2.1 Μονοτονία Ακρότατα Συμμετρίες

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2.1 Μονοτονία Ακρότατα Συμμετρίες"

Transcript

1 1. ΓΡ. ΑΥΞΕΝΤΙΟΥ 63 ΙΛΙΣΙΑ -. ΓΑΛΗΝΗΣ ΙΛΙΣΙΑ ΤΗΛ paps000g@yahoo.gr.1 Μονοτονία Ακρότατα Συμμετρίες συνάρτησης Α. ΘΕΩΡΙΑ : ΕΡ-1. Πότε λέμε ότι μια συνάρτηση f είναι : α) γνησίως αύξουσα και β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της ; Απάντηση: α) Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, αν και μόνο αν για οποιαδήποτε 1, Δ, με 1 <,ισχύει : f( 1 ) < f( ). Μια γνησίως αύξουσα συνάρτηση f, συμβολίζεται με f. β) Μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της, αν και μόνο αν για οποιαδήποτε 1, Δ, με 1 <,ισχύει : f( 1 ) > f( ). Μια γνησίως φθίνουσα συνάρτηση f, συμβολίζεται με f. ΒΑΣΙΚΕΣ ΠΡΟΤΑΣΕΙΣ: 1) Αν μια συνάρτηση f είναι γνησίως αύξουσα ή γνησίως φθίνουσα σ ένα διάστημα Δ του πεδίου ορισμού της, τότε λέμε ότι η f είναι γνησίως μονότονη στο Δ. ) Στην περίπτωση που το πεδίο ορισμού της f είναι ένα διάστημα Δ και η f είναι γνησίως μονότονη σ αυτό, τότε θα λέμε, απλώς, ότι η f είναι γνησίως μονότονη. 38

2 1. ΓΡ. ΑΥΞΕΝΤΙΟΥ 63 ΙΛΙΣΙΑ -. ΓΑΛΗΝΗΣ ΙΛΙΣΙΑ ΤΗΛ paps000g@yahoo.gr 3) Μια συνάρτηση f λέγεται αύξουσα (ή αντίστοιχα φθίνουσα) σε ένα διάστημα Δ, όταν για οποιαδήποτε 1, Δ ισχύει : Αν 1 <, τότε : f(1) f() (ή αντίστοιχα f(1) f()) 4) Αν μια συνάρτηση f είναι γνησίως μονότονη σε καθένα από τα διαστήματα Δ1 και Δ, τότε δεν είναι απαραίτητα γνησίως μονότονη και στην ένωσή τους Δ1 U Δ. Παράδειγμα : Η συνάρτηση f() 1, 0 είναι γνησίως φθίνουσα σε καθένα από τα διαστήματα (-, 0) και (0, +). Αν όμως θεωρήσουμε 1 (-, 0) και (0, +), δηλαδή 1 < 0 <, τότε f(1) < f(), άρα η f δεν είναι γνησίως φθίνουσα στο (-, 0) U (0, +). 5) Αν μια συνάρτηση f είναι γνησίως μονότονη σ ένα διάστημα Δ του πεδίου ορισμού της, τότε η εξίσωση f() = κ,με κ R έχει το πολύ μια ρίζα στο Δ. Παράδειγμα : Να εξετάσετε τη μονοτονία της συνάρτησης f με τύπο f() = 1 1. Λύση : Πρέπει : Άρα : Df = 1,. Έστω 1, 1, με 1 <, τότε : 1 < 1 1 < < > > 1-1 f(1) > f(). Άρα, η f είναι γνησίως φθίνουσα στο 1,. 39

3 1. ΓΡ. ΑΥΞΕΝΤΙΟΥ 63 ΙΛΙΣΙΑ -. ΓΑΛΗΝΗΣ ΙΛΙΣΙΑ ΤΗΛ paps000g@yahoo.gr ΕΡ-. Πότε λέμε ότι μια συνάρτηση f : A R παρουσιάζει ολικό ελάχιστο και πότε ολικό μέγιστο σε ένα o A; Απάντηση: Έστω μια συνάρτηση f : A R. α) Η συνάρτηση f έχει ολικό ελάχιστο, αν υπάρχει o A τέτοιο ώστε : f() f(o), για κάθε A. Το o A λέγεται θέση ελαχίστου, ενώ το f(o) ολικό ελάχιστο ή απλώς ελάχιστο της συνάρτησης f και το συμβολίζουμε με minf(). Τότε λέμε ότι η συνάρτηση f για = o, έχει ελάχιστο το f(o). Το σημείο Μ(o, f(o)) είναι το «χαμηλότερο» σημείο της γραφικής παράστασης της f. Δηλαδή, η τιμή της f στο o είναι η μικρότερη από τις τιμές της. β) Η συνάρτηση f έχει ολικό μέγιστο, αν υπάρχει o A τέτοιο ώστε : f() f(o), για κάθε A. Το o A λέγεται θέση μεγίστου, ενώ το f(o) ολικό μέγιστο ή απλώς μέγιστο της συνάρτησης f και το συμβολίζουμε με maf(). Τότε λέμε ότι η συνάρτηση f για = o, έχει μέγιστο στο o με τιμή f(o). Το σημείο Μ(o, f(o)) είναι το «ψηλότερο» σημείο της γραφικής παράστασης της f. Δηλαδή, η τιμή της f στο o είναι η μεγαλύτερη από τις τιμές της. Το ολικό μέγιστο και το ολικό ελάχιστο μιας συνάρτησης f λέγονται oλικά ακρότατα της συνάρτησης f. Παρατήρηση : Το ολικό μέγιστο (ή το ολικό ελάχιστο) μιας συνάρτησης (αν υπάρχει) μπορεί να παρουσιάζεται σε περισσότερα από ένα σημεία, έχει όμως μοναδική τιμή. Έτσι μια συνάρτηση έχει το πολύ ένα ολικό μέγιστο και το πολύ ένα ολικό ελάχιστο. 40

4 1. ΓΡ. ΑΥΞΕΝΤΙΟΥ 63 ΙΛΙΣΙΑ -. ΓΑΛΗΝΗΣ ΙΛΙΣΙΑ ΤΗΛ paps000g@yahoo.gr ΕΡ-3. Πώς βρίσκουμε τα ολικά ακρότατα μιας συνάρτησης f : A R ; Απάντηση: Έστω μια συνάρτηση f : A R. Για να βρούμε τα ολικά ακρότατα της f εργαζόμαστε ως εξής : 1 Ος Τρόπος : Ξεκινάμε από ένα κομμάτι του τύπου της συνάρτησης που είναι σίγουρα θετικό (αυτό μπορεί να είναι μια απόλυτη τιμή ή μια ρίζα ή μια άρτια δύναμη) και στη συνέχεια κατασκευάζουμε συνθετικά ανισοϊσότητες της μορφής : f() μ ή f() M ή μ f() M που ισχύουν για κάθε A και τα μ, Μ είναι τιμές της συνάρτησης. Αν μ = f(1), τότε η f παρουσιάζει ολικό ελάχιστο στο = 1, το f(1) = μ. Αν Μ = f(), τότε η f παρουσιάζει ολικό μέγιστο στο =, το f() = Μ. ΠΑΡΑΔΕΙΓΜΑ : Έστω ότι θέλουμε να βρούμε τα ολικά ακρότατα της συνάρτησης f() = H f έχει πεδίο ορισμού το Α = R. Για κάθε R ισχύει : Θα προσπαθήσουμε να «κατασκευάσουμε» την f() = στο πρώτο μέλος της ανισοϊσότητας με ισοδυναμίες. Δηλαδή, f() - = f(1). Άρα η f παρουσιάζει ολικό ελάχιστο στο = 1, και είναι το f(1) = -. Ος Τρόπος : Χρησιμοποιούμε την μονοτονία της συνάρτησης f. Δηλαδή : 41

5 1. ΓΡ. ΑΥΞΕΝΤΙΟΥ 63 ΙΛΙΣΙΑ -. ΓΑΛΗΝΗΣ ΙΛΙΣΙΑ ΤΗΛ paps000g@yahoo.gr Αν η συνάρτηση f : A R είναι γνησίως αύξουσα στο A και έχει πεδίο ορισμού της το κλειστό διάστημα [α,β], τότε η f παρουσιάζει : στο α ολικό ελάχιστο το f(α) και στο β ολικό μέγιστο το f(β). Αν η συνάρτηση f : A R είναι γνησίως φθίνουσα στο Α και έχει πεδίο ορισμού της το κλειστό διάστημα [α,β], τότε η f παρουσιάζει : στο α ολικό μέγιστο το f(α) και στο β ολικό ελάχιστο το f(β). Αν η συνάρτηση f : A R έχει πεδίο ορισμού το ανοικτό διάστημα Α = (α,β) ή Α = (-, α) ή Α = (α, + ) και είναι γνησίως μονότονη, τότε : η f δεν έχει ολικό ακρότατα. Αν η συνάρτηση f έχει σύνολο τιμών το [κ, λ], τότε : έχει ολικό ελάχιστο το κ και ολικό μέγιστο το λ. Έστω η συνάρτηση f : A R έχει πεδίο τιμών το ανοικτό διάστημα f(α) = (κ,λ) ή f(α) = (-, κ) ή Α = (κ, + ), τότε : η f δεν έχει ολικό ακρότατα. Αν η συνάρτηση f : (α,β) R, είναι γνησίως φθίνουσα στο (α, o) και γνησίως αύξουσα στο [o, β), τότε : η f παρουσιάζει ολικό ελάχιστο στο o. Αν η συνάρτηση f : (α,β) R, είναι γνησίως αύξουσα στο (α, o) και γνησίως φθίνουσα στο [o, β), τότε : η f παρουσιάζει ολικό μέγιστο στο o. ΕΡ-4. Έστω μια συνάρτηση f : A R. Πότε λέμε ότι η συνάρτηση f είναι άρτια ; Απάντηση: Μια συνάρτηση f : A R λέγεται άρτια αν : για κάθε A ισχύει : - A και f(-) = f(). Επειδή f(-) = f(), τα σημεία Μ(o, f(o)) και Ν(-o, f(o)) της γραφικής παράστασης της συνάρτησης f, θα είναι συμμετρικά ως προς τον άξονα y y. Άρα: Η γραφική παράσταση μιας άρτιας συνάρτησης έχει άξονα συμμετρίας τον άξονα y y. 4

6 1. ΓΡ. ΑΥΞΕΝΤΙΟΥ 63 ΙΛΙΣΙΑ -. ΓΑΛΗΝΗΣ ΙΛΙΣΙΑ ΤΗΛ paps000g@yahoo.gr ΕΡ-5. Έστω μια συνάρτηση f : A R. Πότε λέμε ότι η συνάρτηση f είναι περιττή ; Απάντηση: Μια συνάρτηση f : A R λέγεται περιττή αν: για κάθε A ισχύει : - A και f(-) = -f(). Επειδή f(-) = -f(), τα σημεία Μ(o, f(o)) και Ν(-o, -f(o)) της γραφικής παράστασης της συνάρτησης f θα είναι συμμετρικά ως προς την αρχή των αξόνων Ο(0,0). Άρα: Η γραφική παράσταση μιας περιττής συνάρτησης έχει κέντρο συμμετρίας το Ο(0,0). ΠΑΡΑΤΗΡΗΣΕΙΣ : 1. Αν μας δοθεί μια συνάρτηση f με πεδίο ορισμού Α και για κάποιο α A ισχύει -α Α, τότε η f δεν μπορεί να είναι ούτε άρτια, ούτε περιττή συνάρτηση. Δηλαδή, σε μια άρτια ή περιττή συνάρτηση, πρέπει το πεδίο ορισμού της να είναι συμμετρικό διάστημα ως προς το Ο(0,0). π.χ. R *, R - {-1, 1}, [-3, 3]. Αν μας δοθεί η γραφική παράσταση μιας συνάρτησης f και διαπιστώσουμε ότι αυτή έχει τον άξονα y y ως άξονα συμμετρίας, τότε η συνάρτηση f είναι άρτια. 3. Αν μας δοθεί η γραφική παράσταση μιας συνάρτησης f και διαπιστώσουμε ότι αυτή έχει κέντρο συμμετρίας την αρχή Ο(0, 0) των αξόνων, τότε η συνάρτηση είναι περιττή. Γενικά : Όταν σε μια άσκηση μας ζητάνε να εξετάσουμε μια συνάρτηση ως προς τη συμμετρία της, ουσιαστικά μας ζητάνε να εξετάσουμε αν είναι άρτια ή περιττή. Παράδειγμα : Να εξετάσετε αν η γραφική παράσταση της συνάρτησης f με τύπο f() = 9 έχει άξονα συμμετρίας τον άξονα y y. 43

7 1. ΓΡ. ΑΥΞΕΝΤΙΟΥ 63 ΙΛΙΣΙΑ -. ΓΑΛΗΝΗΣ ΙΛΙΣΙΑ ΤΗΛ paps000g@yahoo.gr Λύση : Πρέπει : Άρα : Df = [-3, 3]. Και f(-) = 9 9 f(). Άρα, η συνάρτηση f είναι άρτια και η Cf έχει άξονα συμμετρίας τον άξονα y y. Β. ΕΡΩΤΗΣΕΙΣ ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΟΥ. 1. Τα παρακάτω σημεία ανήκουν στη γραφική παράσταση μιας άρτιας συνάρτησης. Να συμπληρώστε τους αριθμούς που λείπουν: (-1, ), 1 1 (, ), (..., ), (..., 4), (3,...), (-3, 18), (,4),(1/, ). Η συνάρτηση f () = έχει πεδίο ορισμού το R και για οποιουσδήποτε 1, R με 1 τότε : ή ή f (...) > f (...). Άρα η f είναι γνησίως φθίνουσα στο R. 3. Μία συνάρτηση f με πεδίο ορισμού το Α λέγεται περιττή, αν για κάθε... Α ισχύει... Α και f (...) = - f (...). 4. Η συνάρτηση f έχει ελάχιστο στο 0 A, όταν: f ()...f ( 0 ), για κάθε... Α. Η τιμή... λέγεται... της f στο Μία συνάρτηση είναι περιττή και έχει πεδίο ορισμού το διάστημα [-3, 3]. Να συμπληρώσετε στο σχήμα τη γραφική της παράσταση. 44

