dedekind εργάστηκε µετά τα µέσα του 19 ου αιώνα, ότι ο ίδιος είχε συνείδηση του γεγονότος ότι έφερνε στα σύγχρονα πλαίσια τη θεωρία του Ευδόξου του 4 ου π.χ. αιώνα και ότι µέχρι τότε τα ευρωπαϊκά Μαθηµατικά υστερούσαν σε αυστηρότητα σε σχέση µε τα αρχαία Ελληνικά Μαθηµατικά νοµίζω ότι αντιλαµβανόµαστε τι γίγαντες υπήρξαν οι αρχαίοι Έλληνες Μαθηµατικοί. Και αυτό δεν ήταν καν το αποκορύφωµα. Ο Ευκλείδης ανήγαγε όλη τη Γεωµετρία του επιπέδου και µετά τη Στερεοµετρία σε ορισµένες απλές αρχές, τα «αξιώµατα». Που η ισχύς τους πρέπει να γίνει δεκτή µε βάση την εµπειρία. Ο Ευκλείδης κατόρθωσε να παραγάγει από τα αξιώµατα αυτά όλο το τεράστιο πλήθος των προτάσεων της Γεωµετρίας ως Θεωρήµατα µε καθαρά λογικές
6 διαδικασίες χωρίς καµιά περαιτέρω προσφυγή στην εµπειρία. Ο Ευκλείδης λοιπόν εισήγαγε στην Επιστήµη την Υποθετικο-Αποδεικτική µέθοδο. Όλες οι µεγάλες θεωρίες στη Φυσικο-Μαθηµατική Επιστήµη, που αναπτύχθηκαν έκτοτε ακολούθησαν το παράδειγµά του. Το αποκορύφωµα της αρχαίας ελληνικής Επιστήµης ήλθε µε τον απαράµιλλο Αρχιµήδη, τον άνθρωπο που χαλιναγώγησε το Άπειρο. Μέχρι την εµφάνιση του Αρχιµήδη, παρόλη την τεράστια πρόοδο που είχε ήδη επιτευχθεί στο χώρο των Μαθηµατικών στο εννοιολογικό, στο λογικό και το µεθοδολογικό επίπεδο, τα πιο απλά προβλήµατα όπως αυτό του εµβαδού της επιφάνειας του απλούστατου στερεού, της σφαίρας. παρέµεναν άλυτα. Η λύση τους απαιτούσε κάτι άλλο, τη φαντασία. Και αυτήν ο Αρχιµήδης τη διέθετε όσο κανείς πριν ή µετά από αυτόν. Εισάγοντας µε απόλυτη αυστηρότητα τις άπειρες διαδικασίες δηµιούργησε την Μαθηµατική Ανάλυση και µε αυτήν έλυσε όχι µόνο το γρίφο της σφαίρας αλλά και µια ατελείωτη σειρά από δυσκολότατα προβλήµατα τα περισσότερα από τα οποία οι προηγούµενοι ούτε καν να φανταστούν µπορούσαν. Όµως εκεί που φαίνεται η µεγαλοφυΐα του Αρχιµήδη σε όλο της το µεγαλείο είναι η Μαθηµατική Φυσική. Ο Αρχιµήδης ίδρυσε τα πεδία της Οπτικής, της Στατικής, της Υδροστατικής. Άρα είναι ο ιδρυτής της Φυσικής ως πραγµατικής Επιστήµης. Ας σκεφθούµε τι σηµαίνει αυτό. Σηµαίνει ότι για κάθε ένα από τα τρία αυτά πεδία µόνος έκανε τις απαιτούµενες παρατηρήσεις και πειράµατα, βρήκε έτσι εµπειρικούς κανόνες, µετά επινόησε τις βασικές έννοιες και αρχές που τους συνδέουν στηρίζοντας τη θεωρία σε αξιωµατική βάση. Ό,τι χρειάστηκε αιώνες στην περίπτωση της Γεωµετρίας συντελέστηκε σε µια ζωή από έναν και µόνον άνθρωπο. Αλλά ο Αρχιµήδης δεν σταµάτησε τη θεµελίωση θεωριών. Προχώρησε στην πλήρη τους ανάπτυξη λύνοντας και τα πιο δύσκολα ακόµη προβλήµατα που προέκυψαν. Οι λύσεις περιγράφουν φαινόµενα παρατηρηµένα στο φυσικό κόσµο. Το εντυπωσιακότερο έργο του Αρχιµήδη, το αποκορύφωµα της αρχαίας επιστήµης είναι το 2 ο βιβλίο, µε τίτλο «Οχούµενα», όπου µελετά τις θέσεις ισορροπίας και την ευστάθειά τους για ένα στερεό µε δεδοµένη πυκνότητα, µε σχήµα παραβολοειδές εκ περιστροφής τεµνόµενο από ένα επίπεδο κάθετο στον άξονα, που επιπλέει σε υγρό µεγαλύτερης πυκνότητας. Ο κάθε επιστήµων µετριέται µε βάση το πού είχε φθάσει η επιστήµη πριν από αυτόν και πού ο ίδιος την προχώρησε. Αυτό είναι και το µόνο διαχρονικό κριτήριο. Με βάση αυτό το κριτήριο ο Αρχιµήδης είναι η µεγαλύτερη επιστηµονική µεγαλοφυΐα που γέννησε ποτέ ο κόσµος. (Περισσότερο υλικό υπάρχει και στο βιβλίο του. Χριστοδούλου: «Τα Μαθηµατικά στην Αρχαία Αλεξάνδρεια» (Εκδόσεις Ευρασία).
7 Θα θέλατε να µας εξηγήσετε γιατί έχετε σε τόση εκτίµηση τον Νεύτωνα; Στην µακραίωνη ιστορία της ανθρωπότητας ο Νεύτων είναι ο µοναδικός άνθρωπος που µπορεί να παραβληθεί µε τον Αρχιµήδη. Ας σκεφθούµε το γεγονός ότι η συνεχής µεταβολή των φυσικών συστηµάτων φαινόταν από τους αρχαίους χρόνους ως το βασικό εµπόδιο που απέκλειε την ακριβή γνώση της Φύσης. Ο Νεύτων όµως εισήγαγε την ιδέα ότι αυτό που µένει αµετάβλητο και µπορούµε να έχουµε την ακριβή γνώση του είναι αυτός ο ίδιος ο νόµος της αλλαγής. Αυτή η διαπίστωση της υφής των φυσικών νόµων και η µαθηµατική της ενσάρκωση στις διαφορικές εξισώσεις αποτελεί κορυφαία κατάκτηση του ανθρωπίνου πνεύµατος. Ο Νεύτων βέβαια, είχε προδρόµους στην επιστηµονική επανάσταση του 17ου αιώνα στην Αστρονοµία, στη Φυσική και στα Μαθηµατικά, τον Κέπλερ, το Γαλιλαίο, το Χόιγκενς, το Χουκ, το Φερµά, τον Πασκάλ και το δάσκαλό του τον Μπάροου. Πάνω από όλους όµως είχε σαν πρότυπό του από το µακρυνό παρελθόν τον Αρχιµήδη. Ας θυµηθούµε µάλιστα και τη γνωστή φράση του: «Αν κατάφερα να δω µακριά είναι γιατί σκαρφάλωσα στους ώµους γιγάντων». Όµως αυτό που ο ίδιος κατάφερε ήταν ένα πραγµατικά ουράνιο επίτευγµα. Ας σκεφθούµε ότι οι κινήσεις σχεδόν όλων των ουρανίων σωµάτων προβλέπονται µε απίστευτη ακρίβεια, σχεδόν στην αιωνιότητα, µε βάση τους νόµους της Ουράνιας µηχανικής του Νεύτωνα. Αλλά όπως είπα προηγουµένως για τον Αρχιµήδη, το πραγµατικό µεγαλείο του Νεύτωνα φαίνεται στο γεγονός ότι δεν σταµάτησε µε τη θεµελίωση θεωριών, αλλά προχώρησε στη λύση των πιο δύσκολων προβληµάτων που προκύπτουν, περιγράφοντας τα φυσικά φαινόµενα. Από τα πρώτα θεωρήµατα του βιβλίου του Principia είναι το θεώρηµα της διατήρησης της στροφορµής, το οποίο διατυπώνει ως εξής: Αν ένα σώµα κινείται υπό την επίδραση δυνάµεως που κατευθύνεται προς ένα κέντρο, τότε η κίνηση θα περιοριστεί σε ένα ακίνητο επίπεδο και η ακτίνα που ενώνει το κινούµενο σώµα µε το κέντρο της δυνάµεων θα διαγράφει ίσα εµβαδά σε ίσους χρόνους. Εδώ, σε µια σελίδα, αναπαράγει µε την καθαρή σκέψη και µόνο τον εµπειρικό κανόνα για την κίνηση των πλανητών γύρω από τον ήλιο στον οποίο είχε φθάσει ο Κέπλερ µετά από πολυετείς επίπονες προσπάθειες σκυµµένος επάνω στα παρατηρησιακά αποτελέσµατα που του είχε κληροδοτήσει ο Τύχο Μπράχε, καρπός µιας ολόκληρης ζωής του τελευταίου, αφιερωµένης στην ακριβή παρατήρηση. Ο Νεύτων προχωρεί στο βιβλίο του Principia στο θεώρηµα της διατήρησης της ενέργειας. Ακολουθεί η πλήρης λύση του προβλήµατος της κίνησης δυο ουρανίων σωµάτων
8 υπό την επίδραση της αµοιβαίας βαρυτικής έλξης. Και αυτό όµως είναι µόνο η αρχή. Θέτει το γενικό πρόβληµα της κίνησης τριών ή περισσοτέρων σωµάτων το οποίο µέχρι σήµερα παραµένει άλυτο. Ο ίδιος επινοεί µέθοδο εύρεσης προσεγγιστικής λύσης κάτω από ορισµένες συνθήκες, στην περίπτωση των τριών σωµάτων. Μετά προσδιορίζει το σφαιροειδές σχήµα ενός ουρανίου σώµατος που περιστρέφεται γύρω από έναν άξονα. Αυτό δίνει εν προκειµένω την πλάτυνση της γήινης σφαίρας. Το αποκορύφωµα το βιβλίο του Νεύτωνα είναι το επόµενο θεώρηµα. Αυτό όπου συµπεραίνεται από τον Νεύτωνα ότι λόγω του σφαιροειδούς σχήµατός της η Γη συµπεριφέρεται στη δράση εξωτερικών δυνάµεων όχι ως ένα υλικό σηµείο µε όλη την µάζα συγκεντρωµένη σο κέντρο, αλλά ως ένας υλικός δακτύλιος ευρισκόµενος στο επίπεδο που περνά από το κέντρο και είναι κάθετο προς τον άξονα περιστροφής. Καταλήγει δε στο συµπέρασµα ότι οι παλιρροϊκές δυνάµεις του Ηλιου και της Σελήνης, που δρουν στον δακτύλιο αυτό, προξενούν µια αργή κυκλική κίνηση του άξονα περιστροφής της Γης γύρω από την κάθετο προς το επίπεδο της τροχιάς της Γης περί τον Ηλιο, το επίπεδο της εκλειπτικής, κίνηση που χρειάζεται 26 χιλιάδες χρόνια για να συµπληρώσει έναν κύκλο. Αυτή η κίνηση είναι γνωστή ως «µεταπτωτική» και εµφανίζεται ως αργή µετατόπιση, µε κάθε χρονιά που παρέρχεται, της θέσης του Ηλίου στο φόντο των αστερισµών του ζωδίου τη στιγµή της εαρινής ισηµερίας. Είχε διαπιστωθεί από τον Ίππαρχο το 2 ο π.χ. αιώνα αλλά παρέµενε ανεξήγητη µέχρι την εµφάνιση του Νεύτωνα. Το έργο του Νεύτωνα έχει πολλά να διδάξει τους σύγχρονους Θεωρητικούς Φυσικούς. Εκείνος είχε θέσει ως σκοπό της Φυσικής Επιστήµης όχι µόνο την αναζήτηση των θεµελιωδών νόµων, αλλά την πλήρη µαθηµατική περιγραφή των φαινοµένων της Φύσης ως θεωρήµατα που απορρέουν από τους νόµους. Οι σύγχρονοι έχουν περιοριστεί στο πρώτο ζητούµενο. Κατά τη γνώµη σας ποιοι είναι οι κορυφαίοι στα Μαθηµατικά και τη Φυσική στους αιώνες που πέρασαν µετά τον Νεύτωνα; Στους τρεις αιώνες µετά τον Νεύτωνα, 18 ο, 19 ο και 20 ο, οι κορυφαίοι της Φυσικο-Μαθηµατικης Επιστήµης ήταν ο Euler, ο Gauss και ο Einstein αντίστοιχα. Ο Euler ήταν ο πολυγραφότερος επιστήµονας στην ιστορία. Τα έργα του ξεπερνούν τις 30 χιλιάδες σελίδες. Ο κύριος κορµός του έργου του αναφέρεται στη Μαθηµατική Ανάλυση, όµως σχεδόν σε όλα προσέφερε κάτι πολύτιµο. Στην Αριθµοθεωρία επινόησε τον τύπο (Euler Product Formula), που συνδέει ένα άπειρο γινόµενο που αφορά τους πρώτους αριθµούς µε την άπειρη σειρά που ορίζει τη συνάρτηση «ζ», που συνδέθηκε έναν αιώνα µετά µε το
