6. CONSTRUCTION OF THE BODY MASS INDEX-FOR-AGE STANDARDS

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "6. CONSTRUCTION OF THE BODY MASS INDEX-FOR-AGE STANDARDS"

Transcript

1 6. CONSTRUCTION OF THE BODY MASS INDEX-FOR-AGE STANDARDS 6.1 Indicator-specific methodology Body mass index (BMI) is the ratio weight (in kg)/recumbent length or standing height (in m 2 ). To address the difference between length and height, the approach used for constructing the BMI-for-age standards was different from that described for length/height-for-age. Because BMI is a ratio with squared length or height in the denominator, adding 0.7 cm to the height values and back-transforming them after fitting was not feasible. The solution adopted was to construct the standards for the younger and the older children separately based on two sets of data with an overlapping range of ages below and above 24 months. To construct the BMI-for-age standard based on length (birth to 2 years), the longitudinal sample's length data and the cross-sectional sample's height data (18 to 30 months) were combined after adding 0.7 cm to the height values. Analogously, to construct the standard from 2 to 5 years, the cross-sectional sample's height plus longitudinal sample's length data (18 to 24 months) were combined after subtracting 0.7 cm from the length values. Thus, a common set of data from 18 to 30 months was used to generate the BMI standards for the younger and the older children. The resulting disjunction between the two standards thus in essence reflects the 0.7 cm difference between length and height. This does not mean, however, that a child at a specific age will have the same length- and height-based BMI-for-age z-score as this is mathematically impossible given the nature of the BMI ratio. The WHO length- and height-based BMI-for-age standards do not overlap, i.e. the length-based interval ends at 730 days and the height-based interval starts at 731 days. The BMI curve's steep rise from birth to 6 or 7 months required a power transformation of age with power very close to zero to stretch the x-axis before fitting the model. This created a large gap between the observations at birth and at 14 days on the transformed age scale. This fact, combined with the use of flexible cubic splines to model the median curve, resulted in an artificial pattern in that age interval when back-transformed to the original age scale. To avoid this problem and ensure that the curves remained closely patterned on the empirical values, an alternative choice was to create individual BMI values at age 7 days and then linearly interpolate between birth and 7 days, and between 7 and 14 days. Although weight was measured at 7 days, there was no corresponding length measurement to calculate BMI at that age. Therefore to create BMI values for age 7 days, individual lengths for that age were estimated by linear interpolation, i.e. the mid point between length at birth and at 14 days was used. Q-test, worm plots and comparisons of observed and expected proportions of children with BMI values below fitted centiles presented hereafter included the interpolated values for age group 7 days. It was reassuring to see that the empirical centiles remained very close to the fitted values at the observed ages, birth and 14 days, when the model included the interpolated values

2 230 BMI-for-age, boys 6.2 BMI-for-age for boys Steps similar to those used to fit the weight-for-age standard were used to select the best model for the BMI-for-age standards for boys. The diagnostic tools to evaluate and compare different models also were the same Sample size There were records with both weight and length/height for boys. The longitudinal and crosssectional sample sizes by visit and age are presented in the Tables 68 and 69. Table 68 Longitudinal sample sizes for BMI-for-age for boys Visit Birth Age 0 2 wk 4 wk 6 wk 2 mo 3 mo 4 mo N Visit Age 5 mo 6 mo 7 mo 8 mo 9 mo 10 mo 11 mo N Visit Age 12 mo 14 mo 16 mo 18 mo 20 mo 22 mo 24 mo N Table 69 Cross-sectional sample sizes for BMI-for-age for boys Age (mo) < N Age (mo) N Age (mo) >71 N Model selection and results Length-based BMI-for-age for boys The model BCPE(x=age λ, df(µ)=9, df(σ)=4, df(ν)=4, τ=2) was used initially to assess variations in the age-transformation power λ and to determine the best fit as reflected by global deviance. Table 70 shows the global deviance for a grid of λ values between 0 and 0.5. The smallest global deviance was associated with the age-transformation power λ=0.01. However, λ=0.05 was selected because the problem caused in fitting cubic splines in the transformed age scale and back-transforming afterwards was worse with λ=0.01 than with λ=0.05, yet the global deviance for the latter was not much larger.

3 BMI-for-age, boys 231 Table 70 Global deviance (GD) for models within the class BCPE(x=age λ, df(µ)=9, df(σ)=4, df(ν)=4, τ=2) for length-based BMI-for-age for boys λ GD a λ GD a a In excess of The search for the best df(µ) and df(σ) was carried out using λ=0.05 as the age-transformation power and comparing the goodness of fit of various models with fixed parameters ν=1 and τ=2. All possible combinations of df(µ) 7 to 15 and df(σ) 2 to 10 were considered. Partial results are presented in Table 71. The best combination of AIC and GAIC(3) corresponded to df(µ)=10 and df(σ)=4. Worm plots and Q-test for this model also were examined. Table 71 Goodness-of-fit summary for models using the BCPE distribution with fixed ν=1 and τ=2 for length-based BMI-for-age for boys df(µ) df(σ) GD a AIC a GAIC(3) a Total df GD, Global Deviance; AIC, Akaike Information Criterion; GAIC(3), Generalized AIC with penalty equal to 3; a In excess of

