PROOFING TOOLS TECHNOLOGY AT NEUROSOFT S.A.
|
|
- Νίκανδρος Ιωαννίδης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 PROOFING TOOLS TECHNOLOGY AT NEUROSOFT S.A. Christos Tsalidis *, Giorgos Orphanos *, Anna Iordanidou ** and Aristides Vagelatos *** * Neurosoft S.A. 24 Kofidou Str., 14231, N. Ionia, Athens, Greece {tsalidis, orphan}@neurosoft.gr ** Department of Primary Education University of Patras, 26500, Rion, Patras, Greece A.Iordanidou@upatras.gr *** Research Academic Computer Technology Institute 13 Eptachalkou Str., 11581, Athens, Greece vagelat@cti.gr Abstract The aim of this paper is to present the R&D activities carried out at Neurosoft S.A. regarding the development of proofing tools for Modern Greek. Firstly, we focus on infrastructure issues that we faced during our initial steps. Subsequently, we describe the most important insights of three proofing tools developed by Neurosoft, i.e. the spelling checker, the hyphenator and the thesaurus, outlining their efficiencies and inefficiencies. Finally, we discuss some improvement ideas and give our future directions. 1. INTRODUCTION The evolution of Human Language Technology (HLT) is based on R&D activities in the following areas: 1. Language Resources: computational realizations of models that represent the components of human language (i.e. phonemes, syllables, morphemes, words, phrases, sentences, discourse) and the levels of language analysis (i.e. phonology, prosody, morphology, syntax, semantics, pragmatics), in the forms of lexicons, wordnets, ontologies, knowledge bases, text and speech corpora, rules, n-grams, decision trees, connectionist networks, etc. 2. Language Tools. They can be grouped into: a) Infrastructure Tools: software systems for the development of language resources, e.g. lexicographical databases, corpus management systems, rule-writing or machine-learning workbenches, etc. b) Application Tools: software components or systems built on top of language resources, utilized by end-users to satisfy information needs, e.g. lexicon browsers, search engines, or to perform automatic text or speech processing, e.g. text-to-speech converters, spelling/grammar/style checkers, summarizers, machine translators, etc. Evidently, there is a long distance to cover till the delivery of any HLT application tool to end-users; the higher the language analysis level to be reached by the tool, the longer the distance. Furthermore, there are user requirements (e.g. for computers capable of understanding the human language) that cannot be effectively fulfilled at this moment, not even in the next decade, due to technology gaps. Proofing tools are HLT application tools that help humans (typists, typesetters, writers, authors, translators, editors, etc.) to write, typeset, proofread, search, summarize and/or translate texts. They are incorporated into contemporary word processors or desktop publishing systems and are strictly language-specific, i.e. there is a version of each tool for each supported natural language. The complete suite of proofing tools for a specific natural language comprises:
2 An electronic dictionary/thesaurus that provides word meanings, example uses, synonyms, antonyms, word translations, etc. A hyphenator that automatically syllabifies the end-of-line words, so as to avoid losing printable space during paragraph alignment. A stemmer that produces all morphological variations of a specific word. It is utilized for word search & replace functions and for query expansion during document retrieval. A spelling checker that locates words with orthographical errors in texts and suggests corrections. A grammar checker that locates ungrammatical constructions in texts and suggests corrections. A style checker that flags violations of style rules (e.g. when the text contains informal words or constructions with low readability) and suggests style alterations. A summarizer that produces the summary of a given text. A translator that translates a text from its original language to another language. 2. BACKGROUND Since 1999, our HLT team at Neurosoft S.A. has worked in developing language resources and tools for Modern Greek (M. Greek). In these 4.5 years, we gave major emphasis and effort to infrastructure issues, i.e. to language resources and tools for developing these resources. The kick-off activity was to model: a) the graphemic components of M. Greek up to the word level (alphabet, syllables, morphemes, words), b) the type (phonetic, morphological, syntactic, semantic) and the (simple or complex) structure of information that can be assigned to each component and c) the inflectional and derivational system of M. Greek. The next step was to implement the above models and integrate them into a lexicographical database, using XML as the core description and content structuring language. Towards the development of a morphological lexicon and a thesaurus for M. Greek, we extended the lexicographical infrastructure with a) a corpus of M. Greek texts (~100 million words) and b) a set of light-weight lemma-encoding GUIs. The corpus was initially used to count word frequencies and later to retrieve examples of words in context. The lemma-encoding GUIs allowed the lexicographers to work off-line (e.g. at home) and produce XML files ready to be uploaded in the central database. The development of the morphological lexicon was divided into two phases: a) selection of the vocabulary, by excerpting the 4 major M. Greek dictionaries (Κριαρά [12], Μίζον Τγόπουλου-Φυτράκη [17], Μπαµπινιώτη [14] and Λξικό Α.Π.Θ. [13]) and counting word frequencies in the corpus, and b) production of all morphological forms for each word in the vocabulary. Inevitably, in both phases, we faced the perennial problem of language standardization, i.e. common M. Greek (standard) vs. katharevousa and dialects. On one hand, the dictionaries brought up many discrepancies about whether or not a word/word-form belongs to the standard language. On the other hand, the corpus revealed many words/word-forms that either were not included in any of the 4 dictionaries or were flagged by the dictionaries as divergences from the standard language. To date, after more than 120 person months, the morphological lexicon contains ~90,000 words (~1,100,000 word-forms) with orthographical, syllabification, morphological, morphosyntactic and morphostylistic information. Having a lexical database with all the above information, the natural follow-up phase is to enrich it with semantic information. Developing a thesaurus is an important step forwards the difficult field of semantics; synonymy, antonymy, hyperonymy, hyponymy and meronymy are some very significant relations between concepts, and it is very useful (to humans and to computers) to have these relations recorded somewhere. The development of the thesaurus was divided into three phases: a) selection of lemmas that contain at least one synonym or antonym, b) distinction of the meanings of each lemma, and c) definition of synonyms, antonyms and example-uses (where needed) per meaning. All three phases were based on the excerption of the 4 major M. Greek dictionaries and on the extraction of word-in-context lines from the corpus and from the Internet. To date, after more than 40 person months, the thesaurus contains ~22,500 lemmas with synonyms, antonyms and example-uses per meaning. An interesting property of the thesaurus is its closure: there is always a lemma for any word that participates in a synonymic or antonymic relation. Apart from being prerequisites for the advancement of HLT at Neurosoft, the aforementioned language resources provided the passport for entering the frontiers of proofing tools technology. After the morphological lexicon reached a satisfactory content level, we could immediately proceed to the development of at least 3 proofing tools for M. Greek, namely the spelling checker, the hyphenator and the stemmer. The spelling checker and the hyphenator have already become available for the following platforms: a) MS Office 97, 2000, XP / 98, X (MS Win / Mac OS), b) Sun Open Office, c) Adobe InDesign, Photoshop, Illustrator (MS Win / Mac OS) and d) Quark Xpress (MS Win / Mac OS). The forthcoming M. Greek thesaurus, which incorporates the functionality of the stemmer, will be initially available for MS Office and Sun Open Office, as well as a standalone tool with its proprietary browser.
