TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics
|
|
- Λώτ Μιχαηλίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x x n n = 1 n xi Standard deviation (use a calculator): 1 s = (xi x) n 1 2 Median: Arrange all observations from smallest to largest. The median M is located (n + 1)/2 observations from the beginning of this list. Quartiles: The first quartile Q 1 is the median of the observations whose position in the ordered list is to the left of the location of the overall median. The third quartile Q 3 is the median of the observations to the right of the location of the overall median. Five-number summary: Minimum, Q 1, M, Q 3, Maximum Standardized value of x: z = x µ σ Exploring Data: Relationships Look for overall pattern (form, direction, strength) and deviations (outliers, influential observations). Correlation (use a calculator): r = 1 ( ) x i x ( ) y i y n 1 Least-squares regression line (use a calculator): ŷ = a + bx with slope b = rs y /s x and intercept a = y bx Residuals: residual = observed y predicted y = y ŷ Producing Data Simple random sample: Choose an SRS by giving every individual in the population a numerical label and using Table B of random digits to choose the sample. s x Randomized comparative experiments: Group 1 Treatment 1 Random Observe Allocation Group 2 Response Treatment 2 Probability and Sampling Distributions Probability rules: Any probability satisfies 0 P (A) 1. s y The sample space S has probability P (S) = 1. If events A and B are disjoint, P (A or B) = P (A)+P (B). For any event A, P (A does not occur) = 1 P (A)
2 Sampling distribution of a sample mean: x has mean µ and standard deviation σ/ n. x has a Normal distribution if the population distribution is Normal. Central limit theorem: x is approximately Normal when n is large. Basics of Inference z confidence interval for a population mean (σ known, SRS from Normal population): x ± z σ n z from N(0, 1) Sample size for desired margin of error m: ( z ) σ 2 n = m z test statistic for H 0 : µ = µ 0 (σ known, SRS from Normal population): z = x µ 0 σ/ n P -values from N(0, 1) Inference About Means t confidence interval for a population mean (SRS from Normal population): x ± t s t from t(n 1) n t test statistic for H 0 : µ = µ 0 (SRS from Normal population): t = x µ 0 s/ n P -values from t(n 1) Matched pairs: To compare the responses to the two treatments, apply the one-sample t procedures to the observed differences. Two-sample t confidence interval for µ 1 µ 2 (independent SRSs from Normal populations): (x 1 x 2 ) ± t s s2 2 n 1 n 2 with conservative t from t with df the smaller of n 1 1 and n 2 1 (or use software). Two-sample t test statistic for H 0 : µ 1 = µ 2 (independent SRSs from Normal populations): t = x 1 x 2 s s2 2 n 1 n 2 with conservative P -values from t with df the smaller of n 1 1 and n 2 1 (or use software). Inference About Proportions Sampling distribution of a sample proportion: when the population and the sample size are both large and p is not close to 0 or 1, ˆp is approximately Normal with mean p and standard deviation p(1 p)/n. Large-sample z confidence interval for p: ˆp ± z ˆp(1 ˆp) z from N(0, 1) n Plus four to greatly improve accuracy: use the same formula after adding 2 successes and two failures to the data. z test statistic for H 0 : p = p 0 (large SRS): ˆp p 0 z = p 0 (1 p 0 ) n P -values from N(0, 1) Sample size for desired margin of error m: ( z ) 2 n = p (1 p ) m where p is a guessed value for p or p =0.5. Large-sample z confidence interval for p 1 p 2 : (ˆp 1 ˆp 2 ) ± z SE z from N(0, 1) where the standard error of ˆp 1 ˆp 2 is ˆp 1 (1 ˆp 1 ) SE = + ˆp 2(1 ˆp 2 ) n 1 n 2 Plus four to greatly improve accuracy: use the same formulas after adding one success and one failure to each sample.