9 όνοµα του Riemann. Στη Θεωρία των Γραφηµάτων έχουµε τα κυκλώµατα Euler, στην Τοπολογία το Χαρακτηριστικό Euler, Στη ιαφορική Γεωµετρία τις κύριες καµπυλότητες µιας καµπύλης επιφάνειας, στο Λογισµό των Μεταβολών τις εξισώσεις Euler- Lagrange. Επίσης είναι αυτός που διατύπωσε τις εξισώσεις κινήσεως των ρευστών καθώς και τις εξισώσεις κινήσεως ενός άκαµπτου στερεού σώµατος. Όµως, παρ όλα αυτά, δεν κατάφερε κάτι πραγµατικά κορυφαίο όπως ο Νεύτων ούτε έφερε επανάσταση στην ανθρώπινη σκέψη. Και ενώ ο κύριος κορµός του έργου του, η Ανάλυση, έχει να κάνει µε άπειρες διαδικασίες δεν κατόρθωσε ποτέ όπως συνέβη µε τον Αρχιµήδη να χαλιναγωγήσει το άπειρο. Από αυτή την άποψη φαίνεται να οπισθοδροµεί σε σχέση µε το Νεύτωνα. ιότι ορισµένες φορές η αδυναµία του αυτή τον οδήγησε σε ανόητα συµπεράσµατα όσον αφορά τις απειροσειρές. Ο Gauss ήταν εκείνος που άρχισε την επιστροφή σε αυτό που ο ίδιος αποκαλούσε «rigor antiquus», δηλαδή τη λογική αυστηρότητα των Αρχαίων Ελλήνων. Στην Ανάλυση είναι ο πρώτος από την εποχή του Αρχιµήδη που µελετά µε λογική αυστηρότητα τη σύγκλιση απειροσειράς, στην προκειµένη περίπτωση της υπεργεωµετρικής σειράς που είχε εφεύρει ο Euler. εν προχώρησε όµως στη γενική θεµελίωση όλης της Ανάλυσης όπως λίγο αργότερα άρχισε ο Bolzano, συνέχισε ο Cauchy και συµπλήρωσαν µε τα έργα τους οι Dedekind, Weierstrass. Στην Άλγεβρα ο Gauss απέδειξε το θεµελιώδες θεώρηµα όπως ήδη αναφέρθηκε, ενώ στην Αριθµοθεωρία είναι το πιο σηµαντικό και εκτεταµένο έργο του. Επίσης έχει ιδρύσει τη µοντέρνα ιαφορική Γεωµετρία µε το έργο του για την εσωτερική γεωµετρία των επιφανειών, έργο το οποίο γενίκευσε όπως προαναφέρθηκε ο µαθητής του ο Riemann στη θεωρία του για τους καµπύλους χώρους οποιασδήποτε διάστασης. Πρόκειται για ένα έργο που επάνω του έκτισε ο Αϊνστάιν τη Γενική Θεωρία της Σχετικότητας. Ο Gauss έχει επίσης ουσιαστική συµβολή στη θεωρία των πιθανοτήτων. Γενικά µπορεί να πει κανείς ότι ο Gauss είναι ο επιφανέστερος εκπρόσωπος των καθαρών Μαθηµατικών στους νεότερους χρόνους. Όµως το έργο του δεν περιορίζεται σε αυτά. Η µέθοδος των ελαχίστων τετραγώνων που έχει εφεύρει αποτελεί τη βασική µέθοδο επεξεργασίας αποτελεσµάτων στις εµπειρικές επιστήµες. Σε αναγνώριση µάλιστα της αξίας του έργου του για το µαγνητικό πεδίο της Γης η µονάδα έντασης του µαγνητικού πεδίου φέρει το όνοµά του. Ο Αϊνστάιν από την άποψη της ευρύτητας δεν συγκρίνεται µε τους προαναφερθέντες. Είχε ένα και µόνο ταλέντο, αυτό της ικανότητας να θεµελιώνει νέες βασικές φυσικές θεωρίες. Όµως αυτό το ταλέντο το είχε όσο κανείς άλλος στους νεότερους χρόνους. Και αυτό σε
10 συνδυασµό µε το γεγονός ότι έζησε σε µια εποχή όπου ακριβώς αυτό το ταλέντο χρειαζόταν, είχε σαν επακόλουθο να συντελέσει σε µια επανάσταση στην ανθρώπινη σκέψη, όσον αφορά τις θεµελιώδεις φυσικές οντότητες του χώρου και του χρόνου. Αυτό όµως δεν είναι κάτι που οφείλεται κατ αποκλειστικότητα στον Αϊνστάιν, όπως πολλοί διατείνονται. Σε σχέση µε την Ειδική Θεωρία της Σχετικότητας πρέπει πρώτα να αναλογιστούµε ότι το απόλυτο του χώρου το είχε ήδη ανατρέψει ο Γαλιλαίος στην αρχή του 17 ου αιώνα. Όµως το βασικό επαναστατικό βήµα της ανατροπής αυτής είχε γίνει ήδη τον 3 ο π.χ. αιώνα από τον Αρίσταρχο. ιότι αυτός πρώτος θεώρησε τη Γη κινούµενη. Βέβαια υπήρχε και ένα βασικό επαναστατικό βήµα της Ειδικής Θεωρίας της Σχετικότητας ήταν η ανατροπή του απόλυτου χρόνου. Όµως ο Poincare είχε προηγουµένως αµφισβητήσει αυτό το απόλυτο και ο Lorentz είχε φθάσει στην οµάδα των µετασχηµατισµών που χαρακτηρίζουν την Ειδική Σχετικότητα. Μόνο που δεν είχε αντιληφθεί την πραγµατική σηµασία τους. Επίσης, µετά τη συµβολή του Αϊνστάιν, ήταν ο Minkowski εκείνος που εισήγαγε την έννοια του Χωροχρόνου επεκτείνοντας τη Γεωµετρία από το χώρο στον χωροχρόνο. Μια επέκταση καθόλου εύκολη εφ όσον βρίσκεται σε µετωπική σύγκρουση µε την ανθρώπινη διαίσθηση. Αυτό το βήµα του Minkowski έπαιξε ουσιαστικό ρόλο στη µετάβαση του Αϊνστάιν από την Ειδική Θεωρία της Σχετικότητας στη Γενική Θεωρία. Όσον αφορά τη Γενική Θεωρία την ίδια, το βασικό βήµα της συσχέτισης της βαρύτητας µε τη Γεωµετρία του Riemann έγινε ήδη στην εργασία του σε συνεργασία µε τον φίλο του και Μαθηµατικό το Grossmann. Εργασία του 1913, όπου διατυπώνονται οι σωστές εξισώσεις στην περίπτωση απουσίας ύλης. εν είχαν καταλάβει όµως κάτι που αφορά την συναλλοιωτικότητα (δηλαδή να µεταβάλλονται µαζί) της θεωρίας. Κάτι που ο Αϊνστάιν κατάλαβε δυο χρόνια αργότερα µε τη βοήθεια του Hilbert και έτσι έφθασε στην τελική µορφή των εξισώσεων, που επιτρέπουν την παρουσία ύλης. Αυτό έγινε δυο χρόνια αφ ότου ο Πρώτος Παγκόσµιος πόλεµος είχε διακόψει την επαφή µεταξύ Αϊνστάιν και Grossmann. Αφού ο πρώτος βρισκόταν στη Γερµανία και ο δεύτερος είχε παραµείνει στην Ελβετία. Παρ όλη όµως τη γνώση της συµβολής όλων αυτών και άλλων όταν αναλογίζοµαι σηµερινούς Φυσικούς που υποστηρίζουν ότι µόνο η δαπάνη δισεκατοµµυρίων µας επιτρέπει να σηµειώσουµε ουσιαστική επιστηµονική πρόοδο αισθάνοµαι άπειρη συµπάθεια για εκείνον τον υπάλληλο του Ελβετικού Γραφείου Ευρεσιτεχνίας που στον λίγο ελεύθερο χρόνο που του απέµενε τα βράδια, µετά την καθηµερινή
11 δουλειά κατόρθωσε να πρωτοστατήσει σε µια πραγµατική επανάσταση στην ανθρώπινη σκέψη. Γιατί στην αρχή της σταδιοδροµίας σας επιλέξατε θέµα σχετικό µε τις Θεωρίες του Αϊνστάιν; Η πρώτη µου επιστηµονική εργασία δηµοσιεύθηκε όταν ήµουν 19 ετών. Εποχή των πρώτων ταξιδιών στη Σελήνη τότε, το αχανές Σύµπαν ερχόταν φυσιολογικά σαν επόµενος σταθµός στις αναζητήσεις πολλών νέων Φυσικών και Μαθηµατικών της εποχής, και εκεί περνούµε στην επικράτεια τις Γενικής Θεωρίας της Σχετικότητας που γίνεται απαραίτητη όταν οι ταχύτητες στα διάφορα σχετικά προβλήµατα δεν είναι αµελητέες σε σχέση µε την ταχύτητα του φωτός. «Η θεωρία του Αϊνστάιν έχει επιπλέον τη θέλξη µιας γεωµετρικής θεωρίας εφ όσον αποτελεί το αποκορύφωµα µιας πορείας που άρχισε µε τη Γεωµετρία του Ευκλείδη. Αυτά ήταν που µε τράβηξαν προς τον Αϊνσταιν και τη θεωρία του. Αργότερα προστέθηκε η πρόκληση των µεγάλων µαθηµατικών προβληµάτων. Υπήρχαν, τότε στα τριάντα µου, προβλήµατα που η λύση τους θα οδηγούσε στην κατανόηση φαινοµένων που είχαν ήδη παρατηρηθεί και στην πρόβλεψη άλλων άγνωστων ακόµη. Ο πρώτος σηµαντικός σταθµός στην πορεία µου ήταν σε συνεργασία µε το Ρουµάνο Μαθηµατικό Sergiu Klainerman. Αποδείξαµε την ευστάθεια του επίπεδου χωροχρόνου Minkowski, στην γενική Θεωρία της Σχετικότητας και αυτό το έργο ολοκληρώθηκε όταν ήµουν σχεδόν σαράντα ετών. όθηκε επίσης µια λεπτοµερής περιγραφή της ασυµπτωτικής συµπεριφοράς των λύσεων. Ουσιαστικά µια αρχική διαταραχή στο υφάδι του χωροχρόνου διαδίδεται (όπως η διαταραχή που προκαλείται σε µια ήσυχη λίµνη από το ρίξιµο µιας πέτρας) σε κύµατα, τα βαρυτικά κύµατα. Όµως όπως έδειξα στη συνέχεια µε άλλη εργασία υπάρχει µια λεπτή διαφορά ως προς το παράδειγµα της λίµνης. Γιατί ενώ ο χωροχρόνος γίνεται ξανά επίπεδος, όπως και το νερό της λίµνης, µετά το πέρασµα των κυµάτων ο τελικός (και «επίπεδος» πια) χωροχρόνος σχετίζεται κατά µη-τετριµµένο τρόπο µε τον αρχικό, κάτι που έχει ως συνέπεια ένα παρατηρήσιµο φαινόµενο, την µόνιµη µετατόπιση των πειραµατικών µαζών ενός ανιχνευτή βαρυτικών κυµάτων. Αυτό το φαινόµενο ονοµάστηκε «φαινόµενο µνήµης» και οφείλεται σε µια ειδική ιδιότητα (µη γραµµικότητα) των εξισώσεων του Αϊνστάιν».