8 1. ΓΡ. ΑΥΞΕΝΤΙΟΥ 63 ΙΛΙΣΙΑ -. ΓΑΛΗΝΗΣ ΙΛΙΣΙΑ ΤΗΛ paps000g@yahoo.gr Γ. ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ ΛΑΘΟΣ 1. Στο σχήμα έχουμε τη γραφική παράσταση μιας γνησίως αύξουσας συνάρτησης. Σ Λ. Αν η περιττή συνάρτηση f έχει πεδίο ορισμού το R,τότε f (0) = 0. Σ Λ 3. Η συνάρτηση f () 3 έχει ελάχιστο. Σ Λ 4. Στο σχήμα έχουμε τη γραφική παράσταση μιας συνάρτησης που έχει μέγιστο το 3. Σ Λ 5. Η συνάρτηση g της οποίας η γραφική παράσταση φαίνεται στο σχήμα είναι άρτια. Σ Λ 4 6. Η συνάρτηση f () είναι άρτια. Σ Λ 7. Η συνάρτηση 7 3 g () 5 είναι περιττή. Σ Λ 45

9 1. ΓΡ. ΑΥΞΕΝΤΙΟΥ 63 ΙΛΙΣΙΑ -. ΓΑΛΗΝΗΣ ΙΛΙΣΙΑ ΤΗΛ paps000g@yahoo.gr Δ. ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η γραφική παράσταση μιας άρτιας συνάρτησης έχει άξονα συμμετρίας: Α. B. y y Γ. Την ευθεία y = - Δ. Την ευθεία y = E. Την ευθεία y =. Μία άρτια συνάρτηση f με πεδίο ορισμού το R στο 0 έχει μέγιστο το f () = 5. Η τιμή της f στο είναι: Α. 4 Β. - Γ. 5 Δ. -1 Ε. 3. Η συνάρτηση f () = 3 + (α - 1) + + αβ + 1 γίνεται περιττή αν: Α. α =, β = - 1 Β. α = - 1, β = 0 Γ. α = 1, β = - 1 Δ. α = -, β = 1 Ε. α = 0, β = 1 Ε. ΕΡΩΤΗΣΗ ΑΝΤΙΣΤΟΙΧΙΣΗΣ Μία συνάρτηση f με πεδίο ορισμού Α και σύνολο τιμών f (A) είναι γνησίως φθίνουσα. Να κάνετε την αντιστοίχιση. στήλη (Α) στήλη (Β) 46

10 1. ΓΡ. ΑΥΞΕΝΤΙΟΥ 63 ΙΛΙΣΙΑ -. ΓΑΛΗΝΗΣ ΙΛΙΣΙΑ ΤΗΛ paps000g@yahoo.gr ΣΤ. Ασκήσεις για λύση 1. Να εξετάσετε αν είναι άρτιες ή περιττές οι συναρτήσεις: 3. f f() 1 3. f( ) 9. f() 3 3. f() 1. f f(). f(). f f(), 1 3, 1. f Να εξετάσετε αν είναι άρτιες ή περιττές οι παρακάτω συναρτήσεις: 1. f 1 1. f 3. f, 4. f 5 X X X, X 0 5 X X X X 0 5. f(x) X 1 X X 6. X 1, X f(x) X 1, X 7. f X 3 X X X 47

11 1. ΓΡ. ΑΥΞΕΝΤΙΟΥ 63 ΙΛΙΣΙΑ -. ΓΑΛΗΝΗΣ ΙΛΙΣΙΑ ΤΗΛ paps000g@yahoo.gr f(x) f() f() 3 X 1, X 0 3 X 1, X f() f() f() Να αποδειχθεί ότι είναι περιττές οι παρακάτω συναρτήσεις: α) 1 1 f 1 1 β) g Τι είδους συμμετρία έχουν οι γραφικές παραστάσεις των συναρτήσεων αυτών; 4. Μια συνάρτηση f : έχει την ιδιότητα f (+ y) = f() + f (y) για κάθε χ, y. Nα αποδειχθεί ότι : α) f(0) = 0, β) η f είναι περιττή. 5. Να μελετήσετε τη μονοτονία των συναρτήσεων: 1. f 3. f f 1, 0 f, f 1 6. f

12 1. ΓΡ. ΑΥΞΕΝΤΙΟΥ 63 ΙΛΙΣΙΑ -. ΓΑΛΗΝΗΣ ΙΛΙΣΙΑ ΤΗΛ paps000g@yahoo.gr 6. Να μελετήσετε τη μονοτονία των συναρτήσεων: i ) f 0 ii) f iii) f 3 5, 6 1, 6 iv) f , 7. Να γίνει η γραφική παράσταση και να μελετηθεί ως προς τη μονοτονία η συνάρτηση: g 1 0, Να βρείτε (αν υπάρχουν) τα ακρότατα των συναρτήσεων: ) f 1 1, ii) g 3 1, i iii) h Να βρείτε τα ακρότατα των παρακάτω συναρτήσεων: ) f 4 ) g 5 ) h 1 3 ) Να εξετάσετε αν οι παρακάτω συναρτήσεις έχουν ακρότατα: 3 ) f 3, B) f 3 1 ) f 1, ) f Να βρεθεί το ελάχιστο της συνάρτησης f() = Έστω η συνάρτηση : f 1. α) Να παρασταθεί γραφικά. β) Να μελετηθεί ως προς τη μονοτονία. γ) Να βρεθεί το μέγιστό της. 49

13 1. ΓΡ. ΑΥΞΕΝΤΙΟΥ 63 ΙΛΙΣΙΑ -. ΓΑΛΗΝΗΣ ΙΛΙΣΙΑ ΤΗΛ paps000g@yahoo.gr 13. Έστω η συνάρτηση : f 1. α) Να γραφεί ο τύπος της συνάρτησης χωρίς απόλυτα. β) Να παρασταθεί γραφικά. γ) Να μελετηθεί ως προς τη μονοτονία. δ) Να βρεθεί το ελάχιστό της. 14. Για τη συνάρτηση f του παρακάτω σχήματος να βρείτε: α) τα ακρότατα, β) τα διαστήματα μονοτονίας, γ) τις λύσεις της ανίσωσης f 0, δ) τις λύσεις της εξίσωσης f() = 0, ε) την τιμή f (0). 3 6, Δίνεται η συνάρτηση: f 3, 1,1 3 6, 1 α. Να βρεθεί το πεδίο ορισμού της f. β. Να βρεθούν οι τιμές f(), f(-1), f(0), f(1) και f(). γ. Να αποδειχθεί ότι η συνάρτηση f είναι άρτια. δ. Έχει η γραφική παράσταση της f συμμετρίες; ε. Να σχεδιαστεί η γραφκική παράσταση της f. στ. Να γραφούν τα διαστήματα μονοτονίας της f. ζ. Να βρεθούν τα ακρότατα της f, καθώς και τα σημεία στα οποία παρουσιάζονται. 50

14 1. ΓΡ. ΑΥΞΕΝΤΙΟΥ 63 ΙΛΙΣΙΑ -. ΓΑΛΗΝΗΣ ΙΛΙΣΙΑ ΤΗΛ paps000g@yahoo.gr 16. Δίνεται η συνάρτηση f με τύπο f Να βρείτε το πεδίο ορισμού της f,. Να δείξετε ότι η f είναι άρτια, 3. Να βρείτε τα ακρότατα της f. 17. Δίνεται η f() = 3 + κ. Να οριστεί ο κ προκειμένου η γραφική της παράσταση να περνά από το σημείο Α (1,5). Ποιο το είδος της μονοτονίας της; Πού η ευθεία τέμνει τους άξονες; 18. Να ορίσετε από τη γραφική παράσταση ψ της συνάρτησης το πεδίο ορισμού, το πεδίο τιμών της, τη μονοτονία και τα ακρότατα. Ο χ 19. Να ορίσετε το πεδίο ορισμού, το πεδίο τιμών, τη μονοτονία και τα ακρότατατα της συνάρτησης. ψ 4 4 χ -1 Ο 3 0. Δίνεται η συνάρτηση f ορισμένη στο με τύπο: f () = (α 1)χ + α. Να βρείτε το α ώστε η f να είναι : I) άρτια και ii) περιττή. 51

15 1. ΓΡ. ΑΥΞΕΝΤΙΟΥ 63 ΙΛΙΣΙΑ -. ΓΑΛΗΝΗΣ ΙΛΙΣΙΑ ΤΗΛ paps000g@yahoo.gr 1. Η συνάρτηση f() έχει πεδίο ορισμού το Α, είναι γνησίως αύξουσα σ αυτό και f () > 0 για κάθε γιατί. R. Nα εξετάσετε αν η 1 g () = είναι γνησίως αύξουσα ή γνησίως φθίνουσα στο Α και f (). Η συνάρτηση f έχει πεδίο ορισμού το R και είναι άρτια. Στο [α, β] με 0 < α < β είναι γνησίως αύξουσα. Να εξεταστεί η μονοτονία της στο [- β, - α] Η συνάρτηση f έχει πεδίο ορισμού το R. Να δείξετε ότι η συνάρτηση g () [f () f ( )] είναι άρτια. 4. Η συνάρτηση f () = έχει πεδίο ορισμού το Α = [-1, ]. Να βρείτε τα ακρότατα της f. 5. Να αποδείξετε ότι μια γνησίως αύξουσα συνάρτηση δεν μπορεί να είναι άρτια. 6. Να αποδείξετε ότι η γραφική παράσταση μιας γνησίως μονότονης συνάρτησης τέμνει τον άξονα σε ένα το πολύ σημείο. 7. Δύο ευθείες με εξισώσεις ε1: = 0 όπου 0 > 0 και ε: ψ = ψ0 όπου ψ0 > 0 κινούνται παράλληλα προς τους άξονες ψ ψ και αντίστοιχα, έτσι ώστε το εμβαδόν του ορθογωνίου παραλληλογράμμου που σχηματίζεται από τις ευθείες και τους άξονες να έχει εμβαδόν 5 τετραγωνικές μονάδες. Πάνω σε ποια γραμμή κινείται το σημείο τομής των ευθειών ε1 και ε; 8. Εξετάστε αν υπάρχει συνάρτηση που να είναι συγχρόνως άρτια και περιττή. Δικαιολογήστε την απάντησή σας. 9. Αν η συνάρτηση f () είναι περιττή με πεδίο ορισμού Α, να εξεταστεί αν η συνάρτηση g () f () είναι άρτια στο Α. 30. Να αποδείξετε ότι η γραφική παράσταση μιας περιττής συνάρτησης που είναι ορισμένη στο (- α, α), α > 0 διέρχεται από την αρχή των αξόνων. 31. Έστω f περιττή συνάρτηση ορισμένη στο (-α, α). Να δείξετε ότι αν f είναι αύξουσα στο (0, α) τότε f θα είναι αύξουσα και στο (-α, 0). 5

16 1. ΓΡ. ΑΥΞΕΝΤΙΟΥ 63 ΙΛΙΣΙΑ -. ΓΑΛΗΝΗΣ ΙΛΙΣΙΑ ΤΗΛ paps000g@yahoo.gr 3. Δίνεται η συνάρτηση f ορισμένη στο [α, β]. Να δείξετε ότι: Αν f είναι αύξουσα στο [α, β], τότε παρουσιάζει ελάχιστο στο α, το f(α) και μέγιστο στο β το f(β). Αν f είναι φθίνουσα στο [α, β], τότε παρουσιάζει μέγιστο στο α, το f(α) και ελάχιστο στο β το f(β) 33. Να δείξετε ότι μια γνήσια μονότονη συνάρτηση f ορισμένη στο (α, β) δεν παρουσιάζει ακρότατα στο (α, β) 53

ΥΠΟΜΝΗΜΑ ΘΕΣΕΙΣ ΤΗΣ ΟΒΕΣ ΓΙΑ ΤΟ ΣΧΕΔΙΟ ΤΟΥ ΝΕΟΥ ΝΟΜΟΥ ΓΙΑ ΤΑ ΕΥΡΩΠΑΙΚΑ ΣΥΜΒΟΥΛΙΑ ΕΡΓΑΖΟΜΕΝΩΝ

ΥΠΟΜΝΗΜΑ ΘΕΣΕΙΣ ΤΗΣ ΟΒΕΣ ΓΙΑ ΤΟ ΣΧΕΔΙΟ ΤΟΥ ΝΕΟΥ ΝΟΜΟΥ ΓΙΑ ΤΑ ΕΥΡΩΠΑΙΚΑ ΣΥΜΒΟΥΛΙΑ ΕΡΓΑΖΟΜΕΝΩΝ Ο.Β.Ε.Σ. ΟΜΟΣΠΟΝΔΙΑ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΡΓΑΤΟΫΠΑΛΛΗΛΙΚΩΝ ΣΩΜΑΤΕΙΩΝ ΚΑΝΙΓΓΟΣ 31 106 82, ΑΘΗΝΑ, ΤΗΛ: 2103304120-1-2, FAX: 2103825322, email: info@obes.gr Αθήνα 08-11-2011 (τέταρτη έκδοση) ΥΠΟΜΝΗΜΑ ΘΕΣΕΙΣ ΤΗΣ ΟΒΕΣ

Διαβάστε περισσότερα

Α ΣΤΑΔΙΟ: ΑΝΑΛΥΣΗ ΔΙΑΓΝΩΣΗ ΠΡΟΟΠΤΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ

Α ΣΤΑΔΙΟ: ΑΝΑΛΥΣΗ ΔΙΑΓΝΩΣΗ ΠΡΟΟΠΤΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ Α.1. ΧΩΡΟΤΑΞΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΔΗΜΟΥ... 2 Α.1.1. ΓΕΝΙΚΑ... 2 Α.1.2. ΓΕΝΙΚΑ ΚΟΙΝΩΝΙΚΟΟΙΚΟΝΟΜΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΗΣ ΠΕΡΙΦΕΡΕΙΑΣ ΚΡΗΤΗΣ ΚΑΙ ΤΗΣ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΝΟΤΗΤΑΣ ΧΑΝΙΩΝ... 2 Α.1.3. ΣΥΝΟΨΗ ΤΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α Διδακτικό Υλικό στα Μαθηματικά της Γ Γυμνασίου Κεφάλαιο ο (Α+Β Μέρος) ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α Ερωτήσεις θεωρίας Ερωτήσεις Αντικειμενικού Τύπου Ασκήσεις Διαγωνίσματα 1 Διδακτικό Υλικό στα Μαθηματικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΛΥΚΕΙΟΥ 0 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΛΥΚΕΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 00, δηλαδή το σύνολο των μονάδων των προαγωγικών

Διαβάστε περισσότερα

2 Η απασχόληση στον τομέα του εμπορίου: Διάρθρωση και εξελίξεις

2 Η απασχόληση στον τομέα του εμπορίου: Διάρθρωση και εξελίξεις 2 Η απασχόληση στον τομέα του εμπορίου: Διάρθρωση και εξελίξεις 2.1. Εισαγωγικές παρατηρήσεις Στο κεφάλαιο αυτό αποτυπώνονται οι εξελίξεις στα μεγέθη και στη διάρθρωση των βασικών χαρακτηριστικών της

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ Τμήμα Εφαρμοσμένης Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών Εφαρμοσμένης Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ Τμήμα Εφαρμοσμένης Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών Εφαρμοσμένης Πληροφορικής ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ Τμήμα Εφαρμοσμένης Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών Εφαρμοσμένης Πληροφορικής ΕΡΓΑΣΙΑ: ΔΙΑΧΕΙΡΙΣΗ ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ ΣΤΟΝ ΚΛΑΔΟ ΤΩΝ ΤΡΟΦΙΜΩΝ ΑΝΑΛΥΣΗ

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΕΞΕΥΡΕΣΗΣ ΕΡΓΑΣΙΑΣ

ΤΕΧΝΙΚΕΣ ΕΞΕΥΡΕΣΗΣ ΕΡΓΑΣΙΑΣ 1ο ΤΕΕ ΕΥΟΣΜΟΥ ΤΕΧΝΙΚΕΣ ΕΞΕΥΡΕΣΗΣ ΕΡΓΑΣΙΑΣ Ημέρα Αξιολόγησης Υπεύθυνοι καθηγητές: Μαθητές: Σχολ. Έτος: ΖΟΠΟΓΛΟΥ ΑΓΑΠΗ ΑΜΑΣΙΑΔΗΣ ΘΕΟΔΩΡΟΣ ΠΙΛΟΒΙΑΔΗΣ ΠΑΥΛΟΣ (ΑΜ3) ΒΑΣΙΛΕΙΑΔΗΣ ΒΑΣΙΛΕΙΟΣ (ΓΨ) ΙΟΡΔΑΝΙΔΗΣ ΑΛΕΞΑΝΔΡΟΣ

Διαβάστε περισσότερα

Ε.Ε. Π α ρ.ι(i), Α ρ.4083, 20/4/2006 ΝΟΜΟΣ ΠΟΥ ΠΡΟΝΟΕΙ ΓΙΑ ΤΗΝ ΕΓΚΑΘΙΔΡΥΣΗ ΑΝΕΞΑΡΤΗΤΗΣ ΕΠΙΤΡΟΠΗΣ ΓΙΑ

Ε.Ε. Π α ρ.ι(i), Α ρ.4083, 20/4/2006 ΝΟΜΟΣ ΠΟΥ ΠΡΟΝΟΕΙ ΓΙΑ ΤΗΝ ΕΓΚΑΘΙΔΡΥΣΗ ΑΝΕΞΑΡΤΗΤΗΣ ΕΠΙΤΡΟΠΗΣ ΓΙΑ ΝΟΜΟΣ ΠΟΥ ΠΡΟΝΟΕΙ ΓΙΑ ΤΗΝ ΕΓΚΑΘΙΔΡΥΣΗ ΑΝΕΞΑΡΤΗΤΗΣ ΕΠΙΤΡΟΠΗΣ ΓΙΑ ΤΗΝ ΠΑΡΟΧΗ ΓΝΩΜΑΤΕΥΣΕΩΝ ΑΝΑΦΟΡΙΚΑ ΜΕ ΤΗΝ ΑΝΕΓΕΡΣΗ ΚΑΙ ΤΟΠΟΘΕΤΗΣΗ ΜΝΗΜΕΙΩΝ ΣΕ ΑΝΟΙΚΤΟΥΣ ΧΩΡΟΥΣ ΚΑΙ ΓΙΑ ΑΛΛΑ ΣΥΝΑΦΗ ΘΕΜΑΤΑ ----------------------------

Διαβάστε περισσότερα

74 η ΣΥΝΟΔΟΣ ΠΡΥΤΑΝΕΩΝ & ΠΡΟΕΔΡΩΝ Δ.Ε. ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΩΝ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Θεσσαλονίκη, 12-13 Δεκεμβρίου 2013

74 η ΣΥΝΟΔΟΣ ΠΡΥΤΑΝΕΩΝ & ΠΡΟΕΔΡΩΝ Δ.Ε. ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΩΝ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Θεσσαλονίκη, 12-13 Δεκεμβρίου 2013 74 η ΣΥΝΟΔΟΣ ΠΡΥΤΑΝΕΩΝ & ΠΡΟΕΔΡΩΝ Δ.Ε. ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΩΝ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Θεσσαλονίκη, 12-13 Δεκεμβρίου 2013 ΟΜΟΦΩΝΟ ΨΗΦΙΣΜΑ ΓΙΑ ΤΑ ΘΕΣΜΙΚΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΩΝ 1. Θεσμικά

Διαβάστε περισσότερα

Κατανόηση γραπτού λόγου

Κατανόηση γραπτού λόγου Κατανόηση γραπτού λόγου Επίπεδο Δ (προχωρημένο) Πρώτη διδακτική πρόταση Το θηλυκό μυαλό των επιχειρήσεων Ενδεικτική διάρκεια: Ομάδα στόχος: 1 διδακτική ώρα ενήλικες Διδακτικός στόχος: κατανόηση αυθεντικού

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ- ΠΟΣΟΣΤΑ. Στόχοι της διδασκαλίας

ΣΧΕΔΙΑΣΜΟΣ- ΠΟΣΟΣΤΑ. Στόχοι της διδασκαλίας ΣΧΕΔΙΑΣΜΟΣ- ΠΟΣΟΣΤΑ Οι σελίδες που ακολουθούν ΔΕΝ ΑΠΟΤΕΛΟΥΝ πρόταση για συγκεκριμένο δίωρο της διδασκαλίας ποσοστών- άλλωστε ο απαιτούμενος χρόνος είναι κατά πολύ μεγαλύτερος- απλά παρουσιάζουν κάποιες

Διαβάστε περισσότερα

ΔΕΗ Ανανεώσιμες: Το μέλλον της ΔΕΗ Ομιλία του κ. Τάκη Αθανασόπουλου Προέδρου & Διευθύνοντος Συμβούλου ΔΕΗ Α.Ε. 6-11-2008

ΔΕΗ Ανανεώσιμες: Το μέλλον της ΔΕΗ Ομιλία του κ. Τάκη Αθανασόπουλου Προέδρου & Διευθύνοντος Συμβούλου ΔΕΗ Α.Ε. 6-11-2008 ΔΕΗ Ανανεώσιμες: Το μέλλον της ΔΕΗ Ομιλία του κ. Τάκη Αθανασόπουλου Προέδρου & Διευθύνοντος Συμβούλου ΔΕΗ Α.Ε. 6-11-2008 Αγαπητοί εκπρόσωποι των Μέσων Μαζικής Ενημέρωσης, Αγαπητοί συνάδελφοι, Θα ήθελα

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας Γ Λυκείου Κεφάλαιο 1 (Συναρτήσεις) Μαθηματικά Γενικής Παιδείας Γˊ Λυκείου. Κεφάλαιο 1 ο Συναρτήσεις

Μαθηματικά Γενικής Παιδείας Γ Λυκείου Κεφάλαιο 1 (Συναρτήσεις) Μαθηματικά Γενικής Παιδείας Γˊ Λυκείου. Κεφάλαιο 1 ο Συναρτήσεις Μαθηματικά Γενικής Παιδείας Γ Λυκείου Κεφάλαιο Συναρτήσεις Μαθηματικά Γενικής Παιδείας Γˊ Λυκείου Κεφάλαιο ο Συναρτήσεις Μαθηματικά Γενικής Παιδείας Γ Λυκείου Κεφάλαιο Συναρτήσεις ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟΥ ΣΥΝΑΡΤΗΣΕΙΣ

Διαβάστε περισσότερα

Α. ΕΙΚΟΝΟΜΑΧΙΚΗ ΠΕΡΙΟΔΟΣ.

Α. ΕΙΚΟΝΟΜΑΧΙΚΗ ΠΕΡΙΟΔΟΣ. Α. ΕΙΚΟΝΟΜΑΧΙΚΗ ΠΕΡΙΟΔΟΣ. Η εικονομαχική έριδα συντάραξε την Ανατολική Εκκλησία και το Βυζαντινό κράτος για περισσότερα από 130 χρόνια και ανέκοψε την πορεία της ζωγραφικής. Η εικονογραφική παράδοση διατηρείται

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 7 ΔΕΚΕΜΒΡΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ

Διαβάστε περισσότερα

Ένας πρακτικός οδηγός για επενδύσεις στα φωτοβολταϊκά μετά την ψήφιση του νέου νόμου (Ν.3851/2010) για τις ΑΠΕ

Ένας πρακτικός οδηγός για επενδύσεις στα φωτοβολταϊκά μετά την ψήφιση του νέου νόμου (Ν.3851/2010) για τις ΑΠΕ Ένας πρακτικός οδηγός για επενδύσεις στα φωτοβολταϊκά μετά την ψήφιση του νέου νόμου (Ν.3851/2010) για τις ΑΠΕ 1. Τι καινούργιο φέρνει ο νέος νόμος; Ο νέος νόμος για τις ανανεώσιμες πηγές ενέργειας (ΑΠΕ)

Διαβάστε περισσότερα

Η διαδικασία Στρατηγικής Περιβαλλοντικής Εκτίμησης (ΣΠΕ) στο Χωροταξικό Σχεδιασμό: εννοιολογικές αποσαφηνίσεις η εφαρμογή στα ΓΠΣ-ΣΧΟΟΑΠΣΧΟΟΑΠ Μουτσιάκης Ευθύμιος Περιβαλλοντολόγος, Δρ. Αρχ. Μηχανικών

Διαβάστε περισσότερα

ΤΟ ΠΛΗΡΕΣ ΚΕΙΜΕΝΟ ΤΗΣ ΜΕΛΕΤΗΣ

ΤΟ ΠΛΗΡΕΣ ΚΕΙΜΕΝΟ ΤΗΣ ΜΕΛΕΤΗΣ ΤΟ ΠΛΗΡΕΣ ΚΕΙΜΕΝΟ ΤΗΣ ΜΕΛΕΤΗΣ Α] Εξέλιξη του Κύκλου Εργασιών, των Καθαρών Αποτελεσμάτων προ Φόρων και του Περιθωρίου Καθαρού Κέρδους για την πενταετία 2008 2012. Η καταγραφή, και ακολούθως η μελέτη, των

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΣΧΕ ΙΟ ΝΟΜΟΥ ΓΙΑ ΤΟ ΝΕΟ ΑΣΦΑΛΙΣΤΙΚΟ ΣΥΣΤΗΜΑ. dparatiritirio.blogspot.com

ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΣΧΕ ΙΟ ΝΟΜΟΥ ΓΙΑ ΤΟ ΝΕΟ ΑΣΦΑΛΙΣΤΙΚΟ ΣΥΣΤΗΜΑ. dparatiritirio.blogspot.com ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΣΧΕ ΙΟ ΝΟΜΟΥ ΓΙΑ ΤΟ ΝΕΟ ΑΣΦΑΛΙΣΤΙΚΟ ΣΥΣΤΗΜΑ ΜΑΪΟΣ 2010 1. Εισαγωγή Η Κοινωνική Ασφάλιση τον 20 ο αιώνα. αποτελεί τη κορυφαία κατάκτηση των εργαζοµένων τον 19

Διαβάστε περισσότερα

ΠΡΟΕΔΡΟΙ ΤΟΠΙΚΩΝ ΣΥΜΒΟΥΛΙΩΝ ΚΑΙ ΕΚΠΡΟΣΩΠΟΙ ΤΟΠΙΚΩΝ ΚΟΙΝΟΤΗΤΩΝ

ΠΡΟΕΔΡΟΙ ΤΟΠΙΚΩΝ ΣΥΜΒΟΥΛΙΩΝ ΚΑΙ ΕΚΠΡΟΣΩΠΟΙ ΤΟΠΙΚΩΝ ΚΟΙΝΟΤΗΤΩΝ Α Π Ο Σ Π Α Σ Μ Α Της αριθ. 18/2011 έκτακτης συνεδρίασης του Δημοτικού Συμβουλίου Παρανεστίου. Στο Παρανέστι, στο Δημοτικό Κατάστημα και στην αίθουσα συνεδριάσεων του Δημοτικού Συμβουλίου, σήμερα 30 του

Διαβάστε περισσότερα

ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ. Διπλωματική Εργασία

ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ. Διπλωματική Εργασία ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Διπλωματική Εργασία ΕΞΥΓΙΑΝΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕ ΒΑΣΗ ΤΟ ΑΡΘΡΟ 99 ΤΟΥ ΝΕΟΥ ΠΤΩΧΕΥΤΙΚΟΥ ΚΩΔΙΚΑ

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΔΗΜΟΣΙΩΝ ΕΠΕΝΔΥΣΕΩΝ - ΕΣΠΑ

ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΔΗΜΟΣΙΩΝ ΕΠΕΝΔΥΣΕΩΝ - ΕΣΠΑ ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΔΗΜΟΣΙΩΝ ΕΠΕΝΔΥΣΕΩΝ - ΕΣΠΑ ΓΕΝΙΚΗ Δ/ΝΣΗ ΑΝΑΠΤΥΞΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ, ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΠΟΛΙΤΙΚΗΣ & ΔΗΜΟΣΙΩΝ ΕΠΕΝΔΥΣΕΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΘΕΣΜΙΚΗΣ ΥΠΟΣΤΗΡΙΞΗΣ Αθήνα,

Διαβάστε περισσότερα

ΑΠΟΨΕΙΣ - ΠΡΟΤΑΣΕΙΣ ΓΙΑ ΤΗ ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΑΝΩΝΥΜΩΝ ΕΤΑΙΡΕΙΩΝ ΔΙΑΧΕΙΡΙΣΗΣ ΔΗΜΟΣΙΩΝ ΕΡΓΩΝ ΠΟΥ ΥΠΑΓΟΝΤΑΙ ΣΤΗ Γ.Γ.Δ.Ε.