3 3. MDAGs and TRIEs The Minimal Directed Acyclic Graphs (MDAGs, [2], [6]) and the TRIEs ([3], [1]) are two variations of Finite State Automata (FSA, [2]) that have been thoroughly used in HLT as lexical representation structures. Their major characteristics, which substantiate their ability to store and manipulate large word sets, are: Speed. The speed of the lookup function depends on the length of the searched word and not on the size of the lexicon. Sorting Convenience. The words stored in an FSA can be easily sorted, by sorting the outgoing transitions of each node. Regular Expression Support. An FSA can easily evaluate complex regular expressions. This also permits the development of smart word correction algorithms, which utilize regular expressions to produce alternative words. Both MDAG and TRIE represent common prefix paths. MDAG also represents common suffix paths, resulting to smaller automata (fewer states and transitions). Figure 1 illustrates the MDAG (a) and the TRIE (b) representations of six words (ισοµτρία, ισοµτρίας, ισοµτρίς, ισοµοιρία, ισοµοιρίας, ισοµοιρίς). ι σ ο µ τ ρ ς ί α ς ο ι ρ (a) τ ρ ί α ς ι σ ο µ ς ο (b) ι ρ ί α ς ς Figure 1. (a) MDAG and (b) TRIE As shown in Figure 1, the MDAG structure (14 nodes, 15 transitions) is smaller than the TRIE structure (21 nodes, 20 transitions). Also, the MDAG has only two terminal nodes (the bold nodes) for the six words, whereas the TRIE has six terminal nodes, one for each word. This practically means that MDAG is more efficient for word storage, but TRIE can also be used as a record indexing structure: since each terminal node in the TRIE corresponds to a discrete word (this is false for MDAC), the TRIE is suitable for storing record key-words; what is further needed is some extra space in each terminal node to store a record pointer. We are using MDAG to store the words of our spelling lexicon and TRIE to index the lemmas of the thesaurus. More than M. Greek word-forms (12Mb) were converted to a MDAC structure (790Kb), following a method similar to that of Mihov [7]. The search speed of this structure is ~600,000 words/second on a 1.7GHz MS Windows 2000 computer. The speed of the thesaurus index is similar but the size is much bigger. For 26,000 thesaurus lemmas, using ~400,000 word-forms as indexing keys, the size of the TRIE index is 5.6Mb. 4. SPELLING CHECKER The spelling checker ascertains the orthographical correctness of an input word, if this word is found in its spelling lexicon. If not, the spelling checker has to produce a list of alternatives that are graphically or phonetically similar to the input word. This list is ordered according to a similarity degree; the alternatives that are most similar to the input word appear at the head of the list. Word similarity is calculated by a distance function. To stress the importance of the distance function, we claim that an optimal distance function on its own would be sufficient to carry out the entire correction process: given an incorrect word, we can calculate the distance between it and each word of the spelling lexicon and (according to a threshold) select the nearest words as alternatives.
4 The distance function we use measures the Levenshtein distance [5] (or edit distance) between two words, i.e. the number of deletions, insertions, or substitutions required to transform one word into the other. Véronis [11] proposes a different method, in which all the phonetically equivalent graphemes are equidistant, independently of the number of characters they differ. Another approach is that of Ristad and Yanilos [10], who define a stochastic model capable to learn the distance function from training examples. This reduces the error rate to one fifth of the corresponding Levenshtein error rate. To calculate the distance of an incorrect word to all words of the spelling lexicon is very costly and thus inefficient. It would be convenient to select an appropriate subset of the lexicon first. What the spelling correction algorithms actually do is to alter the incorrect word (by inserting, deleting, substituting characters) and produce a set of strings; the intersection of this set with the entire lexicon provides the desirable lexicon subset, which passes through the distance function and gives a list of ordered alternatives. The alterations of the incorrect word performed by the correction algorithms are not arbitrary; they are based on the reasoning about spelling errors. In general, according to their causes, spelling errors fall in the following categories: typographic: the user, due to haste or even carelessness, types a wrong character or an extra character, misses a character or transposes two characters. morphological: the user does not know the morphology of the word he types. pronunciation: the user does not know the pronunciation of the word he types. grammatical: the user types an orthographically correct word, which is syntactically or semantically unrelated to the context. The difficulty level of correcting a spelling error is analogous to the order of the above error categories. There are also other categories, such as human or machine optical recognition errors, data transmission errors, etc. These categories are considered domain or source specific and require special handling. Leaving for the future the category of grammatical errors, as it requires syntactic and/or semantic analysis, we developed a variation of Véronis' phonographic correction method [11], in order to handle pronunciation and morphological errors. To apply this method, we first categorize all the different graphemes in equivalence classes, as follows: Double consonants and the corresponding single consonants: { "λλ", "λ" }, { "κκ", "κ" }, { "µµ", "µ" }, { "νν", "ν" }, { "ρρ", "ρ" }, { "σσ", "σ" }, { "ττ", "τ" } and { "ππ", "π" }. Combinations of consonants with identical or similar articulation: { "πσ", "ψ" }, { "κσ", "ξ" }, { "γγ", "γκ" }, { "τσ", "τζ"}, etc. Vowel digraphs, vowel combinations and single vowels or vowel-consonant digraphs with identical articulation: {"", "έ", "αι", "αί"}, {"ι", "ί", "ϊ", "ΐ", "η", "ή", "υ", "ύ", "ϋ", "ΰ", "ι", "ί", "οι", "οί", "υι", "υί"}, {"αυ", "αβ", "αφ", "αύ", "άβ", "άφ"}, etc. Optically similar graphemes: { "β", "θ" }, { "υυ", "ω" }, { "Ο", "Θ" }, { "Μ", "ΛΛ" }, etc. All graphemes of the equivalence classes are used to construct a FSA, which will guide the creation of regular expressions for the production of word alternatives. An example of such FSA is illustrated in Figure 2: ο ν π λ λ ι ί ι ί υ ύ η ή ψ σ {"λλ", "λ"} {"πσ", "ψ"} {"ι", "ί", "ϊ", "ΐ", "η", "ή", "υ", "ύ", "ϋ", "ΰ", "ι", "ί", "οι", "οί", "υι", "υί"} Figure 2. FSA for the formation of regular expressions In case of an unknown input word, we use the above FSA to identify constituent graphemes that belong to equivalence classes. Each identified grapheme is substituted by all the graphemes of the equivalence class it belongs to, constructing this way a regular expression that will produce alternative words. For example, given the unknown word πσιχυ the above FSA will recognize the graphemes [πσ][ι]χ[υ]. By substituting the identified graphemes with their equivalence classes, we take the regular expression:
5 (πσ ψ)(ι ί ϊ ΐ η ή υ ύ ϋ ΰ ι ί οι οί υι υί)χ(ι ί ϊ ΐ η ή υ ύ ϋ ΰ ι ί οι οί υι υί) When this expression is searched in the spelling lexicon (MDAG), it produces the following list of valid M. Greek words (sorted according to the Levenshtein distance): Incorrect word: πσιχυ Suggested words: ψυχή (4), ψύχι (5), ψυχοί (5) Algorithms that find alternatives for single typographic errors are simple and efficiently implemented. They produce a list of candidate alternatives by substituting letters of the unknown word and then use the lexicon to filter out the non-word candidates. A mixture of typographic, pronunciation and morphological errors is more difficult to be handled efficiently. A simple method is to run the algorithms that handle the typographic errors first and then pass all the produced candidates directly (without having been filtered by the lexicon) to the algorithms that handle the pronunciation/morphological errors. Despite the fact that the combined application of all correction algorithms on an unknown word can produce extremely complex regular expressions, the list of alternatives (for any unknown word) is produced in less than 100 milliseconds (on a 1.7GHz Windows 2000 computer), thanks to the search speed of the MDAG structure (few milliseconds per regular expression). 5. HYPHENATOR To develop a rule-based hyphenator for M. Greek seems to be a quite straightforward task, as M. Greek grammar [15] provides a set of syllabification rules that can be easily transformed into computer code. These rules, slightly modified to look like pseudo-code, are: 1) A syllable must contain at least one vowel 1. 2) A <vowel 1 ><consonant><vowel 2 > se ρο). quence splits into <vowel 1 > - <consonant><vowel 2 > (e.g. θέ-λω, πα-ρά-θυ- 3) A <vowel 1 ><consonant 1 ><consonant 2 ><zero_or_more_consonants><vowel 2 > sequence splits into: a) <vowel1> - <consonant 1 ><consonant 2 ><zero_or_more_consonants><vowel 2 >, if there exists a M. Greek word that starts with <consonant 1 ><consonant 2 > (e.g. α-στρα-πή). The consonant bigrams that can be found at the beginning of M. Greek words are: βγ, βδ, βλ, βρ, γδ, γκ, γλ, γν, γρ, δρ, θλ, θν, θρ, κβ (e.g. κβάντο), κλ, κν, κρ, κτ, µν, µπ, ντ, πλ, πν, πρ, πτ, σβ, σγ, σθ, σκ, σλ (e.g. σλαβικός), σµ, σν (e.g. σνοµπάρω), σπ, στ, σφ, σχ, τζ, τµ, τρ, τσ, φθ, φλ, φρ, φτ, χθ, χλ, χν, χρ and χτ. b) <vowel 1 ><consonant 1 > - <consonant 2 ><zero_or_more_consonants><vowel 2 >, if no M. Greek word starts with <consonant 1 ><consonant 2 > (e.g. κ-στρα-τί-α). 4) A <vowel 1 ><vowel 2 > sequence splits into <vowel 1 > - <vowel 2 >, if all the following are false: a) <vowel 1 ><vowel 2 > is one of the following vowel combinations: αυ (/av/ or /af/), αύ (/áv/ or /áf/), υ (/ev/ or /ef/), ύ (/έv/ or /έf/), ηυ (/iv/ or /if/) or ηύ (/ív/ or /íf/). b) <vowel 2 1 ><vowel 2 > is one of the following vowel digraphs, which are articulated as monophthongs : αι (//), αί (/έ/), ι (/i/), ί (/í/), οι (/i/), οί (/í/), υι (/i/), υί (/í/), ου (/u/) or ού (/ú/). The bigrams υι and υί constitute digraphs (e.g. υι -ός, κα-θ-στη-κυί-α) only when they are not preceded by ο or ; otherwise, the υ of υι or υί is combined with the preceding ο to form the digraph ου (/u/, e.g. ιν-δου-ι-σµός) or with the preceding to form the combination υ (/v/, e.g. Λυ-ί-της). c) <vowel 1 ><vowel 2 > form a diphthong 3 or are part of a diphthong (e.g. ιο is a diphthong in ί-διος but not in αιφνί-δι-ος, οι is part of a diphthong in ό-ποιοι but not in ό-µοι-οι). A bigram lookup table and a few if-then-else statements would have been sufficient to express the above rules in computer words, if we could disregard 4c. Strictly dependent on the phenomenon of synizesis, diphthongs are unambiguously recognizable only during oral communication (phonemic level): a vowel sequence is a diphthong if it is articulated as a single phoneme. But, in a written text (graphemic level), the only information available is the sequence of alphabetic characters that constitute each word. At the graphemic level, in order to decide whether a 1 The Greek vowels are: α, ά,, έ, η, ή, ι, ί, ϊ, ΐ, ο, ό, υ, ύ, ϋ, ΰ, ω and ώ. The Greek consonants are: β, γ, δ, ζ, θ, κ, λ, µ, ν, ξ, π, ρ, σ, ς, τ, φ, χ and ψ. 2 A monophthong is a "pure" vowel sound, one whose articulation at both beginning and end is relatively fixed, and which does not glide up or down towards a new position of articulation. (Taken from: 3 A diphthong is a vowel combination usually involving a quick but smooth movement from one vowel to another, often interpreted by listeners as a single vowel sound or phoneme. (Taken from:
6 sequence of vowels form a diphthong or not, a hyphenator has no alternative but to examine the surrounding alphabetic characters. The identification of diphthongs during the computational syllabification of M. Greek words is not carried out effectively by existing approaches. In the hyphenation patterns prepared (manually) by Φιλίππου [18] for TEX and LATEX typesetting systems, a conservative policy is followed: instead of splitting certain vowel sequences that may (or may not) form a diphthong, better don't split them at all. In this way, non-diphthongs are considered diphthongs. The article of Noussia [8], about the rule-based hyphenator of MS Office, includes an extensive reference to the phenomenon of diphthong ambiguity and presents a set of 12 handcrafted rules for vowel hyphenation, which hyphenate correctly more than 89.9% of the vowel sequences that can possibly occur in M. Greek words. The exact degree of diphthong ambiguity resolution is not reported in [8], mainly because the overall diphthong ambiguity could not be measured (due to lack of an exhaustive list of hyphenated words). It became apparent that, in order to cope with diphthong ambiguity on the whole, we should record/measure it first. Our study [16] was based on a set of 878,272 hyphenated word-forms, taken from our morphological lexicon (each word-form in this lexicon is accompanied by syllabification information). The longest vowel sequence (7 vowels!) was found in the loan word Τσιουάουα (Chihuahua - Mexican dog breed). Table 1 illustrates all the sequences of 2-7 consecutive vowels that were found in the morphological lexicon 4 : (a) (b) Valid Vowel Sequences (c) (d) 2 άα, ά, άη, άι, άο, άυ, άω, έα, έ, έη, έι, έο, έω, ή, ήι, ήω, ία, ί, ίη, ίο, ίυ, ίω, αΐ, αά, αέ, αή, αί, αΰ, αα, α, αη, αι, αο, αυ, αω, αϊ, αϋ, αό, αύ, αώ, ΐ, ά, έ, ή, ί, ΰ, α,, η, ι, ο, υ, ω, ϊ, ϋ, ό, ύ, ώ, ηέ, ηί, η, ηο, ηυ, ηω, ηύ, ηώ, ιά, ιέ, ιή, ιί, ια, ι, ιη, ιι, ιο, ιυ, ιω, ιό, ιύ, ιώ, οΐ, οά, οέ, οή, οί, ο ΰ, οα, ο, οη, οι, οο, ου, οω, οϊ, οϋ, οό, ού, οώ, υΐ, υά, υέ, υή, υα, υ, υη, υο, υω, υϊ, υό, υύ, υώ, ωά, ωέ, ωή, ωί, ωα, ω, ωη, ωι, ωο, ωυ, ωω, ωό, ωύ, ωώ, όα, ό, όη, όι, όο, όυ, όω, ύα, ύ, ύη, ύι, ύο, ύω, ώα, ώ, ώη, ώι, ώο, ώω άι, άια, άι, άιο, άοι, άου, έαι, έι, έια, έιο, έιω, έοι, έου, ήια, ήι, ήιη, ήιο, ήιω, ίαι, ίαυ, ίι, ίυ, ίοι, ίου, αΐα, αΐο, αΐω, αία, αί, αίι, αίο, αίω, αί, αι, αιά, αιέ, αιή, αιί, αια, αι, αιη, αιι, αιο, αιω, αιό, αιώ, αοΐ, αοί, αοι, αου, αοϊ, αού, αυά, αυα, αυ, αυό, αϊα, αϊ, αϊο, αϊό, αύα, αύ, αύο, αύω, ΐα, ΐ, ΐω, έα, έω, ία, ί, ίο, ίω, α, αι, αυ, ί, ι, ιά, ιέ, ιή, ιί, ια, ι, ιη, ιι, ιο, ιω, ιό, ιώ, οέ, οί, οα, ο, οι, οο, ου, οϊ, ού, υά, υέ, υή, υί, υα, υ, υη, υι, υο, υυ, υω, υό, υώ, ϊα, ϊο, ϊό, ϊώ, ύα, ύ, ύη, ύο, ύω, ηού, ιά, ιάο, ιέα, ιέω, ιαί, ια, ιαι, ιαο, ιαυ, ιαό, ιαύ, ιί, ιι, ιο, ιυ, ιύ, ιηύ, ιιέ, ιια, ιιό, ιιώ, 3 ιοί, ιοα, ιο, ιοη, ιοι, ιου, ιοϊ, ιοϋ, ιού, οΐα, οΐ, οέα, οέω, οία, οί, οίη, οίο, οίω, οαί, οα, οαι, οαυ, οαύ, οί, οι, οο, ου, οό, οιά, οιέ, οιή, οια, οι, οιη, οιι, οιο, οιω, οιό, οιώ, οοί, οοι, οου, οού, ουΐ, ουά, ουέ, ουή, ουί, ουα, ου, ουη, ουι, ουο, ουω, ουό, ουώ, οϊέ, οϊα, οϊω, οϊό, οϊώ, οϋά, οϋα, ούα, ού, ούη, ούι, ούο, ούω, υΐα, υΐ, υία, υί, υαί, υαι, υαύ, υί, υι, υυ, υύ, υιά, υιέ, υια, υι, υιι, υιο, υιω, υιό, υιώ, υοέ, υοί, υο, υοι, υου, υού, υϊά, υϊα, υϊώ, υό, ωία, ωί, ωαι, ωί, ωιώ, ωοί, ωοι, ωου, ωού, όαι, όι, όοι, όου, ύαι, ύαυ, ύι, ύυ, ύοι, ύου, ώι, ώια, ώι, ώιο, ώιω, ώοι, ώου άιοι, άουα, έιου, ήιοι, ήιου, ίαια, ίαι, ίαιη, ίαιο, ίαιω, ίυα, ίυ, αΐου, αίι, αίυ, αίοι, αίου, αία, αίο, αίω, αυα, αιυ, αιύ, αιοί, αιοα, αιο, αιοη, αιοι, αιου, αιοϋ, αιού, αύι, αύου, ΐου, ίαι, ίι, ίοι, ίου, ιαί, ιαι, ιί, ιυ, ιύ, ιοα, ιο, ιοη, ιοι, ιου, ιού, οι, οου, οϋο, υά, υαί, υαι, υι, υοι, υου, υού, ωι, ωοι, ύι, ύου, ιάου, ιαία, ιαί, ιαίο, ιαίω, ιαιο, ιαιω, ιαιό, ιαιώ, ιαου, ιαού, ιία, ιί, ιίο, ιίω, ιιο, ιιώ, ιυα, ιυ, ιυο, ιυό, ιύα, ιύ, ιύο, ιύω, ιιοί, ιιού, ιοαέ, ιοα, ιοι, ιου, ιουά, ιοϊα, οίοι, οίου, οαιώ, οία, οί, οίο, οίω, οιώ, ου, οιΐα, οιΐ, οιία, οιί, οιαύ, οιί, οιιώ, οιοί, οιοι, οιου, οιού, οοι, οοιω, ουάη, ουαί, ουοι, ουου, οϊοί, οϊου, οϊού, ούι, ούια, ούου, υαία, υαί, υαίο, υαίω, υιοί, υιοι, υιου, υιού, υοι, υοϊ, υόι, ωοι, όια, όι, όιο, όιω, ώιοι, ώιου 5 ίαιοι, ίαιου, αίυα, αίυ, αίου, αιυό, αιύα, αιύ, αιύο, αιύω, αιοι, ίυα, ίυ, ιυα, ιυ, ιυό, ιύα, ιύ, ιύο, ιύω, υοίω, ιαίοι, ιαίου, ιίοι, ιίου, ιύι, ιύου, οίου, ουαί, ουαι, οιία, οιί, οιίο, οιίω, οιιώ, οιοι, ουάου, υαίοι, υαίου, όιοι, όιου αιύι, αιύου, ιύι, ιύου, ιουαι, οιίου ιουάουα 1 0 Total: Table 1. Sequences of consecutive vowels found in M. Greek words column (a): sequence length column (c): number of sequences column (d): number of sequences with diphthong ambiguity The bold vowel sequences/sub-sequences of Table 1 are candidate diphthongs; in some words they do not split but in other words they do split. Independently of how many consecutive vowels occur in a word, according to syllabification rule 4 it is sufficient to decide whether two adjacent vowels split or not. For example, the only possible split of ιου is ι-ου (since neither ι nor ου split, due to rule 4b); the decision whether to insert a hyphen between ι and ου (i.e. whether ιου is a diphthong, as in ά-διου, or not, as in -πι-τή-δι-ου) is computationally equivalent to the decision whether to insert a hyphen between ι and ο. Table 2 illustrates all the vowel bigrams (total 24) that were located in the list of 878,272 hyphenated word-forms, which exhibit syllabification ambiguity; all these bigrams either form diphthongs or are part of diphthongs. 4 Words unknown to the morphological lexicon may contain vowel sequences not recorded in Table 1. Due to the large coverage of the morphological lexicon, we expect (without being able to measure this expectation) that such unknown vowel sequences will be very few.