3 Two-sample z test statistic for H 0 : p 1 = p 2 (large independent SRSs): ˆp 1 ˆp 2 z = ( 1 ˆp(1 ˆp) + 1 ) n1 n2 where ˆp is the pooled proportion of successes. The Chi-Square Test Expected count for a cell in a two-way table: expected count = row total column total table total Chi-square test statistic for testing whether the row and column variables in an r c table are unrelated (expected cell counts not too small): X 2 = (observed count expected count) 2 expected count with P -values from the chi-square distribution with df = (r 1) (c 1). Describe the relationship using percents, comparison of observed with expected counts, and terms of X 2. Inference for Regression Conditions for regression inference: n observations on x and y. The response y for any fixed x has a Normal distribution with mean given by the true regression line µ y = α + βx and standard deviation σ. Parameters are α, β, σ. Estimate α by the intercept a and β by the slope b of the least-squares line. Estimate σ by the regression standard error: 1 s = residual 2 n 2 t confidence interval for regression slope β: b ± t SE b t from t(n 2) t test statistic for no linear relationship, H 0 : β = 0: t = b SE b P -values from t(n 2) t confidence interval for mean response µ y when x = x : ŷ ± t SEˆµ t from t(n 2) t prediction interval for an individual observation y when x = x : ŷ ± t SEŷ t from t(n 2) One-way Analysis of Variance: Comparing Several Means ANOVA F tests whether all of I populations have the same mean, based on independent SRSs from I Normal populations with the same σ. P -values come from the F distribution with I 1 and N I degrees of freedom, where N is the total observations in all samples. Describe the data using the I sample means and standard deviations and side-by-side graphs of the samples. The ANOVA F test statistic (use software) is F = MSG/MSE, where MSG = n 1(x 1 x) n I (x I x) 2 I 1 MSE = (n 1 1)s (n I 1)s 2 I N I Use software for all standard errors in regression.
4 690 TABLES Table entry for z is the area under the standard Normal curve to the left of z. Table entry z TABLE A Standard Normal cumulative proportions z
5 TABLES 691 Table entry for z is the area under the standard Normal curve to the left of z. Table entry z TABLE A Standard Normal cumulative proportions (continued ) z
6 692 TABLES TABLE B Random digits LINE
7 Table entry for C is the critical value t required for confidence level C. To approximate one- and two-sided P -values, compare the value of the t statistic with the critical values of t that match the P -values given at the bottom of the table. Area C t* t* Tail area 1 C 2 TABLE C t distribution critical values CONFIDENCE LEVEL C DEGREES OF FREEDOM 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9% z One-sided P Two-sided P
8 694 TABLES Table entry for p is the critical value χ with probability p lying to its right. Probability p χ* TABLE D Chi-square distribution critical values p df
9 TABLES 695 Table entry for p is the critical value r of the correlation coefficient r with probability p lying to its right. Probability p r* TABLE E Critical values of the correlation r UPPER TAIL PROBABILITY p n
10 Two-sided p-values for t-distribution absolute value d.f. (1-15) t Prepared by Professor James Higgins, Kansas State University
11 Two-sided p-values for t-distribution absolute value d.f. (16-30) t Prepared by Professor James Higgins, Kansas State University
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Διαβάστε περισσότεραBiostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
Διαβάστε περισσότεραFORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
Διαβάστε περισσότερα519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008
.. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.
Διαβάστε περισσότερα5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Διαβάστε περισσότεραΆσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F
Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό
Διαβάστε περισσότεραAquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Διαβάστε περισσότεραAPPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared
Διαβάστε περισσότεραp n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
Διαβάστε περισσότεραOther Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Διαβάστε περισσότεραΕπιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata
One-way ANOVA µε το SPSS Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata To call in a statistician after the experiment is
Διαβάστε περισσότεραΜηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Διαβάστε περισσότεραΜαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)
Διαβάστε περισσότεραΜενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )
Διαβάστε περισσότεραMath 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Διαβάστε περισσότεραRepeated measures Επαναληπτικές μετρήσεις
ΠΡΟΒΛΗΜΑ Στο αρχείο δεδομένων diavitis.sav καταγράφεται η ποσότητα γλυκόζης στο αίμα 10 ασθενών στην αρχή της χορήγησης μιας θεραπείας, μετά από ένα μήνα και μετά από δύο μήνες. Μελετήστε την επίδραση
Διαβάστε περισσότεραPENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI
155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia
Διαβάστε περισσότεραΓια να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.