ΑΠΟΨΕΙΣ - ΠΡΟΤΑΣΕΙΣ ΓΙΑ ΤΗ ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΑΝΩΝΥΜΩΝ ΕΤΑΙΡΕΙΩΝ ΔΙΑΧΕΙΡΙΣΗΣ ΔΗΜΟΣΙΩΝ ΕΡΓΩΝ ΠΟΥ ΥΠΑΓΟΝΤΑΙ ΣΤΗ Γ.Γ.Δ.Ε. ΑΠΟΨΕΙΣ - ΠΡΟΤΑΣΕΙΣ ΓΙΑ ΤΗ ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΑΝΩΝΥΜΩΝ ΕΤΑΙΡΕΙΩΝ ΔΙΑΧΕΙΡΙΣΗΣ ΔΗΜΟΣΙΩΝ ΕΡΓΩΝ ΠΟΥ ΥΠΑΓΟΝΤΑΙ ΣΤΗ Γ.Γ.Δ.Ε. Πρόσφατα ιδρύθηκε μια ακόμη ανώνυμη εταιρεία του Δημοσίου για τη διαχείριση των δημοσίων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Αριθµ. Απόφασης 542/2011 ΝΟΜΟΣ ΗΡΑΚΛΕΙΟΥ ΗΜΟΣ ΧΕΡΣΟΝΗΣΟΥ ιεύθυνση ιοικητικών Υπηρεσιών

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Αριθµ. Απόφασης 542/2011 ΝΟΜΟΣ ΗΡΑΚΛΕΙΟΥ ΗΜΟΣ ΧΕΡΣΟΝΗΣΟΥ ιεύθυνση ιοικητικών Υπηρεσιών ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Αριθµ. Απόφασης 542/2011 ΝΟΜΟΣ ΗΡΑΚΛΕΙΟΥ ΗΜΟΣ ΧΕΡΣΟΝΗΣΟΥ ιεύθυνση ιοικητικών Υπηρεσιών ΑΠΟΣΠΑΣΜΑ Από το πρακτικό 32/13-12-2011 της τακτικής συνεδρίασης του ηµοτικού Συµβουλίου Θέµα:

Διαβάστε περισσότερα

ΚΩΔΙΚΑΣ ΔΕΟΝΤΟΛΟΓΙΑΣ ΤΗΣ ΕΡΕΥΝΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. (Εγκρίθηκε στη 299/22-03-2012 Συνεδρίαση της Συγκλήτου)

ΚΩΔΙΚΑΣ ΔΕΟΝΤΟΛΟΓΙΑΣ ΤΗΣ ΕΡΕΥΝΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. (Εγκρίθηκε στη 299/22-03-2012 Συνεδρίαση της Συγκλήτου) ΚΩΔΙΚΑΣ ΔΕΟΝΤΟΛΟΓΙΑΣ ΤΗΣ ΕΡΕΥΝΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ (Εγκρίθηκε στη 299/22-03-2012 Συνεδρίαση της Συγκλήτου) ΗΡΑΚΛΕΙΟ 2012 1 ΠΕΡΙΕΧΟΜΕΝΑ ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΑΡΘΡΟ 1: Πεδίο Εφαρμογής 3 ΑΡΘΡΟ 2: Η Αξία της Ερευνητικής

Διαβάστε περισσότερα

ΒΙΒΛΙΟΚΡΙΣΙΑ. Η ΔΕΥΤΕΡΗ ΑΠΑΣΧΟΛΗΣΗ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΑΓΟΡΑ ΕΡΓΑΣΙΑΣ Κριτική παρουσίαση της μελέτης των Κ. Κασιμάτη και Άλλισον Ε.

ΒΙΒΛΙΟΚΡΙΣΙΑ. Η ΔΕΥΤΕΡΗ ΑΠΑΣΧΟΛΗΣΗ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΑΓΟΡΑ ΕΡΓΑΣΙΑΣ Κριτική παρουσίαση της μελέτης των Κ. Κασιμάτη και Άλλισον Ε. ΒΙΒΛΙΟΚΡΙΣΙΑ Η ΔΕΥΤΕΡΗ ΑΠΑΣΧΟΛΗΣΗ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΑΓΟΡΑ ΕΡΓΑΣΙΑΣ Κριτική παρουσίαση της μελέτης των Κ. Κασιμάτη και Άλλισον Ε. Η Μορφολογία της δεύτερης απασχόλησης, ΕΚΚΕ, Αθήνα, 1989 Η έρευνα και η βιβλιογραφία

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΠΡΟΕΔΡΙΚΟΥ ΔΙΑΤΑΓΜΑΤΟΣ

ΣΧΕΔΙΟ ΠΡΟΕΔΡΙΚΟΥ ΔΙΑΤΑΓΜΑΤΟΣ ΣΧΕΔΙΟ ΠΡΟΕΔΡΙΚΟΥ ΔΙΑΤΑΓΜΑΤΟΣ «Καθορισμός του τρόπου άσκησης ελέγχου ταυτότητας οδηγών και έρευνας αυτοκινήτων από δασικούς υπαλλήλους και καθορισμός τύπου υπηρεσιακής ταυτότητας, στολής και σήματος που

Διαβάστε περισσότερα

Θέµα: Περί παραχώρησης απλής χρήσης αιγιαλού για την άσκηση δραστηριοτήτων που εξυπηρετούν τους λουόµενους ή την αναψυχή του κοινού για το έτος 2012.

Θέµα: Περί παραχώρησης απλής χρήσης αιγιαλού για την άσκηση δραστηριοτήτων που εξυπηρετούν τους λουόµενους ή την αναψυχή του κοινού για το έτος 2012. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Αριθµ. Απόφασης 231/2012 ΝΟΜΟΣ ΗΡΑΚΛΕΙΟΥ ΗΜΟΣ ΧΕΡΣΟΝΗΣΟΥ ιεύθυνση ιοικητικών Υπηρεσιών ΑΠΟΣΠΑΣΜΑ Από το πρακτικό 7/15-5-2012 της τακτικής συνεδρίασης του ηµοτικού Συµβουλίου Θέµα: Περί

Διαβάστε περισσότερα

ΠΕΡΙΦΕΡΕΙΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΘΡΑΚΗΣ. Πρόταση σχεδιασμού και κατάρτισης αναπτυξιακού προγραμματισμού περιόδου 2014 2020.

ΠΕΡΙΦΕΡΕΙΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΘΡΑΚΗΣ. Πρόταση σχεδιασμού και κατάρτισης αναπτυξιακού προγραμματισμού περιόδου 2014 2020. Πρόταση σχεδιασμού και κατάρτισης αναπτυξιακού προγραμματισμού περιόδου 2014 2020 Περιφέρειας Ανατολικής Μακεδονίας Θράκης 2η ΕΓΚΥΚΛΙΟΣ Ιούλιος 2013 1 Ενότητα 1: «Ανάλυση Στοχοθεσία»...5 I. Ανάλυση των

Διαβάστε περισσότερα

Δημόσιες συμβάσεις. Νομική βάση. Στόχοι. Επιτεύγματα

Δημόσιες συμβάσεις. Νομική βάση. Στόχοι. Επιτεύγματα Δημόσιες συμβάσεις Ο δημόσιες αρχές συνάπτουν συμβάσεις προκειμένου να διασφαλίσουν την εκτέλεση έργων, την προμήθεια προϊόντων ή την παροχή υπηρεσιών. Οι εν λόγω συμβάσεις, οι οποίες συνάπτονται έναντι

Διαβάστε περισσότερα

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ 12207 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ Αρ. Φύλλου 919 19 Μαΐου 2008 ΑΠΟΦΑΣΕΙΣ Αριθμ. 301764 Καθορισμός λεπτομερειών εφαρμογής του μέτρου της δωρεάν διανομής τυριού Φέτα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΑ ΗΜΟΣΙΩΝ ΑΠΑΝΩΝ: ΚΟΙΝΩΝΙΚΗ ΑΣΦΑΛΙΣΗ ΟΙ ΑΠΑΝΕΣ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΣΤΗΝ ΕΛΛΑ Α

ΠΡΟΓΡΑΜΜΑΤΑ ΗΜΟΣΙΩΝ ΑΠΑΝΩΝ: ΚΟΙΝΩΝΙΚΗ ΑΣΦΑΛΙΣΗ ΟΙ ΑΠΑΝΕΣ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΣΤΗΝ ΕΛΛΑ Α ΜΑΘΗΜΑ 11 ΠΡΟΓΡΑΜΜΑΤΑ ΗΜΟΣΙΩΝ ΑΠΑΝΩΝ: ΚΟΙΝΩΝΙΚΗ ΑΣΦΑΛΙΣΗ ΟΙ ΑΠΑΝΕΣ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΣΤΗΝ ΕΛΛΑ Α Η κοινωνική ασφάλιση στην Ελλάδα απορροφά µεγάλο µέρος και του προγράµµατος δηµοσίων δαπανών: το 2001

Διαβάστε περισσότερα

Καταστατικό του επιστημονικού σωματείου με την επωνυμία ΕΝΤΟΜΟΛΟΓΙΚΗ ΕΤΑΙΡΕΙΑ ΕΛΛΑΔΟΣ. Άρθρο 1 ο Ίδρυση Επωνυμία Έδρα

Καταστατικό του επιστημονικού σωματείου με την επωνυμία ΕΝΤΟΜΟΛΟΓΙΚΗ ΕΤΑΙΡΕΙΑ ΕΛΛΑΔΟΣ. Άρθρο 1 ο Ίδρυση Επωνυμία Έδρα Καταστατικό του επιστημονικού σωματείου με την επωνυμία ΕΝΤΟΜΟΛΟΓΙΚΗ ΕΤΑΙΡΕΙΑ ΕΛΛΑΔΟΣ Άρθρο 1 ο Ίδρυση Επωνυμία Έδρα α. Ιδρύεται στην Ελλάδα επιστημονικό σωματείο με την επωνυμία «ΕΝΤΟΜΟΛΟΓΙΚΗ ΕΤΑΙΡΕΙΑ

Διαβάστε περισσότερα

Π. Δ. 350 / 1996 ΦΑΚΕΛΟΣ ΑΣΦΑΛΕΙΑΣ ΚΑΙ ΥΓΕΙΑΣ ΣΧΕΔΙΟ ΑΣΦΑΛΕΙΑΣ ΚΑΙ ΥΓΕΙΑΣ (Φ.Α.Υ. - Σ.Α.Υ.)

Π. Δ. 350 / 1996 ΦΑΚΕΛΟΣ ΑΣΦΑΛΕΙΑΣ ΚΑΙ ΥΓΕΙΑΣ ΣΧΕΔΙΟ ΑΣΦΑΛΕΙΑΣ ΚΑΙ ΥΓΕΙΑΣ (Φ.Α.Υ. - Σ.Α.Υ.) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΜΗΧΑΝΟΡΓΑΝΩΣΗΣ ΔΙΕΥΘΥΝΣΗ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕΛΕΤΩΝ ΚΑΙ ΕΚΤΕΛΕΣΗΣ ΕΡΓΩΝ ΤΜΗΜΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΜΕΛΕΤΩΝ

Διαβάστε περισσότερα

«ΕΦΑΡΜΟΓΗ ΚΟ 22000 ΣΕ ΜΟΝΑΔΑ ΠΑΡΑΓΩΓΗΣ ΛΙΚΕΡ»

«ΕΦΑΡΜΟΓΗ ΚΟ 22000 ΣΕ ΜΟΝΑΔΑ ΠΑΡΑΓΩΓΗΣ ΛΙΚΕΡ» Τ.Ε.Ι. ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ: ΤΕΧΝΟΛΟΓΙΑ ΓΕΩΡΓΙΚΩΝ ΠΡΟΪΟΝΤΩΝ Τ Ε I ΚΑΛΑΜΑΤΑ! ΤΜΗΜΑ ΕΚΔΟΣΕΩΝ 8 ΒΙΒΛΙΟΘΗΚΗ! ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: «ΕΦΑΡΜΟΓΗ ΚΟ 22000 ΣΕ ΜΟΝΑΔΑ ΠΑΡΑΓΩΓΗΣ ΛΙΚΕΡ» ΕΠΙΜΕΛΕΙΑ:

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΑΠΟΚΑΤΑΣΤΑΣΗ ΤΗΣ ΧΩΜΑΤΕΡΗΣ «ΑΣΤΙΜΙΤΣΙ» ΣΤΗΝ ΠΕΡΙΟΧΗ ΚΟΡΥΤΙΑΝΗΣ ΤΟΥ ΝΟΜΟY ΘΕΣΠΡΩΤΙΑΣ