7 Vowel Diphthongs that Bigram # contain the Bigram Examples of non-splitting % Examples of Splitting % (a) (b) (c) (d) (e) (f) (g) 1 ια 49,650 ια, ια, ιαί, ιαι, οια φτώ-χ ια, δό-λ ια, δια -χέ-ω 44 Α-ντι-ό-χι- α, δό-λι- α, δι-α -χέ-ω 56 ιο, ιοι, ιου, ιού, ιοί, ιο, 2 ιο 30,425 οιο, ιοι, ιου, ιού, οιοι, ο-λό-ι-διος, κα-θά-ριοι, θιου 19 αιφ-νί-δι-ος, Ά-ρι-οι, υ-δρό-θι-ου 81 οιου, οιού 3 ιά 25,784 ιά, ιά, οιά πιά-σω, βιά-ζουν, λιά-σω 75 κο-πι-ά-σω, βι-ά-ζουν, σχο-λι-ά-σω 25 4 ιώ 13,649 ιώ, ιώ, οιώ λο-γιών, Λη-ξου-ριώ-της 31 τ-χνο-λο-γι-ών, Λαυ-ρι-ώ-της 69 5 ι 9,302 ι, ι, ιί, ιι, οι άγ ι, γ ι, ή-π ι, ό-ποις 11 ά-γι-, ή-πι-, ό-µοι-ς 89 6 ιω 9,266 ιω, ιω, οιω ί-σιω-να, τ-λιω-µέ-νος 18 α-παί-σι-ων, τ-λι-ω-µέ-νος 82 7 ιό 8,241 ιό, ιό, οιό κα-τα-ριό-ταν, θ-ριό 57 κα-θα-ρι-ό-τη-τα, θη-ρι-ό-µορ-φος 43 8 υό 7,584 υό δυό-µι-σι, κα-ρυό-φυλ-λο 0,6 α-να-δυ-ό-µα-στ, κα-ρυ-ό-τυ-πος 99,4 9 υα 4,189 υα α-µυα-λιά, ξ-στά-χυα-σα 14 µυ-αλ-γί-α, π-ρι-στά- χυ-α ιέ 4,168 ιέ, ιέ, οιέ αλ-λα-ξιές, πιέ-στ, θ-ριέ-ψω 65 δ-ξι-ές, πι-έ-στ, α-γρι-έ-ψω αϊ 2,751 αϊ αϊ-τός, χαϊ-µα-λί, ν-ραϊ-δί-σιος 18 σα-ϊ-τύ-ω, α-χα-ϊ-κός, πα-ρα-ϊ-α-τρι-κός υο 1,420 υο, υο ί, υού δυο-νών, κα-ρυο-φύλ-λι 0,7 α-σό-δυ-ο, κρυ-ο-φθο-ρι-σµός 99,3 13 υά 1,178 υά µα-το-γυά-λια, φτυά-ρι 15 µα-νου-ά-λια, φλυ-ά-ρη-σα οϊ 1,052 οϊ βοϊ-δί-σιος, κο-ροϊ-δύ-ω 17 υ-βο-ϊ-κός, µι-κρο-ϊ-δι-ο-κτή-της ϊ 593 ϊ λϊ-µο-νιά, ζϊ-µπέ-κι-κος 8 πλ-ϊ-µέ-ι-κρ, κα-ζ-ϊ-νι-κός αη 485 αη αη-δό-νι, καη-µός 51 α-η-δί-α, δ-κα-η-µέ-ρου όη 433 όη βόη-θη-σα, κα-λόηρ-θα 5 βό-η-σα, κα-λό-η-χα, α-νό-η-τα υώ 343 υώ δι-χτυών, λ-πτο-κα-ρυών 1 δι-κτυ-ώ-νω, Κα-ρυ-ώ-ν άι 280 άι χάι-δ-µα, χρυ-σο-γάι-τα-νο 22 ξ-αρ-χά-ι-σα, κι-λο-µπά-ιτ υέ 270 υέ λ-πτο-κα-ρυές 0, 8 ι-δι-ο-φυ-ές, µυ-έ-λι-νος, σου-έτ 99,2 21 όι 156 όι βόι-δι, ρόι-δι, κο-ρόι-δο 22 κον-βό-ι, πο-λα-ρό-ιντ, ο-λό-ι-διο άη 92 άη κ-λάη-δη-µα, κ-λάη-δη-σα 44 Μά-η-δς, χα-ρα-µο-φά-η-δς ό 84 όι κα-λόι-δα, α-πόι-δα 10 ι-στι-ο-πλό-, πρό--δρος, α-θρό-ς ηώ 13 ηώ κα-ληώ-ρα 24 η-ώ, προ-σνη-ώ-σ-ως 76 Total: 171,408 of 878, 272 (19.51%) Table 2. Vowel bigrams with syllabification ambiguity column (b): number of bigram occurrences column (e): percentage of non-splitting occurrences column (g): percentage of splitting occurrences The vowel bigrams of Table 2 ar e sorted on column (b); the most frequent bigram is ια. The last line of Table 2 says that 19.51% of the 878,272 hyphenated word-forms contain at least one ambiguous vowel bigram; by generalizing this measurement, a M. Greek word is likely to exhibit diphthong ambiguity with ~0.2 probability. Also, on average, an ambiguous bigram splits in 37% and does not split in 63% of its occurrences. For each of the above 24 ambiguous vowel bigrams we built a decision tree [9], using the hyphenated word-forms in which the bigram appears as training patterns. We then developed a hybrid M. Greek hyphenator that combines the following models: a. Handcrafted rules that correspond to the syllabification rules 1-4b. b. Decision trees that resolve the diphthong ambiguity introduced by the syllabification rule 4c. c. An exception list with ~2,700 hyphenated word-forms. All these word-forms contain ambiguous vowel bigrams, which: are handled incorrectly by the decision trees, or when split the meaning of the word-form changes (i.e. the ambiguous bigrams appear in heterophonic homographs), e.g. ά-δια (permission) and ά-δι-α (empty), χρό-νια (years) and χρό-νι-α (chronic), ή-λιο (sun) and ή-λι-ο (helium), σκιά-ζω (frighten) and σκι-ά-ζω (shade). We follow the conservative approach and do not split the bigrams in such word-forms. Our hyphenator syllabifies correctly all the word-forms of the morphological lexicon. Taking into account that the decision trees hyphenate incorrectly the ~2,700 words of the exception list, i.e. 0,3% of the 878,272 word forms, the expected average error rate of the hyphenator on words never seen before is at most 0,3%.
8 6. THESAURUS It happens very often to try to express our thoughts and the appropriate words do not come to our minds; we use some words that make sense, but we feel that they do not fit in the context. Also, we frequently realize that we have written the same word five times in a single paragraph, for no special reason but because we could not recall quickly an alternative with the same meaning. The role of the thesaurus is to help its user to overcome the above problems: given a word, the thesaurus returns a list of meanings; each meaning comprises an ordered list of synonyms; the first synonym of the list is the best alternative for the specific meaning. From a theoretical point of view, the linguists argue that very few words have real synonyms, in the sense that a and b are synonyms if we can use a instead of b or b instead of a in whatever context. Then, one of a or b is redundant and is doomed to disappear as language evolves through the ages. From a practical point of view, the synonyms that thesaurus provides are contextual synonyms: we can use a instead of b only in certain contexts. That is why in a thesaurus it is essential to distinguish the synonyms of each word according to its meanings. This way, a thesaurus can also be used as a minimal semasiological dictionary (it describes the meanings of a word with synonym lists), but with caution, as there do not exist synonyms for every meaning. Apart from offering the functionality described above, the thesaurus that we developed for M. Greek has the following characteristics: Contains ~22,500 lemmas. Each lemma is represented by a headword, which is the canonical form 5 of the word/phrase the lemma is about, but is accessible through any morphological form of the word/phrase. This is feasible because all the morphological forms of a lemma are used as indexing terms. The headword is accompanied by stylistic and domain information, e.g. the verb αγκαζάρω is informal, the noun αιµοσφαιρίνη is a term of Biology. The meanings of a lemma also contain antonyms (where possible) and example uses (where needed). Any word that appears in the synonyms or antonyms has always a corresponding lemma, i.e. any synonym or antonym is also a lemma headword. Not all the morphological forms of a word carry the same meaning(s). For example, αγκυλώνω means a) τσιµπάω, κντάω, τρυπάω, βλονιάζω and b) καθηλώνω, παραλύω, παγώνω; but αγκυλώνοµαι, which represents the passive forms of αγκυλώνω, also means παθαίνω αγκύλωση, πιάνοµαι, a meaning that cannot be assigned to the active forms of αγκυλώνω. Such cases are coded as separate lemmas, i.e. there is a separate lemma for αγκυλώνοµαι, which also contains a related-word reference to αγκυλώνω. 