4 232 BMI-for-age, boys Model 1: BCPE(x=age 0.05, df(µ)=10, df(σ)=4, ν=1, τ=2) Worm plots (Figure 100) and Q-test results (Table 72) indicated misfit across various age intervals due to residual skewness and/or kurtosis. The worms were U-shaped for many of the age groups, indicating residual skewness. In the Q-test results most of the groups had absolute values of z3 larger than 2, suggesting residual skewness, and three age groups presented values of z4 larger than 2, indicating residual kurtosis. The overall tests for both skewness and kurtosis combining all age groups were significant. This model was therefore considered inadequate. The next step involved fitting the parameter ν, to adjust for skewness, using the BCPE distribution and fixing only the parameter τ=2. Table 73 shows GAIC(3) values for various choices of df(ν), maintaining df(µ) and df(σ) as selected for Model mo 24 mo 28 mo mo 14 mo 16 mo 18 mo 20 mo Deviation mo 8 mo 9 mo 10 mo 11 mo 2 mo 3 mo 4 mo 5 mo 6 mo Birth 7 d 14 d 28 d 42 d Unit normal quantile Figure 100 Worm plots of z-scores for Model 1 for length-based BMI-for-age for boys

5 BMI-for-age, boys 233 Table 72 Q-test for z-scores from Model 1 [BCPE(x=age 0.05, df(µ)=10, df(σ)=4, ν=1, τ=2)] for length-based BMI-for-age for boys Age (days) Group N z1 z2 z3 z4 0 Birth to 11 7 d to d to d to d to 69 2 mo to 99 3 mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo Overall Q stats degrees of freedom p-value < Note: Absolute values of z1, z2, z3 or z4 larger than 2 indicate misfit of, respectively, mean, variance, skewness or kurtosis. Table 73 Goodness-of-fit summary for models BCPE(x=age 0.05, df(µ)=10, df(σ)=4, df(ν)=?, τ=2) for length-based BMI-for-age for boys df(ν) GD a GAIC(3) a Total df GD, Global Deviance; GAIC(3), Generalized Akaike Information Criterion with penalty equal to 3; a In excess of The smallest GAIC(3) was associated with df(ν)=3 and this model's goodness-of-fit was investigated further.

6 234 BMI-for-age, boys Model 2: BCPE(x=age 0.05, df(µ)=10, df(σ)=4, df(ν)=3, τ=2) Figure 101 shows the fitting of the parameters µ, σ and ν for Model 2 with their respective sample estimates. The fitted σ curve underestimated the high peak in the empirical curve (the St Dev Box-Cox transformed BMI) at 7 days. The smoothing function of the Box-Cox transformation power (ν curve) did not follow the unstable pattern of the empirical curve, and thus partially controlled the skewness associated with parameter ν at the end of the 0 to 24 month age interval. Median of Body Mass Index (kg/m²) St Dev Box-Cox Transformed BMI Box-Cox Transform Power Figure 101 Fitting of the µ, σ, and ν curves of Model 2 for length-based BMI-for-age from 0 to 24 months for boys (dotted line) and their respective sample estimates (points with solid line) Figure 102 shows the distribution of the centile residuals, i.e. empirical minus fitted centiles, for the longitudinal sample (0 to 24 months). There was no evidence of systematic bias. The worm plots for this model (Figure 103) showed that adjustment for skewness corrected the previous model's misfit (Figure 100), i.e. U-shaped worms flattened fairly well. Few age groups still retained slightly S-shaped worms but all constrained within the 95% confidence intervals.

7 BMI-for-age, boys 235 3rd Centile 5th Centile 10th Centile Empirical-Fitted Centile for Body Mass Index (kg/m²) th Centile th Centile th Centile th Centile th Centile th Centile Figure 102 Centile residuals from fitting Model 2 for length-based BMI-for-age from 0 to 24 months for boys Q-test results of the z-scores from Model 2 are shown in Table 74. All absolute values for the statistics z1, z2, z3 and z4 were smaller than 2, apart from one z4 value at age 7 days indicating residual kurtosis. P-values for overall tests were all non-significant, indicating adequate fit for the BMI-for-age growth curves for boys. Table 75 presents observed percentages below the fitted centiles, which give no indication of systematic bias. Since residual kurtosis was indicated for only one out of 23 age groups and the overall test was not significant, modelling the parameter τ and thus increasing the model's complexity was considered unnecessary.