ΜΕΛΕΤΗ ΚΑΙ ΑΠΟΚΑΤΑΣΤΑΣΗ ΤΗΣ ΧΩΜΑΤΕΡΗΣ «ΑΣΤΙΜΙΤΣΙ» ΣΤΗΝ ΠΕΡΙΟΧΗ ΚΟΡΥΤΙΑΝΗΣ ΤΟΥ ΝΟΜΟY ΘΕΣΠΡΩΤΙΑΣ ΤΕΙ ΗΡΑΚΛΕΙΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΘΕ.ΚΑ ΜΕΛΕΤΗ ΚΑΙ ΑΠΟΚΑΤΑΣΤΑΣΗ ΤΗΣ ΧΩΜΑΤΕΡΗΣ «ΑΣΤΙΜΙΤΣΙ» ΣΤΗΝ ΠΕΡΙΟΧΗ ΚΟΡΥΤΙΑΝΗΣ ΤΟΥ ΝΟΜΟY ΘΕΣΠΡΩΤΙΑΣ ΕΠΙΒΛΕΠΟΥΣΑ ΚΑΘΗΓΗΤΡΙΑ: ΚΟΥΝΔΟΥΡΑΚΗ ΕΥΡYΔΙΚΗ ΕΙΣΗΓΗΤΡΙΑ:

Διαβάστε περισσότερα

ΣΥΝΔΕΣΜΟΣ ΣΥΝΤΑΞΙΟΥΧΩΝ

ΣΥΝΔΕΣΜΟΣ ΣΥΝΤΑΞΙΟΥΧΩΝ ΣΥΝΔΕΣΜΟΣ ΣΥΝΤΑΞΙΟΥΧΩΝ ΠΟΛΙΤΙΚΩΝ ΔΗΜΟΣΙΩΝ ΥΠΑΛΛΗΛΩΝ ΑΘΗΝΑΣ ΣΩΜΑΤΕΙΟ ΑΝΑΓΝΩΡΙΣΜΕΝΟ ΕΤΟΣ ΙΔΡΥΣΗΣ 1925 28 ης Οκτωβρίου 4 τ.κ. 10677 ΑΘΗΝΑ. Τηλ.2103815177 fax.2103801207 Μάρτη 2014 Αθήνα 6 ΦΟΡΟΛΗΣΤΕΙΑ Εφιαλτικά

Διαβάστε περισσότερα

Το Μάθημα των Εικαστικών με τα Νέα Βιβλία στο Δημοτικό Σχολείο

Το Μάθημα των Εικαστικών με τα Νέα Βιβλία στο Δημοτικό Σχολείο Το Μάθημα των Εικαστικών με τα Νέα Βιβλία στο Δημοτικό Σχολείο ΕΙΣΑΓΩΓΗ Αθανάσιος Παναγόπουλος, εκπαιδευτικός Πρωτοβάθμιας Εκπαίδευσης, Δ/ντής στο Δημοτικό Σχολείο Φαρρών, Δήμου Ερυμάνθου Ν. Αχαΐας. Οι

Διαβάστε περισσότερα

ΟΙ ΥΠΟΥΡΓΟΙ ΑΝΑΠΤΥΞΗΣ, ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ, ΥΠΟΔΟΜΩΝ, ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΔΙΚΤΥΩΝ ΔΙΚΑΙΟΣΥΝΗΣ, ΔΙΑΦΑΝΕΙΑΣ ΚΑΙ ΑΝΘΡΩΠΙΝΩΝ ΔΙΚΑΙΩΜΑΤΩΝ

ΟΙ ΥΠΟΥΡΓΟΙ ΑΝΑΠΤΥΞΗΣ, ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ, ΥΠΟΔΟΜΩΝ, ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΔΙΚΤΥΩΝ ΔΙΚΑΙΟΣΥΝΗΣ, ΔΙΑΦΑΝΕΙΑΣ ΚΑΙ ΑΝΘΡΩΠΙΝΩΝ ΔΙΚΑΙΩΜΑΤΩΝ Κ.Υ.Α. αριθμ. Κ2-828/31.1.2013 Προτυποποιημένα καταστατικά Αριθμ. Κ2-828 (ΦΕΚ Β' 216/05-02-2013) ΟΙ ΥΠΟΥΡΓΟΙ ΑΝΑΠΤΥΞΗΣ, ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ, ΥΠΟΔΟΜΩΝ, ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΔΙΚΤΥΩΝ ΔΙΚΑΙΟΣΥΝΗΣ, ΔΙΑΦΑΝΕΙΑΣ ΚΑΙ ΑΝΘΡΩΠΙΝΩΝ

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης Παράδειγμα Δυαδικότητας (από το βιβλίο Διοικητική Επιστήμη

Διαβάστε περισσότερα

ΑΠΟΣΠΑΣΜΑ ΠΡΑΚΤΙΚΟΥ Συνεδρίασης Επιτροπής Ποιότητας Ζωής του Δήμου Αιγιαλείας 18 Οκτωβρίου 2013

ΑΠΟΣΠΑΣΜΑ ΠΡΑΚΤΙΚΟΥ Συνεδρίασης Επιτροπής Ποιότητας Ζωής του Δήμου Αιγιαλείας 18 Οκτωβρίου 2013 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΧΑΪΑΣ ΔΗΜΟΣ ΑΙΓΙΑΛΕΙΑΣ ΕΠΙΤΡΟΠΗ ΠΟΙΟΤΗΤΑΣ ΖΩΗΣ ΑΠΟΣΠΑΣΜΑ ΠΡΑΚΤΙΚΟΥ Συνεδρίασης Επιτροπής Ποιότητας Ζωής του Δήμου Αιγιαλείας 18 Οκτωβρίου 2013 ΑΠΟΦΑΣΗ 85 Στο Αίγιο και στο Δημοτικό

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Πραγματική Ανάλυση. Μέτρο και ολοκλήρωμα Lebesgue στον R n. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης

Μιχάλης Παπαδημητράκης. Πραγματική Ανάλυση. Μέτρο και ολοκλήρωμα Lebesgue στον R n. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης Μιχάλης Παπαδημητράκης Πραγματική Ανάλυση Μέτρο και ολοκλήρωμα Lebesgue στον R n Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα Εισαγωγικά. 2 Το μέτρο Lebesgue. 7 2. Όγκοι διαστημάτων..................................

Διαβάστε περισσότερα

Η οικονομική κρίση και ύφεση ανασχεθούν δεν θα αποφύγει να μετεξελιχθεί οι προοπτικές της ευρω- ζώνης αναιμικές η Ευρώπη Κινητήρια δύναμη

Η οικονομική κρίση και ύφεση ανασχεθούν δεν θα αποφύγει να μετεξελιχθεί οι προοπτικές της ευρω- ζώνης αναιμικές η Ευρώπη Κινητήρια δύναμη Σύνοψη συμπερασμάτων Η οικονομική κρίση και ύφεση σε συνδυασμό με τα προβλήματα που έχουν προκληθεί από τις ασκούμενες πολιτικές της εσωτερικής υποτίμησης, ιδιαίτερα, στον Νότο, θέτει τις ευρωπαϊκές ελίτ,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ Ι ΣΥΣΤΑΣΗ - ΓΕΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ

ΚΕΦΑΛΑΙΟ Ι ΣΥΣΤΑΣΗ - ΓΕΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΚΩΔΙΚΟΠΟΙΗΜΕΝΟ ΚΑΤΑΣΤΑΤΙΚΟ ΤΗΣ ΑΝΩΝΥΜΗΣ ΕΤΑΙΡΕΙΑΣ ΜΕ ΤΗΝ ΕΠΩΝΥΜΙΑ «ΣΤΕΛΙΟΣ ΚΑΝΑΚΗΣ ΑΝΩΝΥΜΗ ΒΙΟΜΗΧΑΝΙΚΗ ΚΑΙ ΕΜΠΟΡΙΚΗ ΕΤΑΙΡΕΙΑ ΠΡΩΤΩΝ ΥΛΩΝ ΖΑΧΑΡΟΠΛΑΣΤΙΚΗΣ - ΑΡΤΟΠΟΙΙΑΣ ΚΑΙ ΠΑΓΩΤΟΥ» ΚΕΦΑΛΑΙΟ Ι ΣΥΣΤΑΣΗ - ΓΕΝΙΚΕΣ

Διαβάστε περισσότερα

Α Π Ο Σ Π Α Σ Μ Α. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΒΟΙΩΤΙΑΣ ΔΗΜΟΣ ΟΡΧΟΜΕΝΟΥ Αρ.Πρωτ.: 298/12-1-2015

Α Π Ο Σ Π Α Σ Μ Α. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΒΟΙΩΤΙΑΣ ΔΗΜΟΣ ΟΡΧΟΜΕΝΟΥ Αρ.Πρωτ.: 298/12-1-2015 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΒΟΙΩΤΙΑΣ ΔΗΜΟΣ ΟΡΧΟΜΕΝΟΥ Αρ.Πρωτ.: 298/12-1-2015 Α Π Ο Σ Π Α Σ Μ Α Από το πρακτικό της αριθ. 22 ης /2014 Συνεδρίασης του Δημοτικού Συμβουλίου Δήμου Ορχομενού. Αριθ. Απόφασης 204/2014

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Εισαγωγή στη Γεωργία - Λαχανοκομία

Διαβάστε περισσότερα

Κέντρα Προπονητικού Αθλητικού Τουρισμού

Κέντρα Προπονητικού Αθλητικού Τουρισμού Κέντρα Προπονητικού Αθλητικού Τουρισμού... Επένδυση Αναβάθμισης του Τουριστικού Προϊόντος. Οραματιζόμαστε Σχεδιάζουμε Υλοποιούμε Ένα νέο τουριστικό προϊόν για τη χώρα μας. Τα Κέντρα Προπονητικού Αθλητικού

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΝΕΟΕΛΛΗΝΙΚΗΣ ΙΣΤΟΡΙΑΣ

ΘΕΜΑΤΑ ΝΕΟΕΛΛΗΝΙΚΗΣ ΙΣΤΟΡΙΑΣ 1 ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΝΕΟΕΛΛΗΝΙΚΗΣ ΙΣΤΟΡΙΑΣ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : ΠΕΝΤΕ (5) ΟΜΑΔΑ Α ΘΕΜΑ Α1 Α.1.1.Να προσδιορίσετε αν το περιεχόμενο των ακόλουθων προτάσεων

Διαβάστε περισσότερα

Β ΜΕΡΟΣ. Παρουσίαση της καλύτερης διδασκαλίας. Μάθημα: Φυσική ( θερμοκρασία και θερμότητα σελ.42)

Β ΜΕΡΟΣ. Παρουσίαση της καλύτερης διδασκαλίας. Μάθημα: Φυσική ( θερμοκρασία και θερμότητα σελ.42) Β ΜΕΡΟΣ Παρουσίαση της καλύτερης διδασκαλίας Μάθημα: Φυσική ( θερμοκρασία και θερμότητα σελ.42) Χρόνος: 1 Διδακτική ώρα Σκοποί και στόχοι: Να γνωρίζουν τι είναι η θερμοκρασία, τι είναι η θερμότητα και

Διαβάστε περισσότερα

Παρράσιο Πάρκο Πολιτιστικής Κληρονομιάς: Σχέδιο της Πρότασης

Παρράσιο Πάρκο Πολιτιστικής Κληρονομιάς: Σχέδιο της Πρότασης Παρράσιο Πάρκο Πολιτιστικής Κληρονομιάς: Σχέδιο της Πρότασης Ο στόχος του παρόντος φυλλαδίου είναι να δώσει τις κατευθυντήριες γραμμές για τη δημιουργία και τη διαχείριση του Παρράσιου Πάρκου Πολιτιστικής

Διαβάστε περισσότερα

ΤΕΙ ΛΑΡΙΣΑΣ ΣΕΥΠ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ. Εργασία για το μάθημα: Κοιν/τική Νοσ/τική II- Ιδρύματα. Τίτλος εργασίας: ΥΠΕΡΤΑΣΗ. Ομάδα: Ζ8

ΤΕΙ ΛΑΡΙΣΑΣ ΣΕΥΠ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ. Εργασία για το μάθημα: Κοιν/τική Νοσ/τική II- Ιδρύματα. Τίτλος εργασίας: ΥΠΕΡΤΑΣΗ. Ομάδα: Ζ8 ΤΕΙ ΛΑΡΙΣΑΣ ΣΕΥΠ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Εργασία για το μάθημα: Κοιν/τική Νοσ/τική II- Ιδρύματα Τίτλος εργασίας: ΥΠΕΡΤΑΣΗ Ομάδα: Ζ8 Ονοματεπώνυμο: Δελή Χασάν Σουάτ Ημερομηνία: 20/01/2010 ΠΕΡΙΕΧΟΜΕΝΟ 1. Εισαγωγή

Διαβάστε περισσότερα

Ο ΝΟΜΟΣ 1963/91 ΓΙΑ ΤΗΝ Ι ΡΥΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΦΑΡΜΑΚΕΙΩΝ (ΝΟΜΟΣ 1963/91 ΦΕΚ. ΤΡΟΠΟΠΟΙΗΣΗ ΚΑΙ ΣΥΜΠΛΗΡΩΣΗ ΤΗΣ ΦΑΡΜΑΚΕΥΤΙΚΗΣ ΝΟΜΟΘΕΣΙΑΣ ΚΑΙ ΑΛΛΕΣ

Ο ΝΟΜΟΣ 1963/91 ΓΙΑ ΤΗΝ Ι ΡΥΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΦΑΡΜΑΚΕΙΩΝ (ΝΟΜΟΣ 1963/91 ΦΕΚ. ΤΡΟΠΟΠΟΙΗΣΗ ΚΑΙ ΣΥΜΠΛΗΡΩΣΗ ΤΗΣ ΦΑΡΜΑΚΕΥΤΙΚΗΣ ΝΟΜΟΘΕΣΙΑΣ ΚΑΙ ΑΛΛΕΣ Ο ΝΟΜΟΣ 1963/91 ΓΙΑ ΤΗΝ Ι ΡΥΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΦΑΡΜΑΚΕΙΩΝ (ΝΟΜΟΣ 1963/91 ΦΕΚ. ΤΡΟΠΟΠΟΙΗΣΗ ΚΑΙ ΣΥΜΠΛΗΡΩΣΗ ΤΗΣ ΦΑΡΜΑΚΕΥΤΙΚΗΣ ΝΟΜΟΘΕΣΙΑΣ ΚΑΙ ΑΛΛΕΣ ΙΑΤΑΞΕΙΣ) ΠΕΡΙΕΧΟΜΕΝΑ ΧΟΡΗΓΗΣΗ Α ΕΙΑΣ Ι ΡΥΣΕΩΣ ΦΑΡΜΑΚΕΙΟΥ

Διαβάστε περισσότερα

Α Π Ο Σ Π Α Σ Μ Α. Από το πρακτικό της αριθ. 1/2012 συνεδριάσεως του Δημοτικού Συμβουλίου Δήμου Βόλβης Ν. ΘΕΣΣΑΛΟΝΙΚΗΣ

Α Π Ο Σ Π Α Σ Μ Α. Από το πρακτικό της αριθ. 1/2012 συνεδριάσεως του Δημοτικού Συμβουλίου Δήμου Βόλβης Ν. ΘΕΣΣΑΛΟΝΙΚΗΣ Α Π Ο Σ Π Α Σ Μ Α Από το πρακτικό της αριθ. 1/2012 συνεδριάσεως του Δημοτικού Συμβουλίου Δήμου Βόλβης Ν. ΘΕΣΣΑΛΟΝΙΚΗΣ Αριθ. Αποφάσεως 72/2012 Π ε ρ ί λ η ψ η Ωράριο λειτουργίας φαρμακείων Δήμου Βόλβης.