12 Και για όποιον έτσι αυθόρµητα σκεφτεί «ε, και τι έγινε µ αυτό», ή ότι έτσι κι αλλιώς βαρυτικά κύµατα δεν έχουµε καταφέρει να ανιχνεύσουµε ακόµη θα πρέπει, όπως λέει ο ίδιος να γνωρίζουµε ότι: «αρχικά οι προσπάθειες για την ανίχνευση βαρυτικών κυµάτων είχαν επικεντρωθεί στην ανίχνευση των ίδιων των κυµατικών ταλαντώσεων, µετρώντας την αλλαγή των αποστάσεων των πειραµατικών µαζών µε την µέθοδο της συµβολής ηλεκτροµαγνητικών κυµάτων από πηγή λέιζερ. Τα πειράµατα αυτά που έγιναν στην επιφάνεια της Γης απέτυχαν, κυρίως λόγω της δυσκολίας να εξαλειφθεί ο θόρυβος από µικροσεισµούς. Μετά προτάθηκε να στηθεί µια παρόµοια πειραµατική διάταξη στο ιάστηµα µε τις πειραµατικές µάζες σε αποστάσεις εκατοµµυρίων χιλιοµέτρων. Η πραγµατοποίηση αυτής της µεγαλεπίβολης ιδέας βρίσκεται πολλές δεκαετίες στο µέλλον». Τα τελευταία χρόνια όµως οι αστρονόµοι επινόησαν µια νέα µέθοδο που υπόσχεται αποτελέσµατα πολύ νωρίτερα και µάλιστα χωρίς να απαιτηθεί η δαπάνη δισεκατοµµυρίων. Η µέθοδος επικεντρώνεται στο φαινόµενο µνήµης. Όπως εξηγεί ο ίδιος ο. Χριστοδούλου: «Στο ρόλο των πειραµατικών µαζών βάζει τους αστέρες πάλσαρ, οι οποίοι εκπέµπουν ηλεκτροµαγνητικά κύµατα µε ακριβή περιοδικότητα που αντιστοιχεί στην περίοδο περιστροφής τους. Όταν γίνει, σε κοσµολογική απόσταση από το Γαλαξία µας σύγκρουση δυο Γαλαξιών, κάθε ένας εκ των οποίων περιέχει στον πυρήνα του µελανή οπή µάζας δισεκατοµµυρίων ηλίων, η συγχώνευση των µελανών οπών προκαλεί βαρυτικά κύµατα τα οποία όταν φθάσουν στον δικό µας Γαλαξία προξενούν σύµφωνα µε το φαινόµενο µνήµης την µόνιµη µετατόπιση των πάλσαρ του Γαλαξία µας σε σχέση µε τη Γη. Κάτι τέτοιο είναι δυνατόν να διαπιστωθεί από την ακριβή καταγραφή των χρόνων αφίξεως στη Γη των ηλεκτροµαγνητικών παλµών των πάλσαρ». Σήµερα ποιο είναι το πιο ενδιαφέρον που γνωρίζουµε για τις µαύρες οπές; Ας αρχίσουµε από τον ορισµό. Μαύρη ή µελανή οπή είναι περιοχή του χωροχρόνου µη παρατηρήσιµη από το άπειρο. Για να γίνει πιο κατανοητό προσθέτω ότι το µέλλον ενός σηµείου (δηλαδή ενός συµβάντος) εντός της µελανής οπής περιέχεται σε αυτήν. ηλαδή η µελανή οπή δεν είναι παρατηρήσιµη για οποιονδήποτε δεν τολµά να πάρει την απόφαση να εισέλθει. Μια απόφαση µη-αναστρέψιµη εφ όσον η έξοδος είναι αδύνατη. Η έννοια της µαύρης ή µελανής οπής συνδέεται µε την έννοια της «παγιδευµένης επιφάνειας» που εισήγαγε ο Penrose το Ο ορισµός της παγιδευµένης επιφάνειας είναι ο εξής: Πρόκειται για κλειστή χωροειδή επιφάνεια στο χωροχρόνο, τέτοια ώστε µια απειροστή µετατόπιση της επιφάνειας κατά µήκος κάθε µιας από τις δυο οικογένειες προσανατολισµένων προς το µέλλον φωτοειδών, καθέτων προς την
13 επιφάνεια των εισερχοµένων και των εξερχοµένων καθέτων έχει σαν συνέπεια τη µείωση του στοιχείου εµβαδού σε κάθε σηµείο της επιφανείας. Στη συνέχεια αποδείχθηκε ότι µια παγιδευµένη επιφάνεια περιέχεται σε µια µαύρη οπή. Εποµένως η ύπαρξη µιας παγιδευµένης επιφάνειας συνεπάγεται την ύπαρξη µιας µαύρης οπής, που την περιέχει. Ο Penrose απέδειξε το εξής θεµελιώδες θεώρηµα: Ένας χωροχρόνος που περιέχει παγιδευµένη επιφάνεια και είναι προβλέψιµος από δεδοµένες αρχικές συνθήκες αναγκαστικά φθάνει σε ένα τέλος. Και αυτό είναι το πιο ενδιαφέρον θέµα που συνδέεται µε τις µαύρες οπές. ηλαδή ότι µέσα σε µια µαύρη οπή ή έχουµε τον σχηµατισµό ανωµαλίας στο υφάδι του χρόνου ή από ένα σηµείο και πέρα η εξέλιξη, ενώ παραµένει οµαλή,είναι πλέον µη προβλέψιµη από τις αρχικές συνθήκες. Στη δεύτερη αυτή περίπτωση έχουµε ανατροπή της αιτιότητας της βασικής αρχής της Κλασικής Φυσικής από την εποχή του Νεύτωνα. Ότι δηλαδή οι αρχικές συνθήκες µας επιτρέπουν την πρόβλεψη όλης της µελλοντικής εξέλιξης. Είναι άγνωστο τι συµβαίνει στην πραγµατικότητα. Το Θεώρηµα του Penrose βασίζεται ουσιαστικά στην υπόθεση της ύπαρξης µιας παγιδευµένης επιφάνειας δεν µας λέει όµως πώς σχηµατίζεται µια τέτοια παγιδευµένη επιφάνεια. Η απόδειξη δεν αλλάζει σε τίποτα στην περίπτωση του επίπεδου χωροχρόνου, όπου βεβαίως δεν ισχύει το συµπέρασµα επειδή δεν ισχύει η αρχική υπόθεση. Η απόδειξη του σχηµατισµού παγιδευµένων επιφανειών απαιτεί την µελέτη της βαρυτικής κατάρρευσης, (εποµένως την ανάλυση του µη-γραµµικού συστήµατος µερικών διαφορικών εξισώσεων υπερβολικού τύπου που αποτελούν οι εξισώσεις Αϊνστάιν). Αυτή την ανάλυση κατάφερα να την ολοκληρώσω σε ηλικία 57 ετών ( Είναι και το πρώτο που αναφέρεται στο σκεπτικό της απονοµής στον. Χριστοδούλου του βραβείου Shaw τον Ιούνιο του 2011). Αποδείχθηκε δηλαδή ότι παγιδευµένες επιφάνειες σχηµατίζονται απουσία ύλης, µε την εστίαση ισχυρών βαρυτικών κυµάτων. Το σηµαντικότερο όµως ερώτηµα στη Γενική Θεωρία της Σχετικότητας είναι το αν σχηµατίζονται ανωµαλίες που δεν περιέχονται σε µια µαύρη τρύπα, οπότε θα είναι και ορατές από το άπειρο. Ο Penrose διατύπωσε το 1970 την εικασία ότι τέτοιες «γυµνές ανωµαλίες» δεν σχηµατίζονται, εικασία που πήρε το όνοµα «κοσµική λογοκρισία». Μετά από προσπάθεια που κράτησε πολλά χρόνια κατάφερα να δώσω µιαν απάντηση. Όµως µόνο στα στενά πλαίσια ενός σφαιρικά συµµετρικού µοντέλου. Απέδειξα ότι, αντίθετα από την εικασία Penrose, η βαρυτική κατάρρευση υπό ορισµένες αρχικές συνθήκες οδηγεί στο σχηµατισµό «γυµνών ανωµαλιών». Όµως απέδειξα επίσης ότι στην περίπτωση αυτή µια κατάλληλη αλλαγή των αρχικών συνθηκών, αλλαγή όσο µικρή θέλουµε σε µέγεθος, έχει σαν συνέπεια τη δηµιουργία µιας µαύρης οπής που να περιέχει την ανωµαλία. Εποµένως το πνεύµα της κοσµικής
14 λογοκρισίας ισχύει. Αυτά όµως αφορούν µόνο το σφαιρικά συµµετρικό µοντέλο. Το γενικό ερώτηµα παραµένει αναπάντητο. Αντίστοιχα οι µελέτες σας για τη ροή υγρών ποια χρήσιµα καθηµερινά πράγµατα µας έχουν δώσει; Μπορείτε να µας το περιγράψετε χωρίς τη χρήση πολύπλοκων εξισώσεων και µαθηµατικών τύπων; Το µεγαλύτερο µέρος του Σύµπαντος είναι σε ρευστή κατάσταση. Στη Γη έχουµε την ατµόσφαιρα και τους ωκεανούς, αλλά και τον εξωτερικό πυρήνα, σε ρευστή κατάσταση. Εποµένως η Μηχανική των Ρευστών είναι ένας τοµέας της επιστήµης µε ευρύτατη εφαρµογή και τα σηµαντικότερα φαινόµενα εµπίπτουν στη συνήθη εµπειρία. Το κύριο έργο που έχω δηµοσιεύσει µέχρι στιγµής στον τοµέα της Μηχανικής των Ρευστών ολοκληρώθηκε όταν ήµουν σχεδόν 55 ετών. Έχει να κάνει µε τις εξισώσεις του Euler που διέπουν την εξέλιξη ενός συµπιεστού ρευστού. Μελετά το σχηµατισµό κυµάτων κρούσεως. Ας θεωρήσουµε ένα ρευστό σε ηρεµία, µε σταθερή θερµοκρασία και πίεση. Ας πούµε ότι η κατάσταση αυτή διαταράσσεται καθ οιονδήποτε τρόπο σε µια πεπερασµένη περιοχή του χώρου την αρχική στιγµή του χρόνου. Αυτό που αποδεικνύω είναι ότι µετά από ένα καταλλήλως µεγάλο χρονικό διάστηµα, που εξαρτάται από το µέγεθος της αρχικής διαταραχής, σχηµατίζονται επιφάνειες χωροχρόνου όπου ο ρυθµός αλλαγής της