8 236 BMI-for-age, boys mo 24 mo 28 mo mo 14 mo 16 mo 18 mo 20 mo Deviation mo 8 mo 9 mo 10 mo 11 mo 2 mo 3 mo 4 mo 5 mo 6 mo Birth 7 d 14 d 28 d 42 d Unit normal quantile Figure 103 Worm plots of z-scores for Model 2 for length-based BMI-for-age for boys Model 2, BCPE(x= age 0.05, df(µ)=10, df(σ)=4,df(ν)=3, τ=2), was selected to fit the BMI-for-age growth curves for boys from birth to 24 months. This model adjusts only for skewness and belongs to the same class of models used for the LMS method. A further iteration was done, fixing df(ν)=3 and re-searching for the best combination of df(µ) and df(σ), but Model 2 still presented the best performance in both AIC and GAIC(3). Then, using the selected degrees of freedom for µ, σ and ν curves, the best λ was re-searched. Results confirmed that values of λ close to zero resulted in the lowest global deviance. However, for reasons stated previously (see discussion in connection with Table 70) λ was kept at value The final centile curves are shown in Figures 104 and 105 plotted with the empirical centiles.

9 BMI-for-age, boys 237 Table 74 Q-test for z-scores from Model 2 [BCPE(x=age 0.05, df(µ)=10, df(σ)=4, df(ν)=3, τ=2)] for length-based BMI-for-age for boys Age (days) Group N z1 z2 z3 z4 0 Birth to 11 7 d to d to d to d to 69 2 mo to 99 3 mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo Overall Q stats degrees of freedom p-value Note: Absolute values of z1, z2, z3 or z4 larger than 2 indicate misfit of, respectively, mean, variance, skewness or kurtosis.

10 238 BMI-for-age, boys Table 75 Observed proportions of children with measurements below the fitted centiles from Model 2, length-based BMI-for-age for boys Expected Birth 7 d 14 d 28 d 42 d 2 mo 3 mo 4 mo 5 mo 6 mo 7 mo 8 mo Expected 9 mo 10 mo 11 mo 12 mo 14 mo 16 mo 18 mo 20 mo 22 mo 24 mo 28 mo Overall Note: Group labels correspond to the age intervals in Table 74.

11 BMI-for-age, boys 239 Fitted Empirical 97th 90th 50th 10th 3rd Body Mass Index (kg/m²) Figure 104 3rd, 10th, 50th, 90th, 97th smoothed centile curves and empirical values: length-based BMI-for-age for boys from birth to 24 months

12 240 BMI-for-age, boys Fitted Empirical 95th 75th 50th 25th 5th Body Mass Index (kg/m²) Figure 105 5th, 25th, 50th, 75th, 95th smoothed centile curves and empirical values: length-based BMI-for-age for boys from birth to 24 months

13 BMI-for-age, boys 241 Height-based BMI-for-age for boys To construct the BMI-for-age growth standard using height, the need for an age-transformation power λ before fitting the model was evaluated. Results indicated that no age transformation was necessary. The class of models selected for constructing the length-based standard was the first option to be considered for constructing the height-based BMI-for-age standard. Using the BCPE distribution, the µ and σ parameter curves were modelled and parameters ν and τ were fixed at values 1 and 2, respectively. The search for the best df(µ) and df(σ) was carried out by comparing the goodness of fit of various models. All possible combinations of df(µ) 3 to 10 and df(σ) 2 to 6 were considered. Partial results are presented in Table 76. The best combination of AIC and GAIC(3) corresponded to df(µ)=4 and df(σ)=3. This model was used as a first step to search for the best degrees of freedom for the parameter ν. Table 77 shows a summary of the goodness-of-fit results from various models. Table 76 Goodness-of-fit summary for models using the BCPE distribution with fixed ν=1 and τ=2 for height-based BMI-for-age for boys df(µ) df(σ) GD a AIC a GAIC(3) a Total df GD, Global Deviance; AIC, Akaike Information Criterion; GAIC(3), Generalized AIC with penalty equal to 3; a In excess of

14 242 BMI-for-age, boys Table 77 Goodness-of-fit summary for models BCPE(x=age, df(µ)=4, df(σ)=3, df(ν)=?, τ=2) for height-based BMI-for-age for boys df(ν) GD a GAIC(3) a Total df GD, Global Deviance; GAIC(3), Generalized Akaike Information Criterion with penalty equal to 3; a In excess of Although the smallest GAIC(3) corresponded to df(ν)=1, the fitting of a constant led to the underestimation of this parameter, resulting in an overestimation of skewness in the age interval of interest, i.e. 24 to 60 months. Therefore, the option df(ν)=3, which was associated with the second smallest GAIC(3) value (Table 77), was selected. This model's goodness-of-fit was investigated further. Model 1: BCPE(x=age, df(µ)=4, df(σ)=3, df(ν)=3, τ=2) Figure 106 shows the fitting of the parameters µ, σ and ν for Model 1 with their respective sample estimates. Median of Body Mass Index (kg/m²) St Dev Box-Cox Transformed BMI Box-Cox Transform Power Figure 106 Fitting of the µ, σ, and ν curves of Model 1 for height-based BMI-for-age from 18 to 71 months for boys (dotted line) and their respective sample estimates (points with solid line)