A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:
Διαβάστε περισσότεραStatistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΑΣΚΗΣΗ, ΕΡΓΟΣΠΙΡΟΜΕΤΡΙΑ ΚΑΙ ΑΠΟΚΑΤΑΣΤΑΣΗ» ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Μεθοδολογία έρευνας και στατιστική 2. ΚΩΔ.
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότεραΑν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.
ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει
Διαβάστε περισσότεραST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Διαβάστε περισσότεραLecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Διαβάστε περισσότερα3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Διαβάστε περισσότεραStatistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science
Statistics & Research methods Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science 30 25 1,65 20 1,66 15 10 5 1,67 1,68 Κανονική 0 Height 1,69 Καμπύλη Κανονική Διακύμανση & Ζ-scores
Διαβάστε περισσότεραSolution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Διαβάστε περισσότεραΜενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο
Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Διαβάστε περισσότεραQueensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
Διαβάστε περισσότεραTable A.1 Random numbers (section 1)
A Tables Table Contents Page A.1 Random numbers 696 A.2 Orthogonal polynomial trend contrast coefficients 702 A.3 Standard normal distribution 703 A.4 Student s t-distribution 704 A.5 Chi-squared distribution
Διαβάστε περισσότερα794 Appendix A:Tables
Appendix A Tables A Table Contents Page A.1 Random numbers 794 A.2 Orthogonal polynomial trend contrast coefficients 800 A.3 Standard normal distribution 801 A.4 Student s t-distribution 802 A.5 Chi-squared
Διαβάστε περισσότεραSupplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
Διαβάστε περισσότεραΑπλή Ευθύγραµµη Συµµεταβολή
Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή
Διαβάστε περισσότεραBayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότερα(Στατιστική Ανάλυση) Δεδομένων I. Σύγκριση δύο πληθυσμών (με το S.P.S.S.)
(Στατιστική Ανάλυση) Δεδομένων I Σύγκριση δύο πληθυσμών (με το S.P.S.S.) Νίκος Τσάντας Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά και Σύγχρονες Εφαρμογές Ακαδημαϊκό έτος 2011-12 Πρόκειται
Διαβάστε περισσότερατατιστική στην Εκπαίδευση II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιστική στην Εκπαίδευση II Λφση επαναληπτικής άσκησης Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το
Διαβάστε περισσότεραχ 2 test ανεξαρτησίας
χ 2 test ανεξαρτησίας Καθηγητής Ι. Κ. ΔΗΜΗΤΡΙΟΥ demetri@econ.uoa.gr 7.2 Το χ 2 Τεστ Ανεξαρτησίας Tο χ 2 τεστ ανεξαρτησίας (όπως και η παλινδρόμηση) είναι στατιστικά εργαλεία για τον εντοπισμό σχέσεων μεταξύ
Διαβάστε περισσότεραHISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?
HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What
Διαβάστε περισσότεραDoes anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis Xue Han, MPH and Matt Shotwell, PhD Department of Biostatistics Vanderbilt University School of Medicine March 14, 2014
Διαβάστε περισσότεραΣΧΕΔΙΑΣΜΟΣ. ΠΟΛΥΞΕΝΗ ΗΛΙΟΠΟΥΛΟΥ Αγρονόμος-Τοπογράφος Μηχ. Δρ. Γεωγραφίας Καθηγήτρια Τμ. Τοπογραφίας ΤΕΙ ΑΘΗΝΑΣ piliop@teiath.gr
ΧΩΡΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΠΟΛΥΞΕΝΗ ΗΛΙΟΠΟΥΛΟΥ Αγρονόμος-Τοπογράφος Μηχ. Δρ. Γεωγραφίας Καθηγήτρια Τμ. Τοπογραφίας ΤΕΙ ΑΘΗΝΑΣ piliop@teiath.gr ΘΕΜΑΤΑ ΜΕΘΟΔΟΛΟΓΙΑΣ Η Χωρική Ανάλυση άυση(spatiala Analysis)
Διαβάστε περισσότεραt-distribution t a (ν) s N μ = where X s s x = ν 2 FD ν 1 FD a/2 a/2 t-distribution normal distribution for ν>120
t-ditribution t X x μ = where x = ν FD ν FD t a (ν) 0 t-ditribution normal ditribution for ν>0 a/ a/ -ta ta ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ (freedom degree) Βαθμοί ελευθερίας (ν): ο αριθμός των ανεξάρτητων μετρήσεων
Διαβάστε περισσότεραLecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Διαβάστε περισσότεραEcon 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Διαβάστε περισσότεραΥπολογιστική Φυσική Στοιχειωδών Σωματιδίων
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Όρια Πιστότητας (Confidence Limits) 2/4/2014 Υπολογ.Φυσική ΣΣ 1 Τα όρια πιστότητας -Confidence Limits (CL) Tα όρια πιστότητας μιας μέτρησης Μπορεί να αναφέρονται
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ
ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Ενότητα 5: ΠΡΟΥΠΟΛΟΓΙΣΜΟΙ ΚΑΙ ΠΡΟΒΛΕΨΕΙΣ ΠΩΛΗΣΕΩΝ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραLampiran 1 Output SPSS MODEL I
67 Variables Entered/Removed(b) Lampiran 1 Output SPSS MODEL I Model Variables Entered Variables Removed Method 1 CFO, ACCOTHER, ACCPAID, ACCDEPAMOR,. Enter ACCREC, ACCINV(a) a All requested variables
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games
Διαβάστε περισσότεραExercise 2: The form of the generalized likelihood ratio
Stats 2 Winter 28 Homework 9: Solutions Due Friday, March 6 Exercise 2: The form of the generalized likelihood ratio We want to test H : θ Θ against H : θ Θ, and compare the two following rules of rejection:
Διαβάστε περισσότεραΔείγμα (μεγάλο) από οποιαδήποτε κατανομή
ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)
Διαβάστε περισσότεραEstimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
Διαβάστε περισσότεραΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ
A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές
Διαβάστε περισσότεραΣτατιστική Ανάλυση Δεδομένων II. Γραμμική Παλινδρόμηση με το S.P.S.S.