θερµοκρασίας, της πίεσης και της ταχύτητας του ρευστού απειρίζονται. Αυτές οι επιφάνειες αποτελούν την αρχή και το γενεσιουργό αίτιο τρισδιάστατων υπερεπιφανειών στο χωροχρόνο όπου η θερµοκρασία, η πίεση και η ταχύτητα είναι ασυνεχείς. Τις υπερεπιφάνειες αυτές ασυνεχείας τις ονοµάζουµε κύµατα κρούσεως. Επίσης αποδεικνύτω ότι η ροή παρ όλο που µπορεί να είναι αστρόβιλη πριν περάσει το κύµα κρούσεως, µόλις αυτό περάσει, αποκτά «αµέσως», δηλαδή κατ ασυνεχή τρόπο, στροβιλισµό. Το πρόβληµα της µακρόχρονης συµπεριφοράς του στροβιλισµού περιέχει το σηµαντικότερο πρόβληµα της Υδροδυναµικής, το πρόβληµα της τυρβώδους ροής [δηλαδή της ροής που µέσα της σχηµατίζονται στρόβιλοι]. Αυτό το πρόβληµα, το οποίο εµφανίζεται και στην απλουστευµένη περίπτωση που το ρευστό µπορεί να θεωρηθεί ασυµπίεστο, όπως το νερό στην καθηµερινή µας εµπειρία, παραµένει απλησίαστο 260 χρόνια µετά τη διατύπωση των σχετικών εξισώσεων από τον Euler. Η εµπειρία δείχνει ότι µετά από κάποιο χρονικό διάστηµα ο στροβιλισµός αποκτά χαώδη
15 συµπεριφορά, µε τον αέναο σχηµατισµό µιας ατέρµονης ακολουθίας µικρότερων στροβίλων µέσα σε µεγαλύτερους. Αυτό το χάος αποκαλείται «τύρβη». Είναι κάτι που αποτελεί καθηµερινή µας εµπειρία και πρόκληση αξεπέραστη για τον Μαθηµατικό Φυσικό»,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Ένα ελάχιστο βιογραφικό Ο. Χριστοδούλου ζήτησε το όποιο βιογραφικό του να είναι όσο γίνεται πιο λιτό. Αντιστρόφως ανάλογο δηλαδή σε σχέση µε την επιστηµονική του δραστηριότητα. Έτσι απλά αναφέρουµε ότι: Γεννήθηκε στην Αθήνα το ιετέλεσε καθηγητής Μαθηµατικών στο Ινστιτούτο Courant του Πανεπιστηµίου της Νέας Υόρκης ( ) και στο Πανεπιστήµιο του Princeton ( ). Από το 2001 είναι καθηγητής των Μαθηµατικών και της Φυσικής στο Πολυτεχνείο της Ζυρίχης. Έχει τιµηθεί µε το βραβείο του Ιδρύµατος Mac Arthur (1993) για τα Μαθηµατικά και τη Φυσική. Με το βραβείο Bocher της Αµερικανικής Μαθηµατικής Εταιρείας (1999) και µε το βραβείο αστρονοµίας Tomalla (2008). Την προηγούµενη χρονιά του απονεµήθηκε το βραβείο Show για το σύνολο των εργασιών του στα Μαθηµατικά.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Η ΦΙΛΙΑ..!!! Η ΑΞΙΑ ΤΗΣ ΦΙΛΙΑΣ
Η ΦΙΛΙΑ..!!! Η ΑΞΙΑ ΤΗΣ ΦΙΛΙΑΣ Σε γενικές γραµµές φιλία είναι η εθελοντική αλληλεξάρτηση ανάµεσα σε δύο άτοµα, µε απώτερο σκοπό να ικανοποιηθούν συναισθηµατικοί στόχοι των εµπλεκοµένων, η οποία είναι πιθανό
ραστηριότητες για προθέρµανση
Παγκόσµια Ηµέρα Σκέψης 2011 Πακέτο ραστηριοτήτων Αθήνα, Ιανουάριος 2011 ραστηριότητες για προθέρµανση Η Ζωή των Φυτών ΡΑΣΤΗΡΙΟΤΗΤΑ ΓΙΑ ΤΑ ΝΕΟΤΕΡΑ ΜΕΛΗ Ο σκοπός αυτής της δραστηριότητας είναι να κάνει τα
ΓΥΝΑΙΚΕΙΟΙ ΑΓΡΟΤΟΥΡΙΣΤΙΚΟΙ ΣΥΝΕΤΑΙΡΙΣΜΟΙ ΣΤΗΝ ΕΛΛΑ Α
ΕΝΤΥΠΟ ΥΛΙΚΟ 8 ης ΙΑΛΕΞΗΣ ΓΥΝΑΙΚΕΙΟΙ ΑΓΡΟΤΟΥΡΙΣΤΙΚΟΙ ΣΥΝΕΤΑΙΡΙΣΜΟΙ ΣΤΗΝ ΕΛΛΑ Α Τις δύο τελευταίες δεκαετίες στην Ελλάδα έγιναν σηµαντικές προσπάθειες για την ανάπτυξη του αγροτουρισµού, ως µοχλό για την
Ευάγγελος Αυδίκος Η αµηχανία µπροστά στον τοίχο: το Πρόγραµµα και οι κοινότητες των Τσιγγάνων Γεια σας. Εγώ είµαι καινούργιος στη Θεσσαλία οι εκατέρωθέν µου καθήµενοι προϋπήρξαν εµού. Να ξεκινήσω, λοιπόν,
ΚΕΦΑΛΑΙΟ 3 ο ΤΟ ΜΕΛΛΟΝ ΤΗΣ ΕΥΡΩΠΑΪΚΗΣ ΕΝΩΣΗΣ. 3.1 Εισαγωγή
ΚΕΦΑΛΑΙΟ 3 ο ΤΟ ΜΕΛΛΟΝ ΤΗΣ ΕΥΡΩΠΑΪΚΗΣ ΕΝΩΣΗΣ 3.1 Εισαγωγή Η Ελληνική Προεδρία πραγµατοποιείται σε µια κρίσιµη, για την Ευρωπαϊκή Ένωση, περίοδο. Μια Ένωση που προετοιµάζει την µεγαλύτερη διεύρυνση στην
ΘΕΜΑΤΑ ΚΑΝΟΝΙΣΜΩΝ ΒΙΒΛΙΟ ΠΕΡΙΠΤΩΣΕΩΝ ΠΕΡΙΕΧΟΜΕΝΑ
ΘΕΜΑΤΑ ΚΑΝΟΝΙΣΜΩΝ ΒΙΒΛΙΟ ΠΕΡΙΠΤΩΣΕΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1: ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΚΑΙ ΕΞΟΠΛΙΣΜΟΣ ΥΨΟΣ ΤΟΥ ΦΙΛΕ 1.1. Ύψος του φιλέ Κεφάλαιο 2: ΣΥΜΜΕΤΕΧΟΝΤΕΣ ΑΠΑΓΟΡΕΥΜΕΝΑ ΑΝΤΙΚΕΙΜΕΝΑ 2.1. Παίκτης µε τεχνητό πόδι
ΑΣΦΑΛΙΣΗ ΑΥΤΟΚΙΝΗΤΟΥ
ΑΣΦΑΛΙΣΗ ΑΥΤΟΚΙΝΗΤΟΥ 1. Νομοθεσία για την Ασφάλιση Αυτοκινήτου Έχουν όλοι υποχρέωση από το Νόμο να συνάψουν ασφάλιση για το αυτοκίνητό τους; Σε ποια νομοθεσία βασίζεται η ασφάλιση αυτοκινήτου; Σύμφωνα
ΑΠΟΚΑΤΑΣΤΑΣΗ ΚΑΙ ΕΠΑΝΑΧΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΟΥ ΧΑΝΙΟΥ ΤΟΥ ΙΜΠΡΑΗΜ ΚΩΔΙΚΟΣ ΔΙΑΓΩΝΙΖΟΜΕΝΟΥ: 12234
12234 Ένας δηµόσιος χώρος αποτελεί ένα κύτταρο στο δοµηµένο ιστό της πόλης. Δεν πρέπει µόνο να είναι ευδιάκριτος αλλά και να εντάσσεται πλήρως. Οφείλει να ανασυντάσσει την εικόνα της πόλης η οποία είναι
ΕΡΩΤΗΣΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΗΝ ΕΠΟΧΙΚΗ ΓΡΙΠΗ
ΕΡΩΤΗΣΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΗΝ ΕΠΟΧΙΚΗ ΓΡΙΠΗ Τι είναι η γρίπη; Η γρίπη είναι µια οξεία νόσος του αναπνευστικού συστήµατος που προκαλείται από τους ιούς της γρίπης (A, B και C). Οι ιοί της γρίπης προσβάλλουν
«ΣΒΒΕ Eurobank βιοµηχανία 2020: Περιφερειακή ανάπτυξη, καινοτοµία και εξωστρέφεια». Αρχική Τοποθέτηση επί της Εισήγησης
«ΣΒΒΕ Eurobank βιοµηχανία 2020: Περιφερειακή ανάπτυξη, καινοτοµία και εξωστρέφεια». Θεσσαλονίκη 30 Νοεµβρίου 2009 Αρχική Τοποθέτηση επί της Εισήγησης Τάσος Σιδηρόπουλος ιευθυντής Προγραµµάτων της ΑΝΚΟ
Φλωρεντία, 10 Δεκεμβρίου 1513 Προς τον: ΦΡΑΓΚΙΣΚΟ ΒΕΤΤΟΡΙ, Πρέσβη της Φλωρεντίας στην Αγία Παπική Έδρα, Ρώμη. Εξοχώτατε Πρέσβη,
(Ο Νικολό Μακιαβέλι, μέσα από μία επιστολή του, περιγράφει την ζωή του στο κτήμα του, στο οποίο είχε αποτραβηχτεί, μετά το 1513 που οι Μεδίκοι ανακατέλαβαν την εξουσία.) Φλωρεντία, 10 Δεκεμβρίου 1513 Προς
Ο Στρατηγικός Ρόλος της Αστυνοµίας στις Σύγχρονες Απαιτήσεις της Ελληνικής Κοινωνίας
ιάλεξη του Καθηγητή Νίκου Λυγερού στην Ηµερίδα της Πανελλήνιας Οµοσπονδίας Αξιωµατικών Αστυνοµίας Ο Στρατηγικός Ρόλος της Αστυνοµίας στις Σύγχρονες Απαιτήσεις της Ελληνικής Κοινωνίας Αθήνα, 05/12/2008
ΚΩΒΑΙΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Πώς να πάρετε τα µέτρα µόνοι σας Σχετικά µε τη µέτρηση Θα χρειαστείτε ένα µέτρο(µεζούρα) που εύκολα θα προµηθευτείτε από ένα κατάστηµα µε υλικά ραπτών ή από ένα πολυκατάστηµα. Το µέτρο(µεζούρα)
Η εξέλιξη της επιστηµονικής σκέψης και του πειραµατισµού στην Ελληνιστική
ΟΙ ΕΠΙΣΤΗΜΟΝΙΚΕΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΕΣ ΕΞΕΛΙΞΕΙΣ ΤΗΣ ΕΛΛΗΝΙΣΤΙΚΗΣ ΠΕΡΙΟΔΟΥ Η εξέλιξη της επιστηµονικής σκέψης και του πειραµατισµού στην Ελληνιστική εποχή Παρά τους διαρκείς πολέµους και το κλίµα σχετικής ανασφάλειας,
-*- SPORΤDAY. 2 3 ο4-1 9 9 7. Η επόµενη µέρα της ΑΕΚ και του Ντέµη
-*- SPORΤDAY 1 Ηµεροµηνία Εκδότες:Zερβάκης- Κατσιµίγκος Α.Ε.Κ. Σε αυτό το τεύχος 1. Α.Ε.Κ. ΣΕΛ. 2-3 2 3 ο4-1 9 9 7 Η επόµενη µέρα της ΑΕΚ και του Ντέµη Μαύρος, Μανωλάς, Ατµατσίδης και Νικολάου οι υποψήφιοι
«Πολιτική του συστήματος των πόλεων στο Βυζάντιο»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ Πτυχιακή Εργασία «Πολιτική του συστήματος των πόλεων στο Βυζάντιο» Μπαστάκης Φώτης Μυτιλήνη 2013 ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΛΗΨΗ... 3 ΕΙΣΑΓΩΓΗ... 4 1. Η ΠΟΛΗ ΣΤΟ ΒΥΖΑΝΤΙΟ...
ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΓΕΝΙΚΩΝ ΚΑΙ ΕΙΔΙΚΩΝ ΟΡΩΝ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ «ΑΣΦΑΛΩΣ ΚΑΤΟΙΚΕΙΝ» ΚΟΙΝΟΧΡΗΣΤΟΙ ΧΩΡΟΙ
ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΓΕΝΙΚΩΝ ΚΑΙ ΕΙΔΙΚΩΝ ΟΡΩΝ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ «ΑΣΦΑΛΩΣ ΚΑΤΟΙΚΕΙΝ» ΚΟΙΝΟΧΡΗΣΤΟΙ ΧΩΡΟΙ ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΡΘΡΟ 1. ΟΡΙΣΜΟΙ Αξία καινούργιου: Είναι το ποσό που απαιτείται για την ανακατασκευή του κτιρίου
ΟΜΙΛΙΑ ΠΡΩΘΥΠΟΥΡΓΟΥ ΚΑΙ ΠΡΟΕ ΡΟΥ ΤΟΥ ΠΑΣΟΚ ΓΙΩΡΓΟΥ ΠΑΠΑΝ ΡΕΟΥ. ΣΤΗΝ 11η ΣΥΝΟ Ο ΤΟΥ ΕΘΝΙΚΟΥ ΣΥΜΒΟΥΛΙΟΥ ΤΟΥ ΚΙΝΗΜΑΤΟΣ
ΟΜΙΛΙΑ ΠΡΩΘΥΠΟΥΡΓΟΥ ΚΑΙ ΠΡΟΕ ΡΟΥ ΤΟΥ ΠΑΣΟΚ ΓΙΩΡΓΟΥ ΠΑΠΑΝ ΡΕΟΥ ΣΤΗΝ 11η ΣΥΝΟ Ο ΤΟΥ ΕΘΝΙΚΟΥ ΣΥΜΒΟΥΛΙΟΥ ΤΟΥ ΚΙΝΗΜΑΤΟΣ Συντρόφισσες και σύντροφοι, φίλες και φίλοι, αγαπητέ Γιαννάκη, αγαπητέ Martin, σε ευχαριστώ
1. Εισαγωγή. 2. Καταπολέμηση της φοροδιαφυγής
Ενημερωτικό Σημείωμα για το Προσχέδιο Νόμου «Καταπολέμηση της φοροδιαφυγής, αναδιάρθρωση των φορολογικών υπηρεσιών και άλλες διατάξεις αρμοδιότητας υπουργείου οικονομικών» 25/1/2011 1. Εισαγωγή Το νέο
Draft. Φορολογική συµµόρφωση φυσικών προσώπων στο πλαίσιο προγραµµάτων εθελοντικής δήλωσης εισοδηµάτων
Draft Φορολογική συµµόρφωση φυσικών προσώπων στο πλαίσιο προγραµµάτων εθελοντικής δήλωσης εισοδηµάτων Εισαγωγικές παρατηρήσεις Διεθνές φορολογικό περιβάλλον Η καταπολέµηση της φοροδιαφυγής αποτελεί προτεραιότητα
Συµπεράσµατα από την ανάλυση συχνοτήτων στη Γεωµετρία Α Λυκείου. Για το 1 ο θέµα που αφορά τη θεωρία:
Συµπεράσµατα από την ανάλυση συχνοτήτων στη Γεωµετρία Α Λυκείου Για το 1 ο θέµα που αφορά τη θεωρία: Η µεγάλη πλειοψηφία των διδασκόντων (73,5) δεν επιλέγει ως ερώτηµα την διατύπωση ορισµών εκ µέρους των
ΠΛΑΤΩΝΑΣ. 427 π.χ. - 347 π.χ.
ΠΛΑΤΩΝΑΣ 427 π.χ. - 347 π.χ. Έργα Ίωνας, Ευθύφρων, Απολογία, Κρίτων, Φαίδων, Χαρµίδης, Λάχης, Γοργίας, Κρατύλος, Ευθύδηµος, Μένων, Συµπόσιον, Φαίδρος, Πολιτεία, Θεαίτητος, Παρµενίδης, Σοφιστής, Πολιτικός,
ΓΙΩΡΓΟΣ ΜΠΛΑΝΑΣ ΓΙΑ ΤΟΝ ΑΝΑΡΧΙΣΜΟ
ΓΙΩΡΓΟΣ ΜΠΛΑΝΑΣ ΟΚΙΜΙΟ ΓΙΑ ΤΟΝ ΑΝΑΡΧΙΣΜΟ 1 2 Το θέµα µας είναι ο Αναρχισµός. Τι είναι ο Αναρχισµός; Μια διδασκαλία για την πολιτική. Σαν πολιτική διδασκαλία διαθέτει απόψεις για το πολιτικό πρόβληµα, για
Το ολοκαύτωμα της Κάσου
Το ολοκαύτωμα της Κάσου Το βρίκιον Άρης, 1881 Κολοβός Γεώργιος Ερευνητής Συγγραφέας Πτυχιούχος Διοίκησης Ναυτιλιακών και Μεταφορικών Επιχειρήσεων Ανώτατου Τεχνολογικού Εκπαιδευτικού Ιδρύματος Πειραιά Εισαγωγή
ΠΡΟΒΛΗΜΑΤΑ ΤΗΣ ΔΗΜΟΣΙΑΣ ΖΩΗΣ, ΜΙΑ ΨΥΧΑΝΑΛΥΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ
ΠΡΟΒΛΗΜΑΤΑ ΤΗΣ ΔΗΜΟΣΙΑΣ ΖΩΗΣ, ΜΙΑ ΨΥΧΑΝΑΛΥΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Τα τελευταία χρόνια σημειώθηκε στην χώρα μας αισθητή άνοδος του βιοτικού επιπέδου και της κοινωνικής ευμάρειας. Παράλληλα όμως αυξήθηκαν τα προβλήματα
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΦΟΡΟΛΟΓΙΑ ΕΙΣΟ ΗΜΑΤΟΣ ΦΥΣΙΚΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΣΤΗΝ ΕΥΡΩΠΑΙΚΗ ΕΝΩΣΗ ΣΠΟΥ ΑΣΤΗΣ: ΦΟΥΣΚΑΡΗΣ ΠΑΝΑΓΙΩΤΗΣ
Συνταξιοδοτικός ΠΟΕΔΗΝ. Μετά την εφαρμογή των νόμων Ν.4336/2015, Ν.4337/2015. Πίνακες με τα νέα όρια ηλικίας συνταξιοδότησης Δημόσιο.
Συνταξιοδοτικός οδηγός Μετά την εφαρμογή των νόμων Ν.4336/2015, Ν.4337/2015 Πίνακες με τα νέα όρια ηλικίας Δημόσιο ΙΚΑ ΠΡΟΣΟΧΗ! ΟΠΟΙΟΣ ΑΣΦΑΛΙΣΜΕΝΟΣ ΕΝΤΑΣΣΕΤΑΙ ΣΕ ΠΕΡΙΣΣΟΤΕΡΟΥΣ ΤΟΥ ΕΝΟΣ ΠΙΝΑΚΑ ΓΙΑ ΠΛΗΡΗ
ΜΗΝΙΑΙΟ ΕΛΤΙΟ ΙΟΥΝΙΟΥ 2007
ΜΗΝΙΑΙΟ ΕΛΤΙΟ ΙΟΥΝΙΟΥ 2007 ΕΙΣΑΓΩΓΙΚΟ ΣΗΜΕΙΩΜΑ Κατά τη συνεδρίαση της 6ης Ιουνίου 2007, το ιοικητικό Συµβούλιο της αποφάσισε να αυξήσει το ελάχιστο επιτόκιο προσφοράς για τις πράξεις κύριας αναχρηµατοδότησης
...ακολουθώντας τη ροή... ένα ημερολόγιο εμψύχωσης
...ακολουθώντας τη ροή... ένα ημερολόγιο εμψύχωσης Κυριακή 9 Αυγούστου 2015 Αγαπητό μου ημερολόγιο Δυσκολεύομαι να προσαρμοστώ, από χθες που έχουμε έρθει στη κατασκήνωση ασχολούμαστε με τη γνωριμία με
Εργαστηριακή εξάσκηση στις διαταραχές της κίνησης και της οπτικής αντίληψης. Διδάσκων :Α.Β.Καραπέτσας
Εργαστηριακή εξάσκηση στις διαταραχές της κίνησης και της οπτικής αντίληψης Διδάσκων :Α.Β.Καραπέτσας Περιεχόμενο μαθήματος Διαταραχές κίνησης Διαταραχές οπτικο-χωρικές Διαταραχές οπτικο-κινητικές Δυσπραξία
Εισαγωγή: ακαδηµαϊκά αδικήµατα και κυρώσεις
Εισαγωγή: ακαδηµαϊκά αδικήµατα και κυρώσεις Σύµφωνα µε τον εσωτερικό κανονισµό του Πανεπιστηµίου Κρήτης κυρίαρχα δικαιώµατα των φοιτητών είναι το δικαίωµα στη µάθηση και η ελεύθερη διακίνηση των ιδεών
/ΝΣΗ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΚΡΗΤΗΣ ΗΜΟΣ ΜΙΝΩΑ ΠΕ ΙΑ ΑΣ /ΝΣΗ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΕΡΓΟ : ΝΕΟ ΗΜΟΤΙΚΟ ΣΤΑ ΙΟ ΑΡΚΑΛΟΧΩΡΙΟΥ (A.M. 63/2013) 1 ΓΕΝΙΚΟΙ ΟΡΟΙ ΤΙΜΟΛΟΓΙΟ ΜΕΛΕΤΗΣ ΟΙΚΟ ΟΜΙΚΩΝ ΕΡΓΑΣΙΩΝ 1.1 Αντικείµενο
Θεµατικές ενότητες: παρεµβάσεις και ενδεικτικές υποθέσεις. 1. Οικονοµική πολιτική. Παρεµβάσεις οικονοµικού χαρακτήρα
Στατιστικά στοιχεία Κατά τη διάρκεια του 2011 ο Συνήγορος δέχθηκε 10.706 νέες αναφορές. Μεταξύ αυτών, εκατοντάδες αναφορές προέρχονται από οµάδες πολιτών - είναι δηλαδή «συλλογικές αναφορές». Η γεωγραφική
Άρθρο 2 -Καταχώρηση και τήρηση στοιχείων σε ηλεκτρονική µορφή
Π.Δ. 114/05 (ΦΕΚ 165 Α / 30-6-2005) : Yποχρεωτική ανασύσταση φακέλου, ο οποίος έχει απολεσθεί από υπαιτιότητα της υπηρεσίας. Ο ΠΡΟΕΔΡΟΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Έχοντας υπόψη: 1. Τις διατάξεις της παραγράφου
ΣΥΣΤΗΜΑ ΔΙΑΓΝΩΣΗΣ ΑΝΑΓΚΩΝ ΑΓΟΡΑΣ ΕΡΓΑΣΙΑΣ ΠΑΡΑΔΟΤΕΟ ΕΘΝΙΚΟΥ ΜΗΧΑΝΙΣΜΟΥ
ΥΠΟ ΤΗΝ ΕΠΟΠΤΕΙΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΕΡΓΑΣΙΑΣ, ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΑΛΛΗΛΕΓΓΥΗΣ ΣΥΣΤΗΜΑ ΔΙΑΓΝΩΣΗΣ ΑΝΑΓΚΩΝ ΑΓΟΡΑΣ ΕΡΓΑΣΙΑΣ ΔΕΚΕΜΒΡΙΟΣ 2015 ΣΥΣΤΗΜΑ ΔΙΑΓΝΩΣΗΣ ΑΝΑΓΚΩΝ ΑΓΟΡΑΣ ΕΡΓΑΣΙΑΣ Ολυμπία Καμινιώτη
ΘΕΜΑ: Η κοινωνικοποίηση του παιδιού στα πλαίσια του ολοήµερου σχολείου και της οικογένειας.
ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ολοήµερο σχολείο ΘΕΜΑ: Η κοινωνικοποίηση του παιδιού στα πλαίσια του ολοήµερου σχολείου και της οικογένειας. ηµαράς Σεραφείµ Α.Μ. 3811 Θεοχάρης Θωµάς Α.Μ. 3818 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΑΙ
Η γενοκτονία των Ποντίων 1 (11)
Η γενοκτονία των Ποντίων 1 (11) H γη των µύθων Στα παράλια της άξενης θάλασσας που εκτείνεται πέρα από τα στενά του Βοσπόρου, Έλληνες πριν από σχεδόν 3.000 χρόνια έχτισαν φιλόξενες πολιτείεςκιβωτούς του
Αντωνία Αθανασοπούλου
Πίνακας 1. Μέθοδοι αντιµετώπισης της διάβρωσης (ορύγµατα) Λοφίσκος στην κορυφή του ορύγµατος Ανάχωµα παροχέτευσης Αναβαθµοί Αγωγοί στράγγισης Σπορά / Κάλυψη µε άχυρα Χλοοτάπητας Προσωρινή κάλυψη Οδοντωτή
1. Τα Ιατρικά Έξοδα που µπορεί να καταβάλει η Επιτροπή Ασθενειών που προκαλούνται από Πνευµονοκονίαση:
Ιατρικά και Νοσοκοµειακά Έξοδα Οι Εργάτες που λαµβάνουν εβδοµαδιαίο επίδοµα αποζηµίωσης ίσως να δικαιούνται να πληρωθούν από την Επιτροπή Ασθενειών που προκαλούνται από Πνευµονοκονίαση (από εισπνοή σκόνης),
11. Προϋπολογισμός 11.1. Προϋπολογισμός και αποδοτικότητα δημοσίων υπηρεσιών: υφιστάμενη κατάσταση
11. Προϋπολογισμός 11.1. Προϋπολογισμός και αποδοτικότητα δημοσίων υπηρεσιών: υφιστάμενη κατάσταση Το σύστημα σχεδιασμού και εκτέλεσης του κρατικού προϋπολογισμού, αποτελεί μία βασική παράμετρο προώθησης
ΕΛΕΥΘΕΡΟΤΥΠΙΑ 09/07/2001. ΕΡΕΥΝΑ: Ελλάδα και Πορτογαλία οι µοναδικές χώρες που δεν έχουν ειδική νοµοθεσία για τη σεξουαλική παρενόχληση
ΕΛΕΥΘΕΡΟΤΥΠΙΑ 09/07/2001 ΕΡΕΥΝΑ: Ελλάδα και Πορτογαλία οι µοναδικές χώρες που δεν έχουν ειδική νοµοθεσία για τη σεξουαλική παρενόχληση Η κρυφή αµαρτία της παρενόχλησης Της ΑΝΝΑΣ ΣΤΕΡΓΙΟΥ «Άρχισε µ' ένα
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Να εξηγηθεί η σειριακή αναζήτηση. Η λειτουργία της αναζήτησης σε πίνακα είναι η εύρεση της θέσης στην οποία υπάρχει μια συγκεκριμένη τιμή που ενδιαφέρει το χρήστη. Οι πιο γνωστές μέθοδοι
ΚΑΝΟΝΙΣΜΟΣ ΤΗΛΕΘΕΡΜΑΝΣΗΣ. Άρθ. 1. ΟΡΙΣΜΟΣ
ΚΑΝΟΝΙΣΜΟΣ ΤΗΛΕΘΕΡΜΑΝΣΗΣ Άρθ. 1. ΟΡΙΣΜΟΣ 0 κανονισµός αυτός εκδίδεται µε βάση το άρθ. 23 του Ν1069/80 και καθορίζει τις σχέσεις της επιχείρησης µε τους καταναλωτές σε θέµατα που αφορούν την σύνδεση Τηλεθέρµανσης
Τα 10 µαργαριτάρια για ένα φιλικό σπίτι
Τα 10 µαργαριτάρια για ένα φιλικό σπίτι Αν η γάτα σας ζει µονίµως µέσα στο σπίτι, κάνετε το περιβάλλον της ενδιαφέρον, αυξάνοντας τον χώρο µε "µπαλκόνια" σε ψηλά σηµεία και µε ράφια σε διαφορετικά ύψη
ΕΚΤΕΛΕΣΤΙΚΗ ΕΠΙΤΡΟΠΗ ΦΙΛΕΛΛΗΝΩΝ & ΨΥΛΛΑ 2 105 57 ΑΘΗΝΑ Τηλ 213.16.16.900 Fax 2103246165 Email: adedy@adedy.gr, adedy1@adedy.gr
ΕΚΤΕΛΕΣΤΙΚΗ ΕΠΙΤΡΟΠΗ ΦΙΛΕΛΛΗΝΩΝ & ΨΥΛΛΑ 2 105 57 ΑΘΗΝΑ Τηλ 213.16.16.900 Fax 2103246165 Email: adedy@adedy.gr, adedy1@adedy.gr Τοποθέτηση στη Βουλή της Αντιπροέδρου της Α..Ε..Υ., έσποινας Σπανού για το
Συνωμοσία Πυρήνων της Φωτιάς - Πυρήνας Αντάρτικου Πόλης
Συνωμοσία Πυρήνων της Φωτιάς - Πυρήνας Αντάρτικου Πόλης ΤΟ ΣΧΕΔΙΟ Προς τον αναρχικό χώρο i) Το κάλεσμα Κάθε κάλεσμα δράσης, όπως ο «Μαύρος Δεκέμβρης», είναι μία απόπειρα συντονισμού των δυνάμεων μας. Είναι
Ένας περίπατος στη Μονή Καισαριανής
Ένας περίπατος στη Μονή Καισαριανής Ένας περίπατος στη Μονή Καισαριανής Το Μάιο του 2008 το Υπουργείο Πολιτισμού εγκαινίασε το θεσμό «Περιβάλλον και Πολιτισμός» με στόχο την ανάδειξη των άρρηκτων δεσμών
Πού βρίσκεται ο Τάφος του Αλεξάνδρου; Μυαλό χρειάζεται για ν' αποκαλυφθεί. και όχι φτυάρια.
Πού βρίσκεται ο Τάφος του Αλεξάνδρου; Μυαλό χρειάζεται για ν' αποκαλυφθεί και όχι φτυάρια. Τα µεγαλύτερα µυστικά του κόσµου κρύβονται πάντα µε τον καλύτερο τρόπο, παραµένοντας στην κοινή θέα. Για να καταλάβουµε
Σε ποιες κατηγορίες μειώνεται η σύνταξη από 1/1/2009 (σε εφαρμογή του Ν.3655/2008)
Σε ποιες κατηγορίες μειώνεται η σύνταξη από 1/1/2009 (σε εφαρμογή του Ν.3655/2008) Μείωση μέχρι 10% θα έχουμε στις νέες συντάξεις από 1/1/2009 στις περιπτώσεις που χορηγείται από τα Ταμεία μειωμένη σύνταξη
2. Γιατί η Υπέρυθρη Θέρµανση είναι ο πλέον φυσικός και υγιεινός τρόπος θέρµανσης;
Εισαγωγή στην Υπέρυθρη Θέρµανση 1. Τι είναι η Υπέρυθρη Θέρµανση; Η Υπέρυθρη Θέρµανση είναι µια καινοτόµος τεχνολογία εκποµπής υπέρυθρης θερµότητας, στο ίδιο µήκος κύµατος µε αυτή που εκπέµπει ο ήλιος,
AMEA_ENOTHTA_3 2/12/2008 16:48 ÂÏ 1
AMEA_ENOTHTA_3 2/12/2008 16:48 ÂÏ 1 AMEA_ENOTHTA_3 2/12/2008 16:48 ÂÏ 64 AMEA_ENOTHTA_3 2/12/2008 16:48 ÂÏ 65 «Επικοινωνία και Αυτισµός» Συντονίστρια: Κορίνα θεοδωρακάκη ηµοσιογράφος ρ/σ ΛΑΜΨΗ 92,3 ΣΥΝΤΟΝΙΣΤΡΙΑ
Κίνδυνοι στα σπήλαια
Κίνδυνοι στα σπήλαια Κύρια αιτία ατυχηµάτων είναι το ανθρώπινο λάθος. ΓΕΝΙΚΑ ΜΕΤΡΑ ΑΣΦΑΛΕΙΑΣ Εκπαίδευση και εµπειρία Καλή φυσική κατάσταση (Ύπνος, φαγητό, νερό, ρουχισµός, άθληση. Όχι προηγούµενο ξενύχτι
ΚΕΦΑΛΑΙΟ 8 ΣΥΜΠΕΡΑΣΜΑΤΑ
ΚΕΦΑΛΑΙΟ 8 ΣΥΜΠΕΡΑΣΜΑΤΑ ΚΕΦΑΛΑΙΟ 8 : ΣΥΜΠΕΡΑΣΜΑΤΑ Σύμφωνα με τα όσα αναλυτικά έχουν περιγραφεί στα προηγούμενα κεφάλαια της παρούσας μελέτης η κατασκευή του τμήματος «Βρύσες Ατσιπόπουλο», του Βόρειου Οδικού
«ΤαΜιτάτατουΨηλορείτη»
Γυµνάσιο Περάµατος Μυλοποτάµου Σχ. Έτος 2012-13 13 Πρόγραµµα Περιβαλλοντικής Εκπαίδευσης: «ΤαΜιτάτατουΨηλορείτη» Υπεύθυνοι εκπαιδευτικοί: Παγώνη Νίτσα, Αντωνάκης Νικόλαος, Σταυριδάκη Μαρία, Παρασχάκης
Απλές λύσεις για άµεση έξοδο από την κρίση. Μέσα σε λίγες ηµέρες µπορεί να σωθεί η Ελλάδα. Αρκεί να ξυπνήσουν οι Έλληνες και να δουν τι συµβαίνει.
Απλές λύσεις για άµεση έξοδο από την κρίση Μέσα σε λίγες ηµέρες µπορεί να σωθεί η Ελλάδα. Αρκεί να ξυπνήσουν οι Έλληνες και να δουν τι συµβαίνει. Στα χιλιάδες χρόνια της ιστορίας της η Ελλάδα έχει γεµίσει
Πρακτικό εργαλείο. για την ταυτοποίηση πρώτου επιπέδου των θυμάτων παράνομης διακίνησης και εμπορίας. τη σεξουαλική εκμετάλλευση
Πρακτικό εργαλείο για την ταυτοποίηση πρώτου επιπέδου των θυμάτων παράνομης διακίνησης και εμπορίας με σκοπό τη σεξουαλική εκμετάλλευση Ιούνιος 2013 Στα πλαίσια της επαγγελματικής σας ιδιότητας ενδέχεται
«Το δράμα να διδάσκεις Δράμα στο Λύκειο» ή εναλλακτικές προτάσεις για τη διδασκαλία της Αντιγόνης.
«Το δράμα να διδάσκεις Δράμα στο Λύκειο» ή εναλλακτικές προτάσεις για τη διδασκαλία της Αντιγόνης. Νικολαΐδης Αλέξανδρος, Σχολικός Σύμβουλος Φιλολόγων Ν. Πιερίας Περίληψη: Η εισήγηση αποτελείται από δύο
ΕΛΑΦΡΙΕΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΤΑΚΤΗΣ: ΝΑΝΣΥ ΣΑΚΚΑ
ΘΕΜΑ: ΕΛΑΦΡΙΕΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΤΑΚΤΗΣ: ΝΑΝΣΥ ΣΑΚΚΑ Ο σίδηρος παρά το γεγονός, ότι αποτελεί υλικό γνωστό ήδη από τους προϊστορικούς χρόνους, άρχισε να χρησιµοποιείται ευρέως και ουσιαστικά σε αρχιτεκτονικές
Κατερίνα Παναγοπούλου: Δημιουργώντας κοινωνικό κεφάλαιο την εποχή της κρίσης
Κατερίνα Παναγοπούλου Πρέσβυς της Ελλάδας στο Συμβούλιο της Ευρώπης, πρόεδρος του σωματείου γυναικών «Καλλιπάτειρα». Πρώτο βραβείο «Γυναίκα και Αθλητισμός» 2012 για την Ευρώπη. Δημιουργώντας κοινωνικό
ΠΑΝΕΠΙΣΤΗΜΙΟ FREDERICK
ΠΑΝΕΠΙΣΤΗΜΙΟ FREDERICK ΟΙ ΠΕΡΙ ΦΟΙΤΗΤΩΝ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ FREDERICK ΕΣΩΤΕΡΙΚΟΙ ΚΑΝΟΝΙΣΜΟΙ του 2006 ΚΑΤΑΤΑΞΗ ΚΑΝΟΝΙΣΜΩΝ (Άρθρα 43-61 του Καταστατικού Χάρτη) ΚΑΤΑΤΑΞΗ ΚΑΝΟΝΙΣΜΩΝ Κανονισµός ΓΕΝΙΚΑ 1. Συνοπτικός
Η Ελλάδα βρίσκεται αυτή τη στιγµή στο πιο κρίσιµο σταυροδρόµι µετά τη µεταπολίτευση.