15 BMI-for-age, boys 243 Figure 107 shows the distribution of the centile residuals, i.e. the difference between empirical and fitted centiles, using only the cross-sectional sample from 18 to 71 months. There was a tendency to slightly underestimate values of the central centiles (25th, 50th and 75th) at the beginning of the age interval. But this indication of bias was not confirmed by the proportions of children with observed BMI values below fitted centiles (Table 78). The results in Table 78 show no evidence of bias in any of the centiles. 3rd Centile 5th Centile 10th Centile Empirical-Fitted Centile for Body Mass Index (kg/m²) th Centile th Centile th Centile th Centile th Centile th Centile Figure 107 Centile residuals from fitting Model 1 for height-based BMI-for-age from 18 to 71 months for boys

16 244 BMI-for-age, boys Table 78 Observed proportions of children with measurements below the fitted centiles from Model 1, height-based BMI-for-age for boys Expected mo mo mo mo mo mo mo mo mo mo Expected mo mo mo mo mo mo mo mo Overall Note: Group labels correspond to the age intervals in Table 79.

17 BMI-for-age, boys 245 Table 79 Q-test for z-scores from Model 1 [BCPE(x=age, df(µ)=4, df(σ)=3, df(ν)=3, τ=2)] for height-based BMI-for-age for boys N z1 z2 z3 z Overall Q stats degrees of freedom p-value Note: Absolute values of z1, z2, z3 or z4 larger than 2 indicate misfit of, respectively, mean, variance, skewness or kurtosis. Q-test results of the z-scores from the selected model are shown in Table 79. No indication of misfit was noted for any of the four distributional parameters. Only one age group (23 25 mo) had an absolute value of z2 slightly above 2. This was likely the result of smoothing out the irregularity at the merging point of the longitudinal and cross-sectional sub-samples. Figure 108 shows the worm plots for the z-scores derived from Model 1. The plots show no evidence of departure from the normal distribution or misfit of the selected model. Worms were fairly flat across all age groups, apart from two groups (23 25 and mo) whose worms had slopes indicating a slight misfit of the variance. No adjustment for kurtosis appeared to be necessary.

18 246 BMI-for-age, boys Deviation Unit normal quantile Figure 108 Worm plots of z-scores for Model 1 for height-based BMI-for-age for boys A new iteration to re-search for the best values of df(µ) and df(σ) with respect to AIC and GAIC(3) was done using df(ν)=3, but the previous choice was confirmed and there was no need to update the model. In conclusion, the model selected for the height-based BMI-for-age curves for boys was BCPE(x=age, df(µ)=4, df(σ)=3,df(ν)=3,τ=2). The standard's fitted centile curves and empirically derived centiles are shown in Figures 109 and 110.

19 BMI-for-age, boys 247 Body Mass Index (kg/m²) Fitted Empirical 97th 90th 50th 10th rd Figure 109 3rd, 10th, 50th, 90th, 97th smoothed centile curves and empirical values: height-based BMI-for-age for boys from 24 to 71 months

20 248 BMI-for-age, boys Body Mass Index (kg/m²) Fitted Empirical 95th 75th 50th 25th 5th Figure 110 5th, 25th, 50th, 75th, 95th smoothed centile curves and empirical values: height-based BMI-for-age for boys from 24 to 71 months

21 BMI-for-age, boys WHO standards and their comparison with CDC 2000 reference This section presents the final WHO BMI-for-age z-score and percentile charts (Figures 111 to 114) and tables (Tables 80 to 82) for boys. It also provides the z-score comparison of the WHO versus CDC 2000 curves (Figure 115).

22 250 BMI-for-age, boys Charts Figure 111 WHO length-based BMI-for-age z-scores for boys from birth to 24 months Body Mass Index (kg/m²)

23 BMI-for-age, boys Figure 112 WHO height-based BMI-for-age z-scores for boys from 24 to 60 months Body Mass Index (kg/m²)

24 252 BMI-for-age, boys Figure 113 WHO length-based BMI-for-age percentiles for boys from birth to 24 months 97th 85th 50th 15th 3rd Body Mass Index (kg/m²)

25 BMI-for-age, boys Figure 114 WHO height-based BMI-for-age percentiles for boys from 24 to 60 months 97th 85th 50th 15th 3rd Body Mass Index (kg/m²)

26 254 BMI-for-age, boys Tables Table 80 Length-based BMI-for-age for boys, age in weeks Percentiles (BMI in kg/m 2 ) Week L M S 1st 3rd 5th 15th 25th 50th 75th 85th 95th 97th 99th

27 BMI-for-age, boys 255 Table 80 Length-based BMI-for-age for boys, age in weeks (continued) Z-scores (BMI in kg/m 2 ) Week L M S -3 SD -2 SD -1 SD Median 1 SD 2 SD 3 SD

28 256 BMI-for-age, boys Table 81 Length-based BMI-for-age for boys, age in years and months Percentiles (BMI in kg/m 2 ) Year: Month Month L M S 1st 3rd 5th 15th 25th 50th 75th 85th 95th 97th 99th 0: : : : : : : : : : : : : : : : : : : : : : : : : 0 24 a months corresponds to 730 days. a