Διαβάστε περισσότερα

Προς τα μέλη της Διαρκούς Επιτροπής Οικονομικών Υποθέσεων της Βουλής

Προς τα μέλη της Διαρκούς Επιτροπής Οικονομικών Υποθέσεων της Βουλής Προς τα μέλη της Διαρκούς Επιτροπής Οικονομικών Υποθέσεων της Βουλής Κυρίες και κύριοι βουλευτές, Από το Μάρτιο του 2004 η κυβέρνηση εφάρμοσε ένα νέο πρότυπο για την ανάπτυξη, την ενίσχυση της απασχόλησης

Διαβάστε περισσότερα

Ε.Ε. Παρ. Ι(Ι), Αρ. 4453, 11.7.2014 101(Ι)/2014 ΝΟΜΟΣ ΠΟΥ ΤΡΟΠΟΠΟΙΕΙ ΤΟΝ ΠΕΡΙ ΠΟΛΙΤΙΚΗΣ ΔΙΚΟΝΟΜΙΑΣ ΝΟΜΟ

Ε.Ε. Παρ. Ι(Ι), Αρ. 4453, 11.7.2014 101(Ι)/2014 ΝΟΜΟΣ ΠΟΥ ΤΡΟΠΟΠΟΙΕΙ ΤΟΝ ΠΕΡΙ ΠΟΛΙΤΙΚΗΣ ΔΙΚΟΝΟΜΙΑΣ ΝΟΜΟ Ε.Ε. Παρ. Ι(Ι), Αρ. 4453, 11.7.2014 Ν. 101(Ι)/2014 101(Ι)/2014 ΝΟΜΟΣ ΠΟΥ ΤΡΟΠΟΠΟΙΕΙ ΤΟΝ ΠΕΡΙ ΠΟΛΙΤΙΚΗΣ ΔΙΚΟΝΟΜΙΑΣ ΝΟΜΟ Η Βουλή των Αντιπροσώπων ψηφίζει ως ακολούθως: Συνοπτικός τίτλος. Κεφ. 6. 11 του 1965

Διαβάστε περισσότερα

> ΑΠΟΣΠΑΣΜΑΤΑ ΓΙΑ ΤΟ ΝΟΗΜΑ ΤΗΣ ΖΩΗΣ (χρονικό διάστημα 1986-1998) < 1

> ΑΠΟΣΠΑΣΜΑΤΑ ΓΙΑ ΤΟ ΝΟΗΜΑ ΤΗΣ ΖΩΗΣ (χρονικό διάστημα 1986-1998) < 1 > ΑΠΟΣΠΑΣΜΑΤΑ ΓΙΑ ΤΟ ΝΟΗΜΑ ΤΗΣ ΖΩΗΣ (χρονικό διάστημα 1986-1998) < 1 Τα αποσπάσματα λίγων σειρών που ακολουθούν είναι επιλεγμένα από το βιβλίο Η Θεολογία της Επιστήμης ( 2000 ISBN 960-385-019-5) και αποτελούν

Διαβάστε περισσότερα

2 Η απασχόληση στο εμπόριο: Διάρθρωση και εξελίξεις

2 Η απασχόληση στο εμπόριο: Διάρθρωση και εξελίξεις 2 Η απασχόληση στο εμπόριο: Διάρθρωση και εξελίξεις 2.1. Η ελληνική αγορά εργασίας 2.1.1. Οι εξελίξεις στην απασχόληση Για πέμπτο συνεχόμενο έτος η απασχόληση στην ελληνική οικονομία εξακολούθησε να συρρικνώνεται.

Διαβάστε περισσότερα

Βενιζέλου 55 - Καβάλα 65 403 Τηλ. 2510 222942 Fax. 2510 231505 Πληροφορίες: Μυστακίδης Ζαφείρης 6932-901030, 2592-041416 zafmis@gmail.

Βενιζέλου 55 - Καβάλα 65 403 Τηλ. 2510 222942 Fax. 2510 231505 Πληροφορίες: Μυστακίδης Ζαφείρης 6932-901030, 2592-041416 zafmis@gmail. ΠΑΝΕΛΛΗΝΙΑ ΕΝΩΣΗ ΓΕΩΠΟΝΩΝ ΔΗΜΟΣΙΩΝ ΥΠΑΛΛΗΛΩΝ Π.Ε.Γ.Δ.Υ. ΠΕΡΙΦΕΡΕΙΑΚΟ ΣΥΜΒΟΥΛΙΟ ΚΑΒΑΛΑΣ Πληροφορίες: Στοϊδης Βασίλειος 6972125967 vstoidis@otenet.gr Αμπελίδης Θεόδωρος 6977166169 6977166169@mycosm os.gr

Διαβάστε περισσότερα

ΙΣΟΚΡΑΤΗΣ ΤΡΑΠΕΖΑ ΝΟΜΙΚΩΝ ΠΛΗΡΟΦΟΡΙΩΝ ΔΣΑ

ΙΣΟΚΡΑΤΗΣ ΤΡΑΠΕΖΑ ΝΟΜΙΚΩΝ ΠΛΗΡΟΦΟΡΙΩΝ ΔΣΑ ΙΣΟΚΡΑΤΗΣ ΤΡΑΠΕΖΑ ΝΟΜΙΚΩΝ ΠΛΗΡΟΦΟΡΙΩΝ ΔΣΑ ΣΤΟΙΧΕΙΑ ΝΟΜΟΘΕΤΗΜΑΤΟΣ Είδος: ΠΡΟΕΔΡΙΚΟ ΔΙΑΤΑΓΜΑ Αριθμός: 131 Έτος: 2003 ΦΕΚ: Α 116 20030516 Τέθηκε σε ισχύ: 17.01.2002 Ημ.Υπογραφής: 30.04.2003 Τίτλος Προσαρμογή

Διαβάστε περισσότερα

ΣΥΣΤΑΣΗ (Άρθρο 3 1&2 Ν.3297/2004)

ΣΥΣΤΑΣΗ (Άρθρο 3 1&2 Ν.3297/2004) ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Εισηγήτρια: Θεοδώρα Παπαδηµητρίου Ειδική Επιστήµονας-Νοµικός Αθήνα, 03 Οκτωβρίου 2011 Αρ. πρωτ.: 8947 ΣΥΣΤΑΣΗ (Άρθρο 3 1&2 Ν.3297/2004) ΘΕΜΑ: «Ασφαλιστικές Εταιρίες που έχουν άδεια λειτουργίας

Διαβάστε περισσότερα

ΠΡΟΣΚΛΗΣΗ ΥΠΟΒΟΛΗΣ ΠΡΟΤΑΣΕΩΝ

ΠΡΟΣΚΛΗΣΗ ΥΠΟΒΟΛΗΣ ΠΡΟΤΑΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΡΕΥΝΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΣΚΛΗΣΗ ΥΠΟΒΟΛΗΣ ΠΡΟΤΑΣΕΩΝ ΣΤΟ ΑΞΟΝΑΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ 7: «Διευκόλυνση της πρόσβασης στην

Διαβάστε περισσότερα

Μπορούμε να πούμε ότι η δεύτερη δύναμη είναι πολύ πιο ισχυρή από την πρώτη.

Μπορούμε να πούμε ότι η δεύτερη δύναμη είναι πολύ πιο ισχυρή από την πρώτη. ΣΚΑΦΟΣ Η μορφή των ιστιοφόρων σκαφών όπως εξελίχθηκε από τα αρχαία ξύλινα εμπορικά και πολεμικά πλοία έως τα σύγχρονα αγωνιστικά επηρεάζονταν από τους ίδιους παράγοντες. Είναι συνάρτηση της χρήσης τους,

Διαβάστε περισσότερα

ΠΡΟΣΩΡΙΝΗ ΥΠΟΣΤΥΛΩΣΗ - ΑΝΤΙΣΤΗΡΙΞΗ ΚΑΙ ΑΠΌΦΟΡΤΙΣΗ ΣΤΟΙΧΕΙΩΝ ΒΛΑΜΜΕΝΩΝ ΑΠΌ ΣΕΙΣΜΟ ΠΑΠΑΔΗΜΑΤΟΥ ΠΑΡΑΣΚΕΥΗ ΠΑΠΑΓΙΑΝΝΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ

ΠΡΟΣΩΡΙΝΗ ΥΠΟΣΤΥΛΩΣΗ - ΑΝΤΙΣΤΗΡΙΞΗ ΚΑΙ ΑΠΌΦΟΡΤΙΣΗ ΣΤΟΙΧΕΙΩΝ ΒΛΑΜΜΕΝΩΝ ΑΠΌ ΣΕΙΣΜΟ ΠΑΠΑΔΗΜΑΤΟΥ ΠΑΡΑΣΚΕΥΗ ΠΑΠΑΓΙΑΝΝΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ 8ο Φοιτητικό Συνέδριο «Επισκευές Κατασκευών 2002», Μάρτιος 2002 Εργασία Νο 6 ΠΡΟΣΩΡΙΝΗ ΥΠΟΣΤΥΛΩΣΗ - ΑΝΤΙΣΤΗΡΙΞΗ ΚΑΙ ΑΠΌΦΟΡΤΙΣΗ ΣΤΟΙΧΕΙΩΝ ΒΛΑΜΜΕΝΩΝ ΑΠΌ ΣΕΙΣΜΟ ΠΑΠΑΔΗΜΑΤΟΥ ΠΑΡΑΣΚΕΥΗ ΠΑΠΑΓΙΑΝΝΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ

Διαβάστε περισσότερα

2. Τυχαίες Μεταβλητές.

2. Τυχαίες Μεταβλητές. . Τυχαίες Μεταβλητές. Είναι αρκετά συνήθης η περίπτωση όπου κατά τη μελέτη ενός τυχαίου πειράματος ενδιαφερόμαστε κυρίως για κάποια συνάρτηση του αποτελέσματος και όχι για το αποτέλεσμα αυτό καθεαυτό.

Διαβάστε περισσότερα

(Νομοθετικές πράξεις) ΚΑΝΟΝΙΣΜΟΙ. ΚΑΝΟΝΙΣΜΟΣ (ΕΕ) αριθ. 648/2012 ΤΟΥ ΕΥΡΩΠΑΪΚΟΥ ΚΟΙΝΟΒΟΥΛΙΟΥ ΚΑΙ ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ. της 4ης Ιουλίου 2012.

(Νομοθετικές πράξεις) ΚΑΝΟΝΙΣΜΟΙ. ΚΑΝΟΝΙΣΜΟΣ (ΕΕ) αριθ. 648/2012 ΤΟΥ ΕΥΡΩΠΑΪΚΟΥ ΚΟΙΝΟΒΟΥΛΙΟΥ ΚΑΙ ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ. της 4ης Ιουλίου 2012. 27.7.2012 Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης L 201/1 I (Νομοθετικές πράξεις) ΚΑΝΟΝΙΣΜΟΙ ΚΑΝΟΝΙΣΜΟΣ (ΕΕ) αριθ. 648/2012 ΤΟΥ ΕΥΡΩΠΑΪΚΟΥ ΚΟΙΝΟΒΟΥΛΙΟΥ ΚΑΙ ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ της 4ης Ιουλίου 2012 για τα εξωχρηματιστηριακά

Διαβάστε περισσότερα

FORUM ΣΥΝΕΡΓΑΣΙΑ ΑΡΙΣΤΕΡΩΝ ΑΡΧΙΤΕΚΤΟΝΩΝ

FORUM ΣΥΝΕΡΓΑΣΙΑ ΑΡΙΣΤΕΡΩΝ ΑΡΧΙΤΕΚΤΟΝΩΝ FORUM ΣΥΝΕΡΓΑΣΙΑ ΑΡΙΣΤΕΡΩΝ ΑΡΧΙΤΕΚΤΟΝΩΝ Προς : Το Σώμα της Αντιπροσωπείας ΣΑΔΑΣ Συναδέλφισες, Συνάδελφοι Μπροστά στην επιχειρούμενη από τις μνημονιακές κυβερνήσεις ρευστοποίηση του επαγγέλματος του μηχανικού

Διαβάστε περισσότερα

Φυσικό αέριο, χρήσεις, ασφάλεια και οικονομία Ομάδα Μαθητών: Συντονιστές Καθηγητές: Λύκειο Αγίου Αντωνίου Θεωρητικό υπόβαθρο Το Φυσικό αέριο

Φυσικό αέριο, χρήσεις, ασφάλεια και οικονομία Ομάδα Μαθητών: Συντονιστές Καθηγητές: Λύκειο Αγίου Αντωνίου Θεωρητικό υπόβαθρο Το Φυσικό αέριο 1 Φυσικό αέριο, χρήσεις, ασφάλεια και οικονομία Ομάδα Μαθητών: Γεδεών Στέλλα, Θεοφάνους Ρογήρος, Γεωργίου Μαρίνα, Ξενοφώντος Άννα, Μιχαήλ Αντρέας, Δήμου Ιωάννης, Παύλου Ειρήνη Συντονιστές Καθηγητές: Νικόλας