Στατιστική Ανάλυση Δεδομένων II Γραμμική Παλινδρόμηση με το S.P.S.S. μέρος Α (απλή παλινδρόμηση) Νίκος Τσάντας Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά και Σύγχρονες Εφαρμογές Ακαδημαϊκό
Διαβάστε περισσότεραReview Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Διαβάστε περισσότεραSolutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Διαβάστε περισσότεραProbability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Διαβάστε περισσότερα22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
Διαβάστε περισσότεραApproximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Διαβάστε περισσότεραMatrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
Διαβάστε περισσότεραο),,),--,ο< $ι ιι!η ι ηι ι ιι ιι t (t-test): ι ι η ι ι. $ι ι η ι ι ι 2 x s ι ι η η ιη ι η η SE x
η &, ε ε 007!# # # ι, ι, η ιι ι ι ι ι η (.. ι, η ι η, ι & ι!ι η 50, ι ηιη 000 ι, ι, ',!,! )!η. (, ηι, ι ι ι ι "!η. #, ι "ι!η ι, ηι, ι ι ι η. ι, ι ι, ' ι ι ι η ι ι ι ι # ι ι ι ι ι 7. ο),,),--,ο< $ι ιι!η
Διαβάστε περισσότεραSecond Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Διαβάστε περισσότερα1991 US Social Survey.sav
Παραδείγµατα στατιστικής συµπερασµατολογίας µε ένα δείγµα Στα παραδείγµατα χρησιµοποιείται απλό τυχαίο δείγµα µεγέθους 1 από το αρχείο δεδοµένων 1991 US Social Survey.sav Το δείγµα λαµβάνεται µε την διαδικασία
Διαβάστε περισσότεραΣΥΣΧΕΤΙΣΗ & ΠΑΛΙΝΔΡΟΜΗΣΗ
ΣΥΣΧΕΤΙΣΗ & ΠΑΛΙΝΔΡΟΜΗΣΗ Για να προσδιορίσουμε την ύπαρξη σχέσης μεταξύ μεταβλητών, χρησιμοποιούμε την ανάλυση συσχέτισης. Για να προβλέψουμε την τιμή μιας μεταβλητής (εξαρτημένη μεταβλητή) με τη βοήθεια
Διαβάστε περισσότεραSupplementary figures
A Supplementary figures a) DMT.BG2 0.87 0.87 0.72 20 40 60 80 100 DMT.EG2 0.93 0.85 20 40 60 80 EMT.MG3 0.85 0 20 40 60 80 20 40 60 80 100 20 40 60 80 100 20 40 60 80 EMT.G6 DMT/EMT b) EG2 0.92 0.85 5
Διαβάστε περισσότεραHOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότερα1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...
Διαβάστε περισσότεραSECTION II: PROBABILITY MODELS
SECTION II: PROBABILITY MODELS 1 SECTION II: Aggregate Data. Fraction of births with low birth weight per province. Model A: OLS, using observations 1 260 Heteroskedasticity-robust standard errors, variant
Διαβάστε περισσότερα1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά
1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs
Διαβάστε περισσότεραΕργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S.
Σημειώσεις για το μάθημα Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S. Παπάνα Αγγελική E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ ΚΑΤΕΡΙΝΗΣ Τμήμα Τυποποίησης και
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραΦροντιστήριο Βιοστατιστικής. Έλεγχος Υποθέσεων. Παύλος Αγιανιάν Επικ. Καθηγητής ΔΠΘ
Φροντιστήριο Βιοστατιστικής Έλεγχος Υποθέσεων Παύλος Αγιανιάν Επικ. Καθηγητής ΔΠΘ Αλεξανδρούπολη 215 Αρχική Κατανομή N (μ ο, σ 2 ) μ ο Τυποποιημένη Κατανομή N (, 1) -Z 1-α/2 Z 1-α/2 N (, 1) N (μ ο, σ 2
Διαβάστε περισσότεραInverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Διαβάστε περισσότεραΔείγμα πριν τις διορθώσεις
Εισαγωγή Α ΜΕΡΟΣ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ 1 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Εισαγωγή 1.1.1 Περιγραφική Στατιστική (Descriptive Statistics) 1.1.2 Επαγωγική ή Αναλυτική Στατιστική (Inferential or Αnalytical Statistics)
Διαβάστε περισσότεραLAMPIRAN. Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan. 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk.
LAMPIRAN Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk. 2. BACA PT Bank Capital Indonesia Tbk. 3. BABP PT Bank MNC Internasional Tbk. 4. BBCA
Διαβάστε περισσότερα( ) ( ) STAT 5031 Statistical Methods for Quality Improvement. Homework n = 8; x = 127 psi; σ = 2 psi (a) µ 0 = 125; α = 0.