29 BMI-for-age, boys 257 Table 81 Length-based BMI-for-age for boys, age in years and months (continued) Z-scores (BMI in kg/m 2 ) Year: Month Month L M S -3 SD -2 SD -1 SD Median 1 SD 2 SD 3 SD 0: : : : : : : : : : : : : : : : : : : : : : : : : 0 24 a months corresponds to 730 days. a

30 258 BMI-for-age, boys Table 82 Height-based BMI-for-age for boys, age in years and months Percentiles (BMI in kg/m 2 ) Year: Month Month L M S 1st 3rd 5th 15th 25th 50th 75th 85th 95th 97th 99th 2: 0 24 a : : : : : : : : : : : : : : : : : : : : : : : :

31 BMI-for-age, boys 259 Table 82 Height-based BMI-for-age for boys, age in years and months (continued) Percentiles (BMI in kg/m 2 ) Year: Month Month L M S 1st 3rd 5th 15th 25th 50th 75th 85th 95th 97th 99th 4: : : : : : : : : : : : months corresponds to 731 days. a

32 260 BMI-for-age, boys Table 82 Height-based BMI-for-age for boys, age in years and months (continued) Z-scores (BMI in kg/m 2 ) Year: Month Month L M S -3 SD -2 SD -1 SD Median 1 SD 2 SD 3 SD 2: 0 24 a : : : : : : : : : : : : : : : : : : : : : : : :

33 BMI-for-age, boys 261 Table 82 Height-based BMI-for-age for boys, age in years and months (continued) Z-scores (BMI in kg/m 2 ) Year: Month Month L M S -3 SD -2 SD -1 SD Median 1 SD 2 SD 3 SD 4: : : : : : : : : : : : months corresponds to 731 days. a

34 262 BMI-for-age, boys Comparison with CDC 2000 WHO CDC Figure 115 Comparison of WHO with CDC 2000 BMI-for-age z-scores for boys Body Mass Index (Kg/m²)

35 BMI-for-age, girls BMI-for-age for girls Steps similar to those used for fitting the equivalent standards for boys were followed to select the best model to fit the BMI-for-age growth standards for girls. The diagnostic tools used to evaluate and compare different models were the same Sample size A total of records with both weight and length/height were available for constructing the BMIfor-age curves for girls. The longitudinal and cross-sectional sample sizes by visit and age are presented in the Tables 83 and 84. Table 83 Longitudinal sample sizes for BMI-for-age for girls Visit Birth Age 0 2 wk 4 wk 6 wk 2 mo 3 mo 4 mo N Visit Age 5 mo 6 mo 7 mo 8 mo 9 mo 10 mo 11 mo N Visit Age 12 mo 14 mo 16 mo 18 mo 20 mo 22 mo 24 mo N Table 84 Cross-sectional sample sizes for BMI-for-age for girls Age (mo) < N Age (mo) N Age (mo) >71 N Model selection and results Length-based BMI-for-age for girls The model BCPE(x=age λ, df(µ)=9, df(σ)=4, df(ν)=4, τ=2) was used to begin the search for the best age-transformation power λ. Table 85 shows the global deviance for a grid of values of λ between 0 and 0.5. As for boys, the smallest global deviance corresponded to an age-transformation power of λ=0.01 but λ=0.05 yielded very close global deviance. For the same reasons described earlier for the boys' corresponding standard, the age-transformation power λ=0.05 was selected.

36 264 BMI-for-age, girls Table 85 Global deviance (GD) for models within the class BCPE(x=age λ, df(µ)=9, df(σ)=4, df(ν)=4, τ=2) for length-based BMI-for-age for girls λ GD a λ GD a a In excess of Using λ=0.05 as the age-transformation power, the search for the best df(µ) and df(σ) was carried out by comparing the goodness of fit of various models, fixing ν=1 and τ=2. All possible combinations of df(µ) 7 to 15 and df(σ) 2 to 10 were considered. Partial results are presented in Table 86. Table 86 Goodness-of-fit summary for models using the BCPE distribution with fixed ν=1 and τ=2 for length-based BMI-for-age for girls df(µ) df(σ) GD a AIC a GAIC(3) a Total df GD, Global Deviance; AIC, Akaike Information Criterion; GAIC(3), Generalized AIC with penalty equal to 3; a In excess of

37 BMI-for-age, girls 265 The smallest value of AIC corresponded to df(µ)=11 and df(σ)=6, while the smallest value of GAIC(3) was associated with df(µ)=10 and df(σ)=3. Using 6 degrees of freedom to fit the σ curve resulted in a very irregular pattern (Figure 116) compared to the boys' curve (Figure 101). The model that appeared to have the best smoothing outcome in the centile curves (df(µ)=10 and df(σ)=3) was therefore evaluated further. σ df( σ )=6 df( σ )=5 df( σ )= Figure 116 Cubic splines fitted for the σ curve with varying numbers of degrees of freedom Model 1: BCPE(x= age 0.05, df(µ)=10, df(σ)=3, ν=1, τ=2) Q-test results (Table 87) showed that, for 14 out of 23 age groups, absolute values of z3 were above 2, showing residual skewness. Only one age group (7 days) had an absolute value of z2 above 2, which indicated misfit of variance, and another group (24 mo) had an absolute value of z4 larger than 2, pointing to residual kurtosis.