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Εισαγωγή στον έλεγχο ασαφούς λογικής Γ. Ε. ΧΑΜΗΛΟΘΩΡΗΣ

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Εισαγωγή στον έλεγχο ασαφούς λογικής Γ. Ε. ΧΑΜΗΛΟΘΩΡΗΣ μ ΕΡΓΑΣΤΗΡΙΟ ΕΛΕΓΧΟΥ ΚΙΝΗΣΗΣ, ΜΗΧΑΤΡΟΝΙΚΗΣ κ ΕΥΦΥΟΥΣ ΕΛΕΓΧΟΥ Π. Ράλλη κ Θηβών 250, 122 44 Αθήνα 010 5381427, 0105381169, fax 0105451128, islab@in.teipir.gr ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Εισαγωγή στον έλεγχο ασαφούς λογικής

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΤΕΧΝΟΛΟΓΙΑ (IΙ) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: ΓΕΜΟΛΟΓΙΑ Ημερομηνία και ώρα εξέτασης:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Αριθµ. Απόφασης 276/2015 ΝΟΜΟΣ ΗΡΑΚΛΕΙΟΥ ΗΜΟΣ ΧΕΡΣΟΝΗΣΟΥ ιεύθυνση ιοικητικών Υπηρεσιών

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Αριθµ. Απόφασης 276/2015 ΝΟΜΟΣ ΗΡΑΚΛΕΙΟΥ ΗΜΟΣ ΧΕΡΣΟΝΗΣΟΥ ιεύθυνση ιοικητικών Υπηρεσιών ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Αριθµ. Απόφασης 276/2015 ΝΟΜΟΣ ΗΡΑΚΛΕΙΟΥ ΗΜΟΣ ΧΕΡΣΟΝΗΣΟΥ ιεύθυνση ιοικητικών Υπηρεσιών ΑΠΟΣΠΑΣΜΑ Από το πρακτικό 15/19-06-2015 της τακτικής συνεδρίασης του ηµοτικού Συµβουλίου Θέµα:

Διαβάστε περισσότερα

Σεισμοί και Σχολεία. ΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ τεύχος 105-106

Σεισμοί και Σχολεία. ΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ τεύχος 105-106 Σεισμοί και Σχολεία Κεχαγιάς Στέργιος, Διευθυντής του 3ου 6/θ Δ.Σ Ελευθερούπολης, μετεκπαιδευμένος στο πρόγραμμα του Καποδιστριακού Πανεπιστημίου Αθηνών: Διαχείριση των Φυσικών Καταστροφών και των Τεχνολογικών

Διαβάστε περισσότερα

Νέες συνθήκες στην αγορά εργασίας και κυρίως από που προέρχονται αυτές οι αλλαγές

Νέες συνθήκες στην αγορά εργασίας και κυρίως από που προέρχονται αυτές οι αλλαγές Εισαγωγή Καριέρα ονομάζουμε μια πορεία ανέλιξης στα εργασιακά μέσω της συλλογής εμπειρίας και προσόντων. Ο όρος καριέρα είναι σήμερα ή πάει να γίνει ένα κατάλοιπο του παρελθόντος. Η διαπίστωση αυτή προκύπτει

Διαβάστε περισσότερα

Τ.Ε.Ι. ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΜΟΝΑΔΩΝ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Τ.Ε.Ι. ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΜΟΝΑΔΩΝ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Τ.Ε.Ι. ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΜΟΝΑΔΩΝ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: «Ο ΔΑΝΕΙΣΜΟΣ ΤΗΣ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ ΣΤΗΝ ΕΛΛΑΔΑ. Η ΠΕΡΙΠΤΩΣΗ ΤΟΥ ΔΗΜΟΥ ΜΕΛΙΓΑΛΑ ΝΟΜΟΥ

Διαβάστε περισσότερα

5η Συνάντηση Ομάδας Εργασίας για τις Οδικές Μεταφορές Εμπορευμάτων

5η Συνάντηση Ομάδας Εργασίας για τις Οδικές Μεταφορές Εμπορευμάτων Ε.Ε.ΣΥ.Μ. ΕΛΛΗΝΙΚΟΣ ΕΠΙΜΕΛΗΤΗΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΙ ΜΕΤΑΦΟΡΩΝ HELLENIC CHAMBERS TRANSPORT ASSOCIATION ΟΜΟΣΠΟΝΔΙΑ ΦΟΡΤΗΓΩΝ Πειραιάς, 29 Απριλίου 2010 Αρ.Πρ.: 3788 Ως πίνακας αποδεκτίόν 5η Συνάντηση Ομάδας Εργασίας

Διαβάστε περισσότερα

ΜΑΝΟΛΗΣ ΚΑΛΟΜΟΙΡΗΣ, ΚΥΚΛΟΣ ΤΡΑΓΟΥΔΙΩΝ ΜΑΓΙΟΒΟΤΑΝΑ. Πτυχιακή εργασία της Άλμας Τότσκα 25/04

ΜΑΝΟΛΗΣ ΚΑΛΟΜΟΙΡΗΣ, ΚΥΚΛΟΣ ΤΡΑΓΟΥΔΙΩΝ ΜΑΓΙΟΒΟΤΑΝΑ. Πτυχιακή εργασία της Άλμας Τότσκα 25/04 ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΟΥΣΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΗΣ ΜΑΝΟΛΗΣ ΚΑΛΟΜΟΙΡΗΣ, ΚΥΚΛΟΣ ΤΡΑΓΟΥΔΙΩΝ ΜΑΓΙΟΒΟΤΑΝΑ Πτυχιακή εργασία της Άλμας Τότσκα 25/04 Επιβλέπουσα καθηγήτρια: Άννα- Μαρία Ρεντζεπέρη, Λέκτορα

Διαβάστε περισσότερα

Η Πρόταση του ΣΥΡΙΖΑ-ΕΚΜ για τη ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΡΡΙΜΜΑΤΩΝ Βιώσιμη και δίκαιη οικονομικά και οικολογικά λύση

Η Πρόταση του ΣΥΡΙΖΑ-ΕΚΜ για τη ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΡΡΙΜΜΑΤΩΝ Βιώσιμη και δίκαιη οικονομικά και οικολογικά λύση Η Πρόταση του ΣΥΡΙΖΑ-ΕΚΜ για τη ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΡΡΙΜΜΑΤΩΝ Βιώσιμη και δίκαιη οικονομικά και οικολογικά λύση Εκκινούμε από την αρχή ότι η οικολογική και η οικονομική κρίση συνδέονται και αλληλοτροφοδοτούνται:

Διαβάστε περισσότερα

ΑΙΤΙΟΛΟΓΙΚΗ ΕΚΘΕΣΗ ΤΟΥ ΝΟΜΟΥ «Κωδικοποίηση σε ενιαίο κείµενο των διατάξεων της κείµενης νοµοθεσίας που αφορούν το Υπαίθριο Εµπόριο»

ΑΙΤΙΟΛΟΓΙΚΗ ΕΚΘΕΣΗ ΤΟΥ ΝΟΜΟΥ «Κωδικοποίηση σε ενιαίο κείµενο των διατάξεων της κείµενης νοµοθεσίας που αφορούν το Υπαίθριο Εµπόριο» ΑΙΤΙΟΛΟΓΙΚΗ ΕΚΘΕΣΗ ΤΟΥ ΝΟΜΟΥ «Κωδικοποίηση σε ενιαίο κείµενο των διατάξεων της κείµενης νοµοθεσίας που αφορούν το Υπαίθριο Εµπόριο» 1. Σύµφωνα µε τον ισχύοντα Νόµο 3133/2003, οι διατάξεις τυπικών νόµων

Διαβάστε περισσότερα

Κοινωνική Οικονομία: Μια βιώσιμη εναλλακτική?

Κοινωνική Οικονομία: Μια βιώσιμη εναλλακτική? Κοινωνική Οικονομία: Μια βιώσιμη εναλλακτική? Δρ. Διευθυντής, Ινστιτούτο Κοινωνικής Οικονομίας Περιεχόμενα ΕΙΣΑΓΩΓΗ... 3 Α. ΕΠΕΝΔΥΣΕΙΣ... 4 Α.1. Άμεσες Ξένες Επενδύσεις και Κοινωνικά Ομόλογα... 4 Α.2.

Διαβάστε περισσότερα

Η ΕΡΤ ΤΗΣ ΕΠΟΜΕΝΗΣ ΗΜΕΡΑΣ «ΠΟΙΑ ΕΡΤ ΘΕΛΟΥΜΕ»

Η ΕΡΤ ΤΗΣ ΕΠΟΜΕΝΗΣ ΗΜΕΡΑΣ «ΠΟΙΑ ΕΡΤ ΘΕΛΟΥΜΕ» Η ΕΡΤ ΤΗΣ ΕΠΟΜΕΝΗΣ ΗΜΕΡΑΣ «ΠΟΙΑ ΕΡΤ ΘΕΛΟΥΜΕ» ΠΑΝΕΛΛΑΔΙΚΗ ΠΡΟΤΑΣΗ των ΑΓΩΝΙΖΟΜΕΝΩΝ ΕΡΓΑΖΟΜΕΝΩΝ ΤΗΣ ΕΡΤ 2 ΠΑΝΕΛΛΑΔΙΚΗ ΠΡΟΤΑΣΗ των ΑΓΩΝΙΖΟΜΕΝΩΝ ΕΡΓΑΖΟΜΕΝΩΝ ΤΗΣ ΕΡΤ Με τη συμπλήρωση σχεδόν 20 μηνών από την

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ 1 ο ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΑΒΒΑΤΟ 31 ΟΚΤΩΒΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Θέμα: Η ΑΓΟΡΑ ΣΤΟΝ ΚΑΠΙΤΑΛΙΣΜΟ

Θέμα: Η ΑΓΟΡΑ ΣΤΟΝ ΚΑΠΙΤΑΛΙΣΜΟ Τ.Ε.Ι. ΣΕΡΡΩΝ Σχολή Διοίκησης και Οικονομίας Τμήμα Λογιστικής ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Θέμα: Η ΑΓΟΡΑ ΣΤΟΝ ΚΑΠΙΤΑΛΙΣΜΟ Υπό του φοιτητή: Κωνσταντίνου Κατσάνη Επιβλέπων καθηγητής: Γ. Μαγούλιος Σέρρες 2009 Η ΑΓΟΡΑ

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΑΕΡΟΒΙΑ ΕΠΕΞΕΡΓΑΣΙΑ ΤΗΣ ΕΚΡΟΗΣ ΑΝΑΕΡΟΒΙΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ ΜΕ ΣΤΟΧΟ ΤΗΝ ΤΕΛΙΚΗ ΔΙΑΘΕΣΗ ΤΟΥ ΥΛΙΚΟΥ» ΣΠΟΥΔΑΣΤΕΣ:

Διαβάστε περισσότερα

LIFE ΕΛΛΗΝΙΚΗ ΑΝΩΝΥΜΗ ΕΤΑΙΡΙΑ ΑΣΦΑΛΙΣΤΙΚΩΝ ΣΥΜΒΟΥΛΩΝ

LIFE ΕΛΛΗΝΙΚΗ ΑΝΩΝΥΜΗ ΕΤΑΙΡΙΑ ΑΣΦΑΛΙΣΤΙΚΩΝ ΣΥΜΒΟΥΛΩΝ ΠΡΑΚΤΙΚΟ ΤΗΣ 22ΗΣ ΜΑΙΟΥ 2015 Συνεδρίαση του Διοικητικού Συμβουλίου της Ανώνυμης Εταιρίας με την επωνυμία GLOBUS LIFE ΕΛΛΗΝΙΚΗ ΑΝΩΝΥΜΗ ΕΤΑΙΡΙΑ ΑΣΦΑΛΙΣΤΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Στην Ν. Σμύρνη σήμερα την 22η Μαΐου

Διαβάστε περισσότερα

ΣΗΜΕΙΩΜΑ ΓΙΑ ΤΑ ΠΡΑΚΤΙΚA*

ΣΗΜΕΙΩΜΑ ΓΙΑ ΤΑ ΠΡΑΚΤΙΚA* ΣΗΜΕΙΩΜΑ ΓΙΑ ΤΑ ΠΡΑΚΤΙΚA* (άρθρο 141 παρ. 2 ΚΠ ) Ο πληρεξούσιος ικηγόρος της κ., ικηγόρος Αθηνών, ιδάκτωρ Νοµικής Πανεπιστηµίου Αθηνών, Θρασύβουλος Θ. Κονταξής, αφού ανέπτυξε προφορικά το ζήτηµα της δυνατότητας

Διαβάστε περισσότερα

ΚΕΙΜΕΝΑ ΝΕΟΕΛΛΗΝΙΚΗΣ ΛΟΓΟΤΕΧΝΙΑΣ

ΚΕΙΜΕΝΑ ΝΕΟΕΛΛΗΝΙΚΗΣ ΛΟΓΟΤΕΧΝΙΑΣ INTERNATIONAL SCHOOL OF ATHENS ΚΕΙΜΕΝΑ ΝΕΟΕΛΛΗΝΙΚΗΣ ΛΟΓΟΤΕΧΝΙΑΣ Β ΛΥΚΕΙΟΥ- ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Κεφαλληνού Λουκία 11/5/2012 Αμάξι στη βροχή- Τέλλος Άγρας Τέλλος Άγρας Καλαμπάκα 1899- Αθήνα 1944 Αμάξι στη Βροχή