STAT 531 Statistical Methods for Quality Improvement Homework 3 4.8 n = 8; x = 17 psi; σ = psi (a) µ = 15; α =.5 Test H : µ = 15 vs. H 1 : µ > 15. Reject H if Z > Z α. x µ 17 15 Z = = =.88 σ n 8 Z α =
Διαβάστε περισσότεραSummary of the model specified
Program: HLM 7 Hierarchical Linear and Nonlinear Modeling Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon Publisher: Scientific Software International, Inc. (c) 2010 techsupport@ssicentral.com
Διαβάστε περισσότεραdepartment listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ,
ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, -- Άσκηση. Δίνονται τα παρακάτω δεδομένα 5 7 8 9 5 X 8 5 5 5 9 7 Y. 5.. 7..7.7.9.. 5.... 8.. α) Να γίνει το διάγραμμα διασποράς β) εξετάστε τα μοντέλα Υ = β + β Χ + ε, (linear),
Διαβάστε περισσότεραThe Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραΑσκήσεις Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη. Διοίκηση των Επιχειρήσεων
Ασκήσεις Εξετάσεων Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων ΑΣΚΗΣΗ 1: Έλεγχος για τη μέση τιμή ενός πληθυσμού Η αντικαπνιστική νομοθεσία υποχρεώνει τους καπνιστές που εργάζονται σε
Διαβάστε περισσότεραTable 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed
Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026
Διαβάστε περισσότεραDepth versus Rigidity in the Design of International Trade Agreements. Leslie Johns
Depth versus Rigidity in the Design of International Trade Agreements Leslie Johns Supplemental Appendix September 3, 202 Alternative Punishment Mechanisms The one-period utility functions of the home
Διαβάστε περισσότεραDOUGLAS FIR BEETLE TRAP-SUPPRESSION STUDY STATISTICAL REPORT
DOUGLAS FIR BEETLE TRAP-SUPPRESSION STUDY STATISTICAL REPORT Prepared for Dr. Robert Progar U.S. Forest Service Forest Sciences Laboratory Corvallis, Oregon January 2005 By Greg Brenner Pacific Analytics
Διαβάστε περισσότεραΘέματα Στατιστικής στη γλώσσα R
Θέματα Στατιστικής στη γλώσσα R Ποσότητες οδηγοί και τα ποσοστιαία σημεία των αντίστοιχων κατανομών Ν(0,1) Student s t X 2, F Διαστήματα εμπιστοσύνης-έλεγχοι Υποθέσεων ένα δείγμα για τη μέση τιμή κανονικής
Διαβάστε περισσότερα2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότερα5.1 logistic regresssion Chris Parrish July 3, 2016
5.1 logistic regresssion Chris Parrish July 3, 2016 Contents logistic regression model 1 1992 vote 1 data..................................................... 1 model....................................................
Διαβάστε περισσότεραΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
Διαβάστε περισσότεραΜεθοδολογία των επιστημών του Ανθρώπου: Στατιστική Ι
Μεθοδολογία των επιστημών του Ανθρώπου: Στατιστική Ι Εργαστήριο 9 1. Να χρησιμοποιηθεί το αρχείο data_kids. Τα δεδομένα του προέρχονται από την έρευνα των Chase και Dummer (1992), μελέτησαν τον ρόλο των
Διαβάστε περισσότεραCRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Διαβάστε περισσότεραC.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Διαβάστε περισσότεραΔPersediaan = Persediaan t+1 - Persediaan t
Lampiran 4 Data Perhitungan Perubahan Persediaan ΔPersediaan = Persediaan t+1 - Persediaan t No Kode Perusahaan 2011 Persediaan t+1 (2012) Persediaan t (2011) ΔPersediaan a b a-b 1 ADES 74.592.000.000
Διαβάστε περισσότεραIf we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Διαβάστε περισσότεραModule 5. February 14, h 0min
Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14,
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Διαβάστε περισσότερα8. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Ι
8. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Ι Απλή γραμμική παλινδρόμηση είναι μία στατιστική μέθοδος που χρησιμοποιείται για τη μελέτη της σχέσης μεταξύ δύο ποσοτικών μεταβλητών εκ των οποίων μία είναι η ανεξάρτητη
Διαβάστε περισσότερα