38 266 BMI-for-age, girls Table 87 Q-test for z-scores from Model 1 [BCPE(x=age 0.05, df(µ)=10, df(σ)=3, ν=1, τ=2)] for length-based BMI-for-age for girls Age (days) Group N z1 z2 z3 z4 0 Birth to 11 7 d to d to d to d to 69 2 mo to 99 3 mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo to mo Overall Q stats degrees of freedom p-value < Note: Absolute values of z1, z2, z3 or z4 larger than 2 indicate misfit of, respectively, mean, variance, skewness or kurtosis. Worm plots mostly supported the findings of the Q-test results (Figure 117). The majority of the worms were U-shaped and the group at 7 days presented a worm with a slope. The group with absolute value of z4 larger than 2 in the Q-test did not have an S-shaped worm, likely due to the fact that the residual kurtosis was an effect of the misfit in the skewness. Model 1 was thus considered inadequate. The search for the best model proceeded with the modelling of the ν curve in addition to µ and σ.

39 BMI-for-age, girls mo 24 mo 28 mo mo 14 mo 16 mo 18 mo 20 mo Deviation mo 8 mo 9 mo 10 mo 11 mo 2 mo 3 mo 4 mo 5 mo 6 mo Birth 7 d 14 d 28 d 42 d Unit normal quantile Figure 117 Worm plots of z-scores for Model 1 for length-based BMI-for-age for girls The summary statistics in Table 88 show that the best combination of AIC and GAIC(3) corresponded to df(ν)=3. An evaluation of this model followed by comparing fitted with empirical values, examining worm plots and assessing Q-test results. Table 88 Goodness-of-fit summary for models BCPE(x=age 0.05, df(µ)=10, df(σ)=3, df(ν)=?, τ=2) for length-based BMI-for-age for girls df(ν) GD a GAIC(3) a Total df GD, Global Deviance; GAIC(3), Generalized Akaike Information Criterion with penalty equal to 3; a In excess of

40 268 BMI-for-age, girls Model 2: BCPE(x=age 0.05, df(µ)=10, df(σ)=3, df(ν)=3, τ=2) Figure 118 compares the fitting of the parameters µ, σ and ν for Model 2 with their respective empirical estimates. Median of Body Mass Index (kg/m²) St Dev Box-Cox Transformed BMI Box-Cox Transform Power Figure 118 Fitting of the µ, σ, and ν curves of Model 2 for length-based BMI-for-age from 0 to 24 months for girls (dotted line) and their respective sample estimates (points with solid line)

41 BMI-for-age, girls 269 3rd Centile 5th Centile 10th Centile Empirical-Fitted Centile for Body Mass Index (kg/m²) th Centile th Centile th Centile th Centile th Centile th Centile Figure 119 Centile residuals from fitting Model 2 for length-based BMI-for-age from 0 to 24 months for girls Figure 119 shows the distribution of the centile residuals, i.e. the difference between empirical and fitted centiles for the longitudinal sample. Although the 50th centile curve tends to be overestimated, the average bias is very small (around 0.05 kg/m 2 ).

42 270 BMI-for-age, girls mo 24 mo 28 mo mo 14 mo 16 mo 18 mo 20 mo Deviation mo 8 mo 9 mo 10 mo 11 mo 2 mo 3 mo 4 mo 5 mo 6 mo Birth 7 d 14 d 28 d 42 d Unit normal quantile Figure 120 Worm plots of z-scores for Model 2 for length-based BMI-for-age for girls The worm plots for Model 2 (Figure 120) are mostly flat, i.e. with no obvious indication of misfit. Worms with slight slopes were noted for a few groups, the most evident being at 7 days, the imputed age group. Q-test results for the z-scores from Model 2 are shown in Table 89. For the selected age groups, there were no absolute values larger than 2 for any of the statistics z1 and z3, indicating no misfit of the median or skewness. For only one age group (7 days), the test indicated misfit of the variance, and for two age groups (6 and 9 mo) results suggested mild residual kurtosis (i.e. absolute values of z4 marginally above 2). The overall tests' p-values were all non-significant, indicating an adequate fit of this model for the BMI-for-age for girls from birth to 2 years. Table 90 presents the observed percentages of the sample that were below the fitted centiles. No indications of systematic bias were noted for any of the centiles.