Διαβάστε περισσότερα

ΥΓΙΕΙΝΗ ΚΑΙ ΑΣΦΑΛΕΙΑ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΚΑΒΑΛΑ Ο ^ Α.Ε. ΒΟΥΔΑΝΤΑ ΑΡΓΥΡΩ

ΥΓΙΕΙΝΗ ΚΑΙ ΑΣΦΑΛΕΙΑ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΚΑΒΑΛΑ Ο ^ Α.Ε. ΒΟΥΔΑΝΤΑ ΑΡΓΥΡΩ Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΥΓΙΕΙΝΗ ΚΑΙ ΑΣΦΑΛΕΙΑ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΚΑΒΑΛΑ Ο ^ Α.Ε. ΒΟΥΔΑΝΤΑ ΑΡΓΥΡΩ ΨΛ Δεκέμβριος 2012 Εκπονηθείσα πτυχιακή

Διαβάστε περισσότερα

Ο ΕΚΠΑΙ ΕΥΤΙΚΟΣ ΩΣ ΥΠΑΛΛΗΛΟΣ ΚΑΙ ΤΟ ΕΚΠΑΙ ΕΥΤΙΚΟ ΕΡΓΟ

Ο ΕΚΠΑΙ ΕΥΤΙΚΟΣ ΩΣ ΥΠΑΛΛΗΛΟΣ ΚΑΙ ΤΟ ΕΚΠΑΙ ΕΥΤΙΚΟ ΕΡΓΟ ΑΡΘΡΑ - ΟΚΙΜΙΑ Ο ΕΚΠΑΙ ΕΥΤΙΚΟΣ ΩΣ ΥΠΑΛΛΗΛΟΣ ΚΑΙ ΤΟ ΕΚΠΑΙ ΕΥΤΙΚΟ ΕΡΓΟ Μαρία όκου, Προϊσταµένη Τµήµατος στην Κεντρική Υπηρεσία του Υπ. Εθνικής Παιδείας και Θρησκευµάτων 1. Εισαγωγή Όντας διοικητικός υπάλληλος

Διαβάστε περισσότερα

ΘΕΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΤΗΣΙΑΣ ΤΕΚΜΑΡΤΗΣ ΔΑΠΑΝΗΣ

ΘΕΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΤΗΣΙΑΣ ΤΕΚΜΑΡΤΗΣ ΔΑΠΑΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ - ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ - ΘΕΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΤΗΣΙΑΣ ΤΕΚΜΑΡΤΗΣ ΔΑΠΑΝΗΣ ΚΑΘΗΓΗΤΗΣ: ΠΑΡΧΑΡΙΔΗΣ X. ΒΑΣΙΛΕΙΟΣ ΣΠΟΥΔΑΣΤΡΙΑ:

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 7 1ο ΜΕΡΟΣ: ΑΝΑΠΤΥΞΗ ΚΕΦΑΛΑΙΩΝ ΜΑΘΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗ ΦΥΣΙΚΩΝ ΠΟΡΩΝ Γνωρίζω τι σημαίνει... Μαθαίνω τα κύρια σημεία... Γενικά... Διαχείριση φυσικών πόρων... Ελέγχω τις γνώσεις μου...

Διαβάστε περισσότερα

ΜΕΡΟΣ Α ΒΙΒΛΙΟ ΕΡΓΑΣΙΩΝ ΟΝΟΜΑ.. ΤΑΞΗ...

ΜΕΡΟΣ Α ΒΙΒΛΙΟ ΕΡΓΑΣΙΩΝ ΟΝΟΜΑ.. ΤΑΞΗ... 941205 ΜΕΡΟΣ Α ΒΙΒΛΙΟ ΕΡΓΑΣΙΩΝ ΟΝΟΜΑ.. ΤΑΞΗ... 2 ΔΙΕΡΕΥΝΗΤΙΚΗ ΜΑΘΗΣΗ ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ ΓΙΑ ΜΑΘΗΤΕΣ ΕΡΕΥΝΩΝΤΑΣ ΤΗΝ ΠΥΚΝΟΤΗΤΑ ΠΕΡΙΕΧΟΜΕΝΑ Έρευνα Σελίδα 1. Γιατί τα αντικείμενα επιπλέουν ή βυθίζονται; 2 Πίνακας

Διαβάστε περισσότερα

ΚΑΤΑΣΤΑΤΙΚΟ ΟΜΙΛΟΥ ΟΙΝΟΦΙΛΩΝ ΚΥΠΡΟΥ

ΚΑΤΑΣΤΑΤΙΚΟ ΟΜΙΛΟΥ ΟΙΝΟΦΙΛΩΝ ΚΥΠΡΟΥ ΚΑΤΑΣΤΑΤΙΚΟ ΟΜΙΛΟΥ ΟΙΝΟΦΙΛΩΝ ΚΥΠΡΟΥ 1. ΕΠΩΝΥΜΙΑ-ΕΜΒΛΗΜΑ-ΕΔΡΑ Το σωματείο φέρει την επωνυμία ΟΜΙΛΟΣ ΟΙΝΟΦΙΛΩΝ ΚΥΠΡΟΥ, έχει έμβλημα ένα ποτήρι γευστολόγησης κρασιού, ένα τσαμπί σταφύλι και ένα φύλλο αμπελιού.

Διαβάστε περισσότερα

ΗΑΞΙΟΛΟΓΗΣΗ ΩΣ ΠΑΙΔΑΓΩΓΙΚΗ ΠΡΑΞΗ ΣΕ ΣΧΕΣΗ ΜΕ ΤΟ ΜΑΘΗΤΗ

ΗΑΞΙΟΛΟΓΗΣΗ ΩΣ ΠΑΙΔΑΓΩΓΙΚΗ ΠΡΑΞΗ ΣΕ ΣΧΕΣΗ ΜΕ ΤΟ ΜΑΘΗΤΗ ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΠΑΙΔΑΓΩΓΙΚΗ ΚΑΙ ΔΙΔΑΚΤΙΚΗ ΕΠΙΣΤΗΜΗ ΗΑΞΙΟΛΟΓΗΣΗ ΩΣ ΠΑΙΔΑΓΩΓΙΚΗ ΠΡΑΞΗ ΣΕ ΣΧΕΣΗ ΜΕ ΤΟ ΜΑΘΗΤΗ ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Δεκέμβριος 2005 Εισαγωγικά στοιχεία Αξιολόγηση Αξιολόγηση του μαθητή

Διαβάστε περισσότερα

AΠΟΣΠΑΣΜΑ. από το πρακτικό της υπ αριθμ. 2 ης Tακτικής Συνεδρίασης του Διοικητικού Συμβουλίου του ΔΗ.ΚΕ.ΠΑ Ιλίου

AΠΟΣΠΑΣΜΑ. από το πρακτικό της υπ αριθμ. 2 ης Tακτικής Συνεδρίασης του Διοικητικού Συμβουλίου του ΔΗ.ΚΕ.ΠΑ Ιλίου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜOΣ ΑΤΤΙΚΗΣ ΔΗΜΟΣ ΙΛΙΟΥ ΔΗΜΟΤΙΚΟ ΚΕΝΤΡΟ ΠΟΛΙΤΙΣΜΟΥ και ΑΘΛΗΣΗΣ ΔΗ.ΚΕ.Π.Α. ΑΓ.ΦΑΝΟΥΡΙΟΥ 99-ΙΛΙΟΝ ΤΗΛ: 210-2637395 ΦΑΞ: 210-2626007 Εmail:politistiko@ilion.gr Αριθ. Πρωτ.:274/14-2-2013

Διαβάστε περισσότερα

ΚΑΝΟΝΙΣΜΟΣ (ΕΚ) αριθ. 1164/94 ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ της 16ης Μαΐου 1994 για την ίδρυση του

ΚΑΝΟΝΙΣΜΟΣ (ΕΚ) αριθ. 1164/94 ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ της 16ης Μαΐου 1994 για την ίδρυση του Κανονισµός (ΕΚ) αριθ. 1164/94 του Συµβουλίου της 16ης Μαΐου 1994 για την ίδρυση του ταµείου συνοχής Επίσηµη Εφηµερίδα αριθ. L 130 της 25/05/1994 σ. 0001-0013 Φινλανδική ειδική έκδοση: Κεφάλαιο 14 τόµος

Διαβάστε περισσότερα

ΕΝΗΜΕΡΩΣΗ.Σ. Ε.Λ.Μ.Ε. ΠΡΟΤΥΠΩΝ

ΕΝΗΜΕΡΩΣΗ.Σ. Ε.Λ.Μ.Ε. ΠΡΟΤΥΠΩΝ ΕΝΗΜΕΡΩΣΗ.Σ. Ε.Λ.Μ.Ε. ΠΡΟΤΥΠΩΝ ΜΑΙΟΣ 2014 Συνάδελφοι το.σ. της Ε.Λ.Μ.Ε. θα ήθελε να σας ενηµερώσει για τα ζητήµατα τα οποία προσπάθησε να αντιµετωπίσει την προηγούµενη περίοδο καθώς και για τον σχεδιασµό

Διαβάστε περισσότερα

ΕΙΣΗΓΗΤΙΚΗ ΕΚΘΕΣΗ ΣΤΟ ΠΡΟΣΧΕΔΙΟ ΝΟΜΟΥ «ΑΡΧΗ ΤΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΛΕΥΘΕΡΙΑΣ. ΚΑΤΑΡΓΗΣΗ ΑΔΙΚΑΙΟΛΟΓΗΤΩΝ ΠΕΡΙΟΡΙΣΜΩΝ ΣΤΗΝ ΠΡΟΣΒΑΣΗ ΚΑΙ ΑΣΚΗΣΗ ΕΠΑΓΓΕΛΜΑΤΩΝ»

ΕΙΣΗΓΗΤΙΚΗ ΕΚΘΕΣΗ ΣΤΟ ΠΡΟΣΧΕΔΙΟ ΝΟΜΟΥ «ΑΡΧΗ ΤΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΛΕΥΘΕΡΙΑΣ. ΚΑΤΑΡΓΗΣΗ ΑΔΙΚΑΙΟΛΟΓΗΤΩΝ ΠΕΡΙΟΡΙΣΜΩΝ ΣΤΗΝ ΠΡΟΣΒΑΣΗ ΚΑΙ ΑΣΚΗΣΗ ΕΠΑΓΓΕΛΜΑΤΩΝ» ΕΙΣΗΓΗΤΙΚΗ ΕΚΘΕΣΗ ΣΤΟ ΠΡΟΣΧΕΔΙΟ ΝΟΜΟΥ «ΑΡΧΗ ΤΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΛΕΥΘΕΡΙΑΣ. ΚΑΤΑΡΓΗΣΗ ΑΔΙΚΑΙΟΛΟΓΗΤΩΝ ΠΕΡΙΟΡΙΣΜΩΝ ΣΤΗΝ ΠΡΟΣΒΑΣΗ ΚΑΙ ΑΣΚΗΣΗ ΕΠΑΓΓΕΛΜΑΤΩΝ» ΣΚΟΠΟΣ ΤΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΥ ΣΧΕΔΙΟΥ ΝΟΜΟΥ H επισκόπηση

Διαβάστε περισσότερα

ME TO ΒΛΕΜΜΑ ΣΤΡΑΜΜΕΝΟ ΣΤΟ ΜΕΛΛΟΝ. ΟΡΙΖΟΥΣΕΣ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΙ ΓΙΑ ΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΣΤΟΝ 21 ο ΑΙΩΝΑ

ME TO ΒΛΕΜΜΑ ΣΤΡΑΜΜΕΝΟ ΣΤΟ ΜΕΛΛΟΝ. ΟΡΙΖΟΥΣΕΣ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΙ ΓΙΑ ΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΣΤΟΝ 21 ο ΑΙΩΝΑ ME TO ΒΛΕΜΜΑ ΣΤΡΑΜΜΕΝΟ ΣΤΟ ΜΕΛΛΟΝ. ΟΡΙΖΟΥΣΕΣ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΙ ΓΙΑ ΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΣΤΟΝ 21 ο ΑΙΩΝΑ Δημήτρης Ματθαίου Καθηγητής Πανεπιστημίου Αθηνών Στην εκπαίδευση μιλάμε συχνά για το μέλλον. Ίσως γιατί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΜΑΓΝΗΣΙΑΣ ΔΗΜΟΣ ΒΟΛΟΥ 6-3-2014 ΔΙΕΥΘΥΝΣΗ ΚΑΘΑΡΙΟΤΗΤΑΣ : 26124 : Θ. : 24210 80959 ΠΡΟΣ:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΜΑΓΝΗΣΙΑΣ ΔΗΜΟΣ ΒΟΛΟΥ 6-3-2014 ΔΙΕΥΘΥΝΣΗ ΚΑΘΑΡΙΟΤΗΤΑΣ : 26124 : Θ. : 24210 80959 ΠΡΟΣ: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΜΑΓΝΗΣΙΑΣ ΔΗΜΟΣ ΒΟΛΟΥ Βόλος, 6-3-2014 ΔΙΕΥΘΥΝΣΗ ΚΑΘΑΡΙΟΤΗΤΑΣ Αρ. πρωτ. : 26124 Πληροφορίες : Θ. Γώγος Τηλέφωνο : 24210 80959 ΠΡΟΣ: Fax : 24210 80344 την Αντιδήμαρχο Καθαριότητας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΙΩΑΝΝΙΝΩΝ ΔΗΜΟΣ ΖΙΤΣΑΣ ΕΔΡΑ: ΕΛΕΟΥΣΑ ΑΡ. ΑΠΟΦ. 238/2013

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΙΩΑΝΝΙΝΩΝ ΔΗΜΟΣ ΖΙΤΣΑΣ ΕΔΡΑ: ΕΛΕΟΥΣΑ ΑΡ. ΑΠΟΦ. 238/2013 1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΙΩΑΝΝΙΝΩΝ ΔΗΜΟΣ ΖΙΤΣΑΣ ΕΔΡΑ: ΕΛΕΟΥΣΑ ΑΡ. ΑΠΟΦ. 238/2013 ΑΠΟΣΠΑΣΜΑ Από το Πρακτικό Αρ. 27/07-11-2013 συνεδρίασης της Οικονομικής Επιτροπής του Δήμου Ζίτσας. ΠΕΡΙΛΗΨΗ «Έγκριση

Διαβάστε περισσότερα