7. DISCUSSION FUTURE DIRECTIONS In the spelling checker section, we highlighted the importance of the distance function. The outperforming distance function proposed by Ristad and Yanilos [10] requires an extensive list of {incorrect word, correct word} pairs, which are used as training patterns. We have already started to collect such training patterns, so as to fulfill two goals: a) develop a better distance function and b) study the spelling errors methodically and conclude to an in-depth reasoning about them. The impression we obtain from what we have collected up to now is that spelling errors are strongly related to the idiosyncrasy of the user who causes them. An interesting enhancement of the spelling checker is to become capable of learning the idiosyncrasy of its user. A method to achieve this is to develop a spelling checker that monitors what suggested alternatives are adopted by the user; as the spelling checker knows which correction algorithms produced the preferred alternatives, in the future it can give higher priority to alternatives produced by these algorithms (the priority can be a parameter of the distance function) As far as the hyphenator is concerned, we think that its performance (99.7%) has reached an upper limit. Hyphenation errors can occur only in words that contain ambiguous vowel bigrams and are unknown to the morphological lexicon. As the enrichment of the morphological lexicon is a live process, after having added a significant amount of new words, we will re-train the decision trees that handle the ambiguous vowel bigrams with the enriched word sets extracted from the morphological lexicon. Thesaurus offers very little space for functional (algorithmic) improvement, but very large space for content improvement. As happens with every lexicon, the contents of thesaurus need nonstop amendment and enhancement. Our future plans about thesaurus include: a) addition of new lemmas, b) addition of is-a and part-of relations between 5 That is the singular, nominative form for nouns, the 1 st person, singular, present, indicative, active form for verbs
9 lemmas, c) systematic review of the synonymic and antonymic relations between lemmas and d) addition of more example uses where needed. What normally comes next is the development of a grammar checker for M. Greek. As previously stated, there are spelling errors that are not handled yet, which belong to the category of the grammatical errors. There are also syntactic or semantic errors that are grammatical in their nature. We have already started studying the grammatical errors in running texts and designing algorithms to handle them. We hope to have a grammar checker prototype in the next year. References [1] Aho A.V., Hopcroft J.E. and Ullman J.D Data Structures and Algorithms. Reading, Mass.: Addison- Wesley, pp [2] Hopcroft J.E. and Ullman J.D Introduction to Automata Theory, Languages and Computation. Addison- Wesley. [3] Knuth D.E The Art of Computer Programming, vol. 3, Sorting and Searching, pp [4] Kukich K Techniques for Automatically Correcting Words in Text, ACM Computing Surveys, Vol. 24, No. 4, pp [5] Levenshtein V.I Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady, 6: [6] Lucchesi C. and Kowaltowski T Applications of finite automata representing large vocabularies, Software Practice and Experience, 23(1):15-30 [7] Mihov S Direct building of minimal automaton for given list. Annuaire de l Université de Sofia St. Kl. Ohridski, vol. 91. Faculté de Mathématiques et Informatique, Sofia, Bulgaria, Livre 1 Editions. [8] Noussia, Th A Rule-based Hyphenator for Modern Greek. Computational Linguistics, 23(3): [9] Quinlan, R Induction of decision trees, Machine Learning, 1(1): [10] Ristad E.S. and Yianilos P.N Learning String Edit Distance, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp [11] Véronis, J Correction of phonographic errors in natural language interfaces, 11th ACM-SIGIR International Conference on Research and Development in Information Retrieval (pp ). Grenoble, France. [12] Κριαράς Εµµ Λξικό της Σύγχρονης Ελληνικής ηµοτικής Γλώσσας, Εκδοτική Αθηνών, Αθήνα. [13] Λξικό της Κοινής Νολληνικής, ΑΠΘ, Ινστιτούτο Νολληνικών Σπουδών (Ίδρυµα Μανόλη Τριανταφυλλίδη), Θσσαλονίκη. [14] Μπαµπινιώτης Γ Λξικό της Νέας Ελληνικής Γλώσσας, Κέντρο Λξικολογίας, Αθήνα. [15] Νολληνική Γραµµατική Ε' και ΣΤ' ηµοτικού, Οργανισµός Εκδόσως ιδακτικών Βιβλίων, Αθήνα. [16] Ορφανός Γ., Τσαλίδης Χ. και Ιορδανίδου Α Οι λληνόγλωσσοι υπολογιστές έµαθαν να συλλαβίζουν(;), Πρακτικά της 23 ης Ετήσιας Συνάντησης του Τοµέα Γλωσσολογίας του Τµήµατος Φιλολογίας του ΑΠΘ, Θσσαλονίκη. [17] Τγόπουλος Φυτράκης Μίζον Ελληνικό Λξικό, Εκδόσις Αρµονία, Αθήνα. [18] Φιλίππου,. 2000, Βλτιωµένοι κώδικς συλλαβισµού πολυτονικών και µονοτονικών νολληνικών κιµένων για το TeX και το LaTeX. Εύτυπον, 4: 1-16.
Συντακτικές λειτουργίες
2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.
Διαβάστε περισσότεραC.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Διαβάστε περισσότεραPhysical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.
B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs
Διαβάστε περισσότεραHOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Διαβάστε περισσότερα2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότεραLanguage Resources for Information Extraction:
Language Resources for Information Extraction: demands and challenges in practice Christos Tsalidis tsalidis@neurolingo.gr Page 1 Different types of LRs Alphabets & Characters sets (Greek, English, Mixed)
Διαβάστε περισσότεραLecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Διαβάστε περισσότεραDémographie spatiale/spatial Demography
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης
Διαβάστε περισσότεραPhys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότεραElements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
Διαβάστε περισσότεραOther Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
Διαβάστε περισσότεραApproximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Διαβάστε περισσότεραderivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Διαβάστε περισσότεραΗ αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας
Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί
Διαβάστε περισσότεραEvery set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Διαβάστε περισσότεραThe Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Διαβάστε περισσότεραConcrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Διαβάστε περισσότεραΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ «ΠΑΙ ΙΚΟ ΒΙΒΛΙΟ ΚΑΙ ΠΑΙ ΑΓΩΓΙΚΟ ΥΛΙΚΟ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που εκπονήθηκε για τη
Διαβάστε περισσότεραOrdinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ του Γεράσιμου Τουλιάτου
Διαβάστε περισσότερα14 Lesson 2: The Omega Verb - Present Tense
Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Διαβάστε περισσότεραΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 1: Elements of Syntactic Structure Το περιεχόμενο του μαθήματος διατίθεται με άδεια
Διαβάστε περισσότεραdepartment listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
Διαβάστε περισσότερα4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Διαβάστε περισσότεραInstruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Διαβάστε περισσότερα«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»
I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ
Διαβάστε περισσότεραΕργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
Διαβάστε περισσότεραAssalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότεραThe challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Διαβάστε περισσότεραΣυστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo
Διαβάστε περισσότεραΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Μελέτη των υλικών των προετοιμασιών σε υφασμάτινο υπόστρωμα, φορητών έργων τέχνης (17ος-20ος αιώνας). Διερεύνηση της χρήσης της τεχνικής της Ηλεκτρονικής Μικροσκοπίας
Διαβάστε περισσότεραGalatia SIL Keyboard Information
Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing
Διαβάστε περισσότερα(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
Διαβάστε περισσότεραMain source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Διαβάστε περισσότεραLecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Διαβάστε περισσότεραSection 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Διαβάστε περισσότεραHomomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Διαβάστε περισσότεραTMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Διπλωματική Εργασία του φοιτητή του τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών
Διαβάστε περισσότεραTest Data Management in Practice
Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Διαβάστε περισσότεραLECTURE 2 CONTEXT FREE GRAMMARS CONTENTS
LECTURE 2 CONTEXT FREE GRAMMARS CONTENTS 1. Developing a grammar fragment...1 2. A formalism that is too strong and too weak at the same time...3 3. References...4 1. Developing a grammar fragment The
Διαβάστε περισσότεραPARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Διαβάστε περισσότεραSection 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016
Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της
Διαβάστε περισσότεραMath 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Διαβάστε περισσότεραΛέξεις, φράσεις και προτάσεις
1 Λέξεις, φράσεις και προτάσεις (Words, phrases and clauses) The Greek language, like all human languages, has a Lexicon and a Grammar that are used to create sentences. The Lexicon consists of the words
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Επίκαιρα Θέματα Ηλεκτρονικής Διακυβέρνησης Ονοματεπώνυμο Φοιτητή Σταμάτιος
Διαβάστε περισσότερα6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Διαβάστε περισσότεραModern Greek Extension
Centre Number 2017 HIGHER SCHOOL CERTIFICATE EXAMINATION Student Number Modern Greek Extension Written Examination General Instructions Reading time 10 minutes Working time 1 hour and 50 minutes Write
Διαβάστε περισσότερα6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Διαβάστε περισσότεραΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης
Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής
Διαβάστε περισσότεραΗ ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Ι Ο Ν Ι Ω Ν Ν Η Σ Ω Ν ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : ΑΤΕΙ Ιονίων Νήσων- Λεωφόρος Αντώνη Τρίτση Αργοστόλι Κεφαλληνίας, Ελλάδα 28100,+30
Διαβάστε περισσότεραNowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότεραΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
Διαβάστε περισσότεραEE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Διαβάστε περισσότεραω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Διαβάστε περισσότεραΠρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
Διαβάστε περισσότεραMath221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Διαβάστε περισσότεραChapter 3: Ordinal Numbers
Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What
Διαβάστε περισσότεραFinite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Διαβάστε περισσότεραCongruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Διαβάστε περισσότεραΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α. Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:.