WHO Child Growth Standards

WHO Child Growth Standards WHO Child Growth Standards Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age Methods and development 1 year 2 years 3 years 4 years 5 years WHO Child

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Queensland University of Technology Transport Data Analysis and Modeling Methodologies Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science

Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science Statistics & Research methods Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science 30 25 1,65 20 1,66 15 10 5 1,67 1,68 Κανονική 0 Height 1,69 Καμπύλη Κανονική Διακύμανση & Ζ-scores

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας» ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ «ΠΑΙ ΙΚΟ ΒΙΒΛΙΟ ΚΑΙ ΠΑΙ ΑΓΩΓΙΚΟ ΥΛΙΚΟ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που εκπονήθηκε για τη

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Correction Table for an Alcoholometer Calibrated at 20 o C

Correction Table for an Alcoholometer Calibrated at 20 o C An alcoholometer is a device that measures the concentration of ethanol in a water-ethanol mixture (often in units of %abv percent alcohol by volume). The depth to which an alcoholometer sinks in a water-ethanol

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ Κνηζακπφπνπινο Υ. Παλαγηψηεο Δπηβιέπσλ: Νηθφιανο Υαηδεαξγπξίνπ Καζεγεηήο Δ.Μ.Π Αζήλα, Μάξηηνο 2010

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Supplementary Appendix

Supplementary Appendix Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram? HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα IPHO_42_2011_EXP1.DO Experimental ompetition: 14 July 2011 Problem 1 Page 1 of 5 1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα Για ένα πυκνωτή χωρητικότητας ο οποίος είναι μέρος

Διαβάστε περισσότερα

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ

Διαβάστε περισσότερα

Repeated measures Επαναληπτικές μετρήσεις

Repeated measures Επαναληπτικές μετρήσεις ΠΡΟΒΛΗΜΑ Στο αρχείο δεδομένων diavitis.sav καταγράφεται η ποσότητα γλυκόζης στο αίμα 10 ασθενών στην αρχή της χορήγησης μιας θεραπείας, μετά από ένα μήνα και μετά από δύο μήνες. Μελετήστε την επίδραση

Διαβάστε περισσότερα

Group 2 Methotrexate 7.5 mg/week, increased to 15 mg/week after 4 weeks. Methotrexate 7.5 mg/week, increased to 15 mg/week after 4 weeks

Group 2 Methotrexate 7.5 mg/week, increased to 15 mg/week after 4 weeks. Methotrexate 7.5 mg/week, increased to 15 mg/week after 4 weeks Group 1 Methotrexate 7.5 mg/week, increased to 15 mg/week after 4 weeks Group 2 Methotrexate 7.5 mg/week, increased to 15 mg/week after 4 weeks Sulfasalazine 2000-3000 mg/day Leflunomide 20 mg/day Infliximab

Διαβάστε περισσότερα

.5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation rate.3

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

Supplementary figures

Supplementary figures A Supplementary figures a) DMT.BG2 0.87 0.87 0.72 20 40 60 80 100 DMT.EG2 0.93 0.85 20 40 60 80 EMT.MG3 0.85 0 20 40 60 80 20 40 60 80 100 20 40 60 80 100 20 40 60 80 EMT.G6 DMT/EMT b) EG2 0.92 0.85 5

Διαβάστε περισσότερα

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ Πτυχιακή εργασία ΜΕΛΕΤΗ ΠΟΛΥΦΑΙΝΟΛΩΝ ΚΑΙ ΑΝΤΙΟΞΕΙΔΩΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΣΟΚΟΛΑΤΑΣ Αναστασία Σιάντωνα Λεμεσός

Διαβάστε περισσότερα

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ Σχολή Διοίκησης και Οικονομίας Κρίστια Κυριάκου ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΜΠΟΡΙΟΥ,ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΝΑΥΤΙΛΙΑΣ Της Κρίστιας Κυριάκου ii Έντυπο έγκρισης Παρουσιάστηκε

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Διδακτορική Διατριβή

Διδακτορική Διατριβή ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Διδακτορική Διατριβή Η ΕΠΙΔΡΑΣΗ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΑΡΕΜΒΑΣΗΣ ΥΠΟΒΟΗΘΟΥΜΕΝΗΣ ΑΠΟ ΥΠΟΛΟΓΙΣΤΗ ΣΤΗΝ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΚΑΙ ΣΤΗΝ ΑΥΤΟΦΡΟΝΤΙΔΑ ΑΣΘΕΝΩΝ ΜΕ ΚΑΡΔΙΑΚΗ

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE

Διαβάστε περισσότερα

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ: ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ: ΠΡΟΣΕΓΓΙΣΗ ΜΕΣΩ ΔΕΙΚΤΩΝ Επιβλέπων: Αθ.Δελαπάσχος

Διαβάστε περισσότερα

ΜΗΤΡΙΚΟΣ ΘΗΛΑΣΜΟΣ ΚΑΙ ΓΝΩΣΤΙΚΗ ΑΝΑΠΤΥΞΗ ΜΕΧΡΙ ΚΑΙ 10 ΧΡΟΝΩΝ

ΜΗΤΡΙΚΟΣ ΘΗΛΑΣΜΟΣ ΚΑΙ ΓΝΩΣΤΙΚΗ ΑΝΑΠΤΥΞΗ ΜΕΧΡΙ ΚΑΙ 10 ΧΡΟΝΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΜΗΤΡΙΚΟΣ ΘΗΛΑΣΜΟΣ ΚΑΙ ΓΝΩΣΤΙΚΗ ΑΝΑΠΤΥΞΗ ΜΕΧΡΙ ΚΑΙ 10 ΧΡΟΝΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Ονοματεπώνυμο Κεντούλλα Πέτρου Αριθμός Φοιτητικής Ταυτότητας 2008761539 Κύπρος