Η οµιλία του προέδρου της ΚΟ του ΣΥΡΙΖΑ, Αλέξη Τσίπρα Συντρόφισσες και σύντροφοι, Επιτρέψτε µου να ξεκινήσω από µια θεµελιακή, κατά τη γνώµη µου, διαπίστωση: Η Ελλάδα βρίσκεται αυτή τη στιγµή στο πιο κρίσιµο
5. ΤΙΜΟΛΟΓΙΟ ΜΑΡΤΙΟΣ 2013. K:\A61500\Design\tenders\2013_6151_drills_5243\Tefhi\Timologio_5243.DOC
5. ΤΙΜΟΛΟΓΙΟ «Εκτέλεση γεωερευνητικών εργασιών στο α' υποτµήµα " ράµα - Άγιος Αθανάσιος" του τµήµατος 61.5 " ράµα - Καβάλα" του Κάθετου Άξονα 61 "Σέρρες - ράµα - Καβάλα" Κωδικός Αναφοράς 5243» ΜΑΡΤΙΟΣ
O ΙΕΡΟΚΛΗΣ ΚΑΙ ΤΟ ΘΕΑΡΧΙΚΟ ΣΩΜΑ ΣΤΟΝ ΣΤΡΑΤΕΙΟ ΧΩΡΟ
O ΙΕΡΟΚΛΗΣ ΚΑΙ ΤΟ ΘΕΑΡΧΙΚΟ ΣΩΜΑ ΣΤΟΝ ΣΤΡΑΤΕΙΟ ΧΩΡΟ Του Αλέκου Χαραλαµπόπουλου - Ιεροκλή, µάζεψε το υνί και φέρτο στην αποθήκη, εγώ πάω τα άλογα στον σταύλο, είπε η Ναυσικά, η γυναίκα του Ιεροκλή. - Ναυσικά,
Τρίτη, 23 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΡΑΣΗ - ΕΚΘΕΣΗ ΚΕΙΜΕΝΟ
Τρίτη, 23 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΡΑΣΗ - ΕΚΘΕΣΗ ΚΕΙΜΕΝΟ Έχει παρατηρηθεί ότι οι πέρα από τα κοινά µέτρα δηµιουργικοί άνθρωποι στον τοµέα του πνεύµατος έχουν σιδερένιαν αντοχή και µπορούν
Αρµοδιότητες Αυτοτελούς Τµήµατος Δηµοτικής Αστυνοµίας
Αρµοδιότητες Αυτοτελούς Τµήµατος Δηµοτικής Αστυνοµίας Το Αυτοτελές Τµήµα Δηµοτικής Αστυνοµίας είναι αρµόδιο για την αποτελεσµατική και αποδοτική άσκηση των αρµοδιοτήτων που έχουν θεσπισθεί µε το άρθρο
Ομάδα έργου. Με την 446/15 απόφαση Δ.Σ.,συγκροτήθηκε ομάδα έργου αποτελούμενη από τους:
ΔΗΜΟΣ ΤΡΙΚΚΑΙΩΝ ΤΟΠΙΚΟ ΣΧΕΔΙΟ ΔΙΑΧΕΙΡΙΣΗΣ ΑΠΟΒΛΗΤΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2015 Τοπικό Σχέδιο Διαχείρισης Αποβλήτων Δήμου Τρικκαίων - 2 - Ομάδα έργου Με την 446/15 απόφαση Δ.Σ.,συγκροτήθηκε ομάδα έργου αποτελούμενη
Περίοδος της Μεγάλης Τεσσαρακοστής Ο Ιησούς περπατά στους δρόμους μας, έρχεται στα σπίτια μας για να μας προσφέρει την πίστη
Αποφάσισα να προκηρύξω ένα έτος της Πίστεως το οποίο θα αρχίσει στις 11 Οκτωβρίου 2012, πεντηκοστή επέτειο από την έναρξη της Β Συνόδου του Βατικανού και θα λήξει με την Πανήγυρη του Κυρίου μας Ιησού Χριστού,
ΣΥΖΗΤΗΣΗ ΝΟΜΟΣΧΕΔΙΟΥ ΥΠ.ΓΕΩΡΓΙΑΣ 4.9.2001
ΣΥΖΗΤΗΣΗ ΝΟΜΟΣΧΕΔΙΟΥ ΥΠ.ΓΕΩΡΓΙΑΣ 4.9.2001 ΠΡΟΕΔΡΕΥΩΝ (Κωνσταντίνος Γείτονας): Ο Κοινοβουλευτικός Εκπρόσωπος της Νέας Δημοκρατίας κ. Μπασιάκος έχει το λόγο. ΕΥΑΓΓΕΛΟΣ ΜΠΑΣΙΑΚΟΣ: Κυρίες και κύριοι συνάδελφοι,
Μαρία-Στεφανία-Γιάννης 1 ο Πρότυπο Πειραματικό Δημοτικό Σχολείο Θεσσαλονίκης Ε2 Π.Τ.Δ.Ε.-Α.Π.Θ. 2014-15
Μαρία-Στεφανία-Γιάννης 1 ο Πρότυπο Πειραματικό Δημοτικό Σχολείο Θεσσαλονίκης Ε2 Π.Τ.Δ.Ε.-Α.Π.Θ. 2014-15 Με ποιους τρόπους έτρωγαν τα ψάρια τους; Τα ψάρια τους τα έτρωγαν εκζεστά (βραστά), οφτά (ψητά) ή
Οι 21 όροι του Λένιν
Οι 21 όροι του Λένιν 1. Όλη η προπαγάνδα και η αναταραχή, πρέπει να φέρουν έναν πραγματικά κομμουνιστικό χαρακτήρα και σύμφωνα με το πρόγραμμα και τις αποφάσεις της Κομμουνιστικής Διεθνούς. Όλα τα όργανα
ΟΡΓΑΝΩΣΗ ΕΝΟΤΗΤΩΝ Α ΤΑΞΗΣ ΕΝΟΤΗΤΑ 3
ΟΡΓΑΝΩΣΗ ΕΝΟΤΗΤΩΝ Α ΤΑΞΗΣ ΕΝΟΤΗΤΑ 3 Σημειώνεται ότι για την ετοιμασία και εφαρμογή της ενότητας συνέδραμαν και οι συνάδελφοι Μαρία Ανθίμου και Χριστίνα Κκαΐλη (Δημοτικό Σχολείο Μενεού) ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ:
Ο αθλητισμός εμπνέεται από την ειρήνη. Η ειρήνη εμπνέεται από τον αθλητισμό.
Ο αθλητισμός εμπνέεται από την ειρήνη. Η ειρήνη εμπνέεται από τον αθλητισμό. Αγαπητοί γονείς και εκπαιδευτικοί, Φανταστείτε την ειρήνη... Αυτή μπορεί να ήταν η σκέψη του βασιλιά Ίφιτου της Ήλιδας όταν
ΙΕΘΝΗΣ ΣΥΜΒΑΣΗ ΕΡΓΑΣΙΑΣ 183 «για την αναθεώρηση της (αναθεωρηµένης) σύµβασης για την προστασία της µητρότητας,»
ΙΕΘΝΗΣ ΣΥΜΒΑΣΗ ΕΡΓΑΣΙΑΣ 183 «για την αναθεώρηση της (αναθεωρηµένης) σύµβασης για την προστασία της µητρότητας,» Η γενική Συνδιάσκεψη της ιεθνούς Οργάνωσης Εργασίας, που συγκλήθηκε στη Γενεύη από το ιοικητικό
Κατασκηνωτικές Σκέψεις
Κατασκηνωτικές Σκέψεις Αγαπητοί Γερόλυκοι, Στον καθένα και καθεµία Αρχηγό ξεχωριστά αξίζει ένα µεγάλο µπράβο γιατί για ένα ακόµα καλοκαίρι όπως τα τελευταία 101 χρόνια Λυκόπουλα, Πρόσκοποι, Ανιχνευτές
ΠΡΟΣ: ΚΟΙΝ: ΘΕΜΑ: Ενηµερωτικό σηµείωµα για το πρόβληµα της παράνοµης υλοτοµίας και ειδικά αυτό της καυσοξύλευσης
1 Ιωάννης Κέκερης ασοπόνος Επίτιµος Πρόεδρος Ένωσης ασοπόνων Μακεδονίας Θράκης Μέλος.Σ. Πανελλήνιας Ένωσης ασοπόνων και ιαχειριστών Φυσικού Περιβάλλοντος ΠΡΟΣ: ΚΟΙΝ: Αρναία 16/12/2012 Κα Πρόεδρο Ειδικής
ΣΥΝΕΝΤΕΥΞΗ ΣΤΗΝ ΕΦΗΜΕΡΙΔΑ «ΚΡΗΤΙΚΗ ΕΝΗΜΕΡΩΣΗ» ΝΟΕΜΒΡΙΟΣ 2005
ΣΥΝΕΝΤΕΥΞΗ ΣΤΗΝ ΕΦΗΜΕΡΙΔΑ «ΚΡΗΤΙΚΗ ΕΝΗΜΕΡΩΣΗ» ΝΟΕΜΒΡΙΟΣ 2005 Στη βάση του περίτεχνου ανδριάντα του Στρατηλάτη Θεόδωρου Κολοκοτρώνη στην Τρίπολη, υπάρχει το εξής έμμετρο επίγραμμα: «Σε άτι γοργό καβαλάρης
ΣΥΖΗΤΗΣΗ ΣΤΡΟΓΓΥΛΗΣ ΤΡΑΠΕΖΗΣ ΓΙΑ ΤΙΣ ΝΕΕΣ ΕΙ ΙΚΟΤΗΤΕΣ
ΣΥΖΗΤΗΣΗ ΣΤΡΟΓΓΥΛΗΣ ΤΡΑΠΕΖΗΣ ΓΙΑ ΤΙΣ ΝΕΕΣ ΕΙ ΙΚΟΤΗΤΕΣ ΕΥΤΕΡΑ 23 ΙΟΥΝΙΟΥ 2003 Ώρα έναρξης: 14:00 ΑΜΦΙΘΕΑΤΡΟ ΝΕΟΥ ΚΤΙΡΙΟΥ ΣΧΟΛΗΣ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥΠΟΛΗ ΖΩΓΡΑΦΟΥ ΣΥΝΤΟΝΙΣΤΗΣ: ΠΑΝΑΓΙΩΤΟΥΝΑΚΟΣ.,
Τοποθέτηση Δημάρχου Γ. Πατούλη. για τεχνικό πρόγραμμα 2010
Τοποθέτηση Δημάρχου Γ. Πατούλη για τεχνικό πρόγραμμα 2010 Κυρίες και κύριοι συνάδελφοι Η διοίκηση του Δήμου φέρνει σήμερα προς ψήφιση στο Δημοτικό Συμβούλιο το τεχνικό πρόγραμμα του Δήμου Αμαρουσίου για
Τ.Ε.Ι. ΛΑΜΙΑΣ ΚΑΝΟΝΙΣΜΟΣ ΠΡΑΚΤΙΚΗΣ ΑΣΚΗΣΗΣ Ο ΗΓΟΣ ΠΡΑΚΤΙΚΗΣ ΑΣΚΗΣΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ
Τ.Ε.Ι. ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΝΟΝΙΣΜΟΣ ΠΡΑΚΤΙΚΗΣ ΑΣΚΗΣΗΣ Ο ΗΓΟΣ ΠΡΑΚΤΙΚΗΣ ΑΣΚΗΣΗΣ ΛΑΜΙΑ 2010 ΠΡΟΛΟΓΟΣ Η Πρακτική Άσκηση των φοιτητών του Τµήµατος
ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ''ΜΕΛΕΤΗ ΓΙΑ ΤΗΝ ΙΚΑΝΟΠΟΙΗΣΗ ΤΩΝ ΦΟΙΤΗΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΛΟΓΙΣΤΙΚΗΣ ΤΟΥ Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΑΠΟ ΤΙΣ ΣΠΟΥΔΕΣ ΤΟΥΣ'' ΓΕΩΡΓΙΟΣ ΝΤΑΛΑΟΥΤΗΣ
Σχολιάζοντας την παράσταση «GRIMM & GRIMM»
Σχολιάζοντας την παράσταση «GRIMM & GRIMM» Στο θέατρ ο «Μικρ ή Πόρτα» της Ξένιας Καλογερ οπούλου, μια παρ άσταση για παιδικό κοινό βασισμένη σε τέσσερα παρ αμύθια των αδελφών Grimm (Το τρ απέζι, ο γάιδαρ
ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΚΤΙΚΗ. ιπλωµατική Εργασία.
ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΚΤΙΚΗ ιπλωµατική Εργασία «Η ΙΑ ΙΚΑΣΙΑ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΕΛΕΓΧΟΥ» του ΤΣΟΛΑΤΟΥ ΧΡΗΣΤΟΥ Επιβλέπων Καθηγητής:
Αξιολόγηση της Αποτελεσµατικότητας των Επενδυτικών Κινήτρων. Η Ελληνική Εµπειρία. Σύνοψη Συµπερασµάτων
Αξιολόγηση της Αποτελεσµατικότητας των Επενδυτικών Κινήτρων. Η Ελληνική Εµπειρία Σύνοψη Συµπερασµάτων Οι επενδύσεις αποτελούν το βασικό µοχλό οικονοµικής ανάπτυξης µιας οικονοµίας. Για την προσέλκυσή τους,
Παρασκευή 7 Μάιου 2004
ΙΣΤΟΡΙΑ Οι έρευνες των αρχαιολόγων τεκµηρίωσαν την ύπαρξη ζωής και ανθρώπινης δραστηριότητας στο θεσσαλικό χώρο. Στην κοίτη του ποταµού βρέθηκαν απολιθωµένα οστά ελεφάντων, ιπποπόταµων, ρινόκερων, µεγάλων
Γενική τοποθέτηση για το σχέδιο ΓΠΧΣΑΑ
Γενική τοποθέτηση για το σχέδιο ΓΠΧΣΑΑ 1. Ο ΣΕΠΟΧ θεωρεί ότι, κατ αρχήν, η σύνταξη του σχεδίου του Γενικού Πλαισίου Χωροταξικού Σχεδιασµού και Αειφόρου Ανάπτυξης (ΓΠΧΣΑΑ ή ΓΠ για συντοµία, στη συνέχεια)
ΕΡΓΟ : Ελαιοχρωµατισµοί 4 ου & 50 ου ηµοτικών ΤΙΜΟΛΟΓΙΟ ΜΕΛΕΤΗΣ
`ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΗΜΟΣ ΗΡΑΚΛΕΙΟΥ ΕΡΓΟ : Ελαιοχρωµατισµοί 4 ου & 50 ου ηµοτικών Σχολείων στην περιοχή ΤΑΛΩΣ ήµου Ηρακλείου /ΝΣΗ: ΣΥΝΤΗΡΗΣΗΣ & ΑΥΤΕΠΙΣΤΑΣΙΑΣ ΤΜΗΜΑ: ΣΥΝΤΗΡΗΣΗΣ ΗΜΟΤΙΚΩΝ ΚΑΙ ΣΧΟΛΙΚΩΝ ΚΤΙΡΙΩΝ
Πρακτικό 6/2012 της συνεδρίασης της Επιτροπής Ποιότητας Ζωής, του Δήμου Λήμνου, της 4ης Μαΐου 2012.
Πρακτικό 6/2012 της συνεδρίασης της Επιτροπής Ποιότητας Ζωής, του Δήμου Λήμνου, της 4ης Μαΐου 2012. Στη Μύρινα, σήμερα στις 4 του μήνα Μαΐου του έτους 2012, ημέρα Παρασκευή και ώρα 12:00 στο Δημοτικό Κατάστημα
Φάλουν Ντάφα ιαλέξεις πάνω στον Νόµο του Φο. 1997 ιαλέξεις στις Ηνωµένες Πολιτείες
1 Φάλουν Ντάφα ιαλέξεις πάνω στον Νόµο του Φο 1997 ιαλέξεις στις Ηνωµένες Πολιτείες Λι Χονγκτζί Ελληνική µετάφραση από τα Αγγλικά Ιανουάριος 2008 ΠΕΡΙΕΧΟΜΕΝΑ ιδάσκοντας τον Φα στη Νέα Υόρκη... 1 ιδάσκοντας
ΑΒΒΑΣ ΚΑΣΣΙΑΝΟΣ, ΜΙΑ ΑΓΝΩΣΤΗ ΠΑΤΕΡΙΚΗ ΜΟΡΦΗ ΤΗΣ ΦΙΛΟΚΑΛΙΑΣ ΚΑΙ Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΓΙΑ ΤΗΝ ΚΑΤΑΠΟΛΕΜΗΣΗ ΤΩΝ ΘΑΝΑΣΙΜΩΝ ΠΑΘΩΝ
ΑΒΒΑΣ ΚΑΣΣΙΑΝΟΣ, ΜΙΑ ΑΓΝΩΣΤΗ ΠΑΤΕΡΙΚΗ ΜΟΡΦΗ ΤΗΣ ΦΙΛΟΚΑΛΙΑΣ ΚΑΙ Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΓΙΑ ΤΗΝ ΚΑΤΑΠΟΛΕΜΗΣΗ ΤΩΝ ΘΑΝΑΣΙΜΩΝ ΠΑΘΩΝ Ο όσιος Κασσιανός, αποτελεί μία εν πολλοίς άγνωστη, αλλά σημαντική πατερική μορφή,
Σοφία Γιουρούκου, Ψυχολόγος Συνθετική Ψυχοθεραπεύτρια
Σοφία Γιουρούκου, Ψυχολόγος Συνθετική Ψυχοθεραπεύτρια Η αντίδραση στο άγχος είναι μία φυσιολογική, ζωτική αντίδραση στην απειλή. Το άγχος είναι ένα συναίσθημα δυσθυμίας που προέρχεται από την υποκειμενική
γραμματισμό των νηπίων
Αξιοποίηση του ονόματος του παιδιού για το γραμματισμό των νηπίων Μέρος 3ο: Καθημερινή Ζωή της Τάξης Μαρία Θεοδωρακάκου Νηπιαγωγός, ΜΤΕΕΑ maria.theodorakakou@gmail.com Η παρουσίαση αναπτύχθηκε για την
Δρ.ΠΟΛΥΚΑΡΠΟΣ ΕΥΡΙΠΙΔΟΥ
Δρ.ΠΟΛΥΚΑΡΠΟΣ ΕΥΡΙΠΙΔΟΥ Σκοπος μαθηματος: -ορισμος υγιεινης -αρχες υγιεινης -σκοποι υγιεινης -αποτελεσματα υγιεινης. Ορισμος της Υγιεινης: Υγιεινη είναι η επιστημη που ερευνα και μελετα τα Υγειολογικα
ΜΑΘΗΤΙΚΕΣ ΔΙΑΔΡΟΜΕΣ. Θράκη - Θεσσαλονίκη
μάθημα τάξη τόπος ΜΑΘΗΤΙΚΕΣ ΔΙΑΔΡΟΜΕΣ Γ Λυκείου Θράκη - Θεσσαλονίκη ΔΗΜΙΟΥΡΓΙΚΑ ΕΡΓΑΣΤΗΡΙΑ ΝΕΩΝ 2015 Απ' τη συμμετοχή μου στη δράση "Μαθητικές Διαδρομές" (εκπαιδευτική εκδρομή στη Θεσσαλονίκη) κέρδισα
Ηλεκτρικό φορτίο Ηλεκτρική δύναμη
ΗΛΕΚΤΡΙΣΜΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΔΗΜΗΤΡΗΣ ΦΡΑΓΚΑΚΗΣ ΔΑΣΚΑΛΟΣ-ΧΗΜΙΚΟΣ ΜΗΧΑΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ 2ου ΕΚΦΕ Ν. ΗΡΑΚΛΕΙΟΥ 1 ΘΕΩΡΙΑ Ηλεκτρικό φορτίο Ηλεκτρική δύναμη Εάν τρίψουμε ένα πλαστικό στυλό σε ένα μάλλινο ύφασμα
Ασυντήρητες και επικίνδυνες οικοδομές
Ασυντήρητες και επικίνδυνες οικοδομές Στα τελευταία πέντε χρόνια έχουν καταγραφεί αρκετά περιστατικά πτώσης τμημάτων οικοδομών, κυρίως μπαλκονιών από πολυώροφες οικοδομές και είναι πραγματικά θαύμα το
7. ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΕΛΛΗΝΙΚΗΣ ΝΟΗΜΑΤΙΚΗΣ ΓΛΩΣΣΑΣ ΤΗΣ ΠΡΩΤΗΣ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ
7. ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΕΛΛΗΝΙΚΗΣ ΝΟΗΜΑΤΙΚΗΣ ΓΛΩΣΣΑΣ ΤΗΣ ΠΡΩΤΗΣ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ 7.1. Περιεχόμενο 1.Κατανόηση Γλώσσας- Ο μαθητής θα κατανοήσει το θέμα που εκφέρεται στην Ελληνική Νοηματική Γλώσσα.
Εβδοµαδιαίο ελτίο Οικονοµικών Εξελίξεων ιεύθυνση Οικονοµικών Μελετών Παρασκευή 2 Οκτωβρίου 2015. Ελληνική Οικονοµία
Εβδοµαδιαίο ελτίο Οικονοµικών Εξελίξεων ιεύθυνση Οικονοµικών Μελετών Παρασκευή 2 Οκτωβρίου 2015 Ελληνική Οικονοµία Αντιστροφή της πτωτικής πορείας του είκτη Επιχειρηµατικών Προσδοκιών στη Βιοµηχανία (ΙΟΒΕ)
Εσωτερικοί Κανονισμοί Τοπικής Αυτοδιοίκησης
Εσωτερικοί Κανονισμοί Τοπικής Αυτοδιοίκησης Καταστατικές Πρόνοιες και Εσωτερικοί Κανονισμοί που αφορούν τη Διεύθυνση Τοπικής Αυτοδιοίκησης, τις εκλογές Τοπικής Αυτοδιοίκησης και Σχολικών Εφορειών, τη λειτουργία
ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΗΛΕΚΤΡΟΝΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΙΤΗΣΕΩΝ ΜΕΤΑΤΑΞΕΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Υπουργείο Παιδείας και Θρησκευμάτων
Διεύθυνση Λειτουργικής Ανάπτυξης Πληροφοριακών Συστημάτων ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΗΛΕΚΤΡΟΝΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΙΤΗΣΕΩΝ ΜΕΤΑΤΑΞΕΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ Έκδοση 1.0 Αύγουστος 2013 Υπουργείο Παιδείας και Θρησκευμάτων ΠΙΝΑΚΑΣ
«ΤΑ ΧΕΛΙΔΟΝΙΣΜΑΤΑ»- ΤΟ ΤΡΑΓΟΥΔΙ ΤΗΣ ΧΕΛΙΔΟΝΑΣ
Αγαπητοί μας αναγνώστες, Σας καλωσορίζουμε στην εφημερίδα μας, «Τα Χελιδονίσματα» με ένα γλυκό χαμόγελο. Θελήσαμε να πλουτίσουμε την εφημερίδα μας με πολλά θέματα, αφιερώματα και δραστηριότητες που πιστεύουμε