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3: 4 Πρόλογος Η παρούσα διπλωµατική εργασία µε τίτλο «ιερεύνηση χωρικής κατανοµής µετεωρολογικών µεταβλητών. Εφαρµογή στον ελληνικό χώρο», ανατέθηκε από το ιεπιστηµονικό ιατµηµατικό Πρόγραµµα Μεταπτυχιακών

Διαβάστε περισσότερα

Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis

Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis Xue Han, MPH and Matt Shotwell, PhD Department of Biostatistics Vanderbilt University School of Medicine March 14, 2014

Διαβάστε περισσότερα

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου Σχολή Γεωτεχνικών Επιστημών και Διαχείρισης Περιβάλλοντος Μεταπτυχιακή διατριβή Κτίρια σχεδόν μηδενικής ενεργειακής κατανάλωσης :Αξιολόγηση συστημάτων θέρμανσης -ψύξης και ΑΠΕ σε οικιστικά κτίρια στην

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Block Ciphers Modes. Ramki Thurimella

Block Ciphers Modes. Ramki Thurimella Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be

Διαβάστε περισσότερα

ΕΠΙΔΡΑΣΗ ΤΗΣ ΧΡΗΣΗΣ ΕΛΑΙΟΠΛΑΚΟΥΝΤΑ ΣΤΗΝ ΔΙΑΤΡΟΦΗ ΤΩΝ ΑΙΓΩΝ ΔΑΜΑΣΚΟΥ ΩΣ ΠΡΟΣ ΤΗΝ ΠΟΣΟΤΗΤΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΤΟΥ ΠΑΡΑΓΟΜΕΝΟΥ ΓΑΛΑΚΤΟΣ

ΕΠΙΔΡΑΣΗ ΤΗΣ ΧΡΗΣΗΣ ΕΛΑΙΟΠΛΑΚΟΥΝΤΑ ΣΤΗΝ ΔΙΑΤΡΟΦΗ ΤΩΝ ΑΙΓΩΝ ΔΑΜΑΣΚΟΥ ΩΣ ΠΡΟΣ ΤΗΝ ΠΟΣΟΤΗΤΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΤΟΥ ΠΑΡΑΓΟΜΕΝΟΥ ΓΑΛΑΚΤΟΣ Σχολή Γεωπονικών Επιστημών και Διαχείρισης Περιβάλλοντος Πτυχιακή εργασία ΕΠΙΔΡΑΣΗ ΤΗΣ ΧΡΗΣΗΣ ΕΛΑΙΟΠΛΑΚΟΥΝΤΑ ΣΤΗΝ ΔΙΑΤΡΟΦΗ ΤΩΝ ΑΙΓΩΝ ΔΑΜΑΣΚΟΥ ΩΣ ΠΡΟΣ ΤΗΝ ΠΟΣΟΤΗΤΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΤΟΥ ΠΑΡΑΓΟΜΕΝΟΥ ΓΑΛΑΚΤΟΣ

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

Number All 397 Women 323 (81%) Men 74 (19%) Age(years) 39,1 (17-74) 38,9 (17-74) 40,5 (18-61) Maximum known weight(kg) 145,4 (92,0-292,0) 138,9 (92,0-202,0) 174,1 (126,0-292,0) Body mass index (kg/m 2

Διαβάστε περισσότερα

Exercise 2: The form of the generalized likelihood ratio

Exercise 2: The form of the generalized likelihood ratio Stats 2 Winter 28 Homework 9: Solutions Due Friday, March 6 Exercise 2: The form of the generalized likelihood ratio We want to test H : θ Θ against H : θ Θ, and compare the two following rules of rejection:

Διαβάστε περισσότερα

Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models

Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models Sy-Miin Chow Pennsylvania State University Katie Witkiewitz University of New

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ

Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

ΙΔΡΥΜΑ. Θεσσαλονίκη, ύλα

ΙΔΡΥΜΑ. Θεσσαλονίκη, ύλα ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ, ΤΡΟΦΙΜΩΝ & ΔΙΑΤΡΟΦΗΔ ΗΣ ΤΜΗΜΑ ΔΙΑΤΡΟΦΗΣ & ΔΙΑΙΤΟΛΟΓΙΑΣ ΠΑΡΕΜΒΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΔΙΑΤΡΟΦΙΚΗΣ ΑΓΩΓΗΣ ΣΤΟΝ ΔΗΜΟ ΚΑΒΑΛΑΣ Πτυχιακή

Διαβάστε περισσότερα

Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΙΟ Τμήμα Μηχανικών Μεταλλείων-Μεταλλουργών ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κιτσάκη Μαρίνα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΟΛΟΚΛΗΡΩΜΕΝΗ ΑΝΑΠΤΥΞΗ & ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΑΓΡΟΤΙΚΟΥ ΧΩΡΟΥ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Οικονομετρική διερεύνηση

Διαβάστε περισσότερα