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α 2 ειδήσεις από ελληνικές εφημερίδες: 1. Τα Νέα, 13-4-2010, Σε ανθρώπινο λάθος αποδίδουν τη συντριβή του αεροσκάφους, http://www.tanea.gr/default.asp?pid=2&artid=4569526&ct=2 2. Τα Νέα,
Διαβάστε περισσότεραBusiness English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Business English Ενότητα # 9: Financial Planning Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΠΑΝΔΠΙΣΗΜΙΟ ΜΑΚΔΓΟΝΙΑ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ ΣΜΗΜΑΣΟ ΔΦΑΡΜΟΜΔΝΗ ΠΛΗΡΟΦΟΡΙΚΗ
ΠΑΝΔΠΙΣΗΜΙΟ ΜΑΚΔΓΟΝΙΑ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ ΣΜΗΜΑΣΟ ΔΦΑΡΜΟΜΔΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΑΝΑΠΣΤΞΗ ΓΤΝΑΜΙΚΗ ΙΣΟΔΛΙΓΑ ΓΙΑ ΣΟ ΓΔΝΙΚΟ ΚΑΣΑΣΗΜΑ ΚΡΑΣΗΗ ΓΡΔΒΔΝΧΝ ΜΔ ΣΗ ΒΟΗΘΔΙΑ PHP MYSQL Γηπισκαηηθή Δξγαζία ηνπ Υξήζηνπ
Διαβάστε περισσότεραΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE
Διαβάστε περισσότεραΠτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ Νικόλας Χριστοδούλου Λευκωσία, 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ
Διαβάστε περισσότεραAbout these lecture notes. Simply Typed λ-calculus. Types
About these lecture notes Simply Typed λ-calculus Akim Demaille akim@lrde.epita.fr EPITA École Pour l Informatique et les Techniques Avancées Many of these slides are largely inspired from Andrew D. Ker
Διαβάστε περισσότεραCode Breaker. TEACHER s NOTES
TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,
Διαβάστε περισσότεραΠανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :
Διαβάστε περισσότερα3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Διαβάστε περισσότερα5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Διαβάστε περισσότεραFourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Διαβάστε περισσότεραthe total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Διαβάστε περισσότεραΕπιβλέπουσα Καθηγήτρια: ΣΟΦΙΑ ΑΡΑΒΟΥ ΠΑΠΑΔΑΤΟΥ
EΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟ ΤΕΧΝΟΛΟΓΙΚΟ ΙΔΡΥΜΑ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : Λεωφ. Αντ.Τρίτση, Αργοστόλι Κεφαλληνίας Τ.Κ. 28 100 τηλ. : 26710-27311 fax : 26710-27312
Διαβάστε περισσότεραFractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Διαβάστε περισσότεραΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ
ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ Ενότητα 12 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΣτο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.
Διαστημικό εστιατόριο του (Μ)ΑστροΈκτορα Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Μόλις μια παρέα πελατών κάτσει σε ένα
Διαβάστε περισσότεραΑΓΓΛΙΚΗ ΓΛΩΣΣΑ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΕΘΝΩΝ ΣΧΕΣΕΩΝ & ΟΙΚΟΝΟΜΙΑΣ
ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΕΘΝΩΝ ΣΧΕΣΕΩΝ & ΟΙΚΟΝΟΜΙΑΣ Ενότητα 1β: Principles of PS Ιφιγένεια Μαχίλη Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Διπλωµατική Εργασία Της Φοιτήτριας του Τµήµατος Ηλεκτρολόγων
Διαβάστε περισσότεραΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ
Ε ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ ΙE ΕΚΠΑΙ ΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ ΓΕΝΙΚΗΣ ΙΟΙΚΗΣΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ Θέµα: Εκπαίδευση: Μέσο ανάπτυξης του ανθρώπινου παράγοντα και εργαλείο διοικητικής µεταρρύθµισης Επιβλέπουσα:
Διαβάστε περισσότεραBlock Ciphers Modes. Ramki Thurimella
Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be
Διαβάστε περισσότεραΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος
ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο την απόκτηση του διπλώματος «Οργάνωση και Διοίκηση Βιομηχανικών Συστημάτων με εξειδίκευση στα Συστήματα Εφοδιασμού
Διαβάστε περισσότεραΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 4: English a Language of Economy Το περιεχόμενο του μαθήματος διατίθεται με άδεια
Διαβάστε περισσότεραStudy of In-vehicle Sound Field Creation by Simultaneous Equation Method
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"
Διαβάστε περισσότεραΜηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Διαβάστε περισσότεραEPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)
EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class
Διαβάστε περισσότεραStrain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Διαβάστε περισσότεραPotential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Διαβάστε περισσότεραMean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Διαβάστε περισσότεραReview 4n.1: Vowel stems of the third declension: πόλις, πρέσβυς
Review 4n.1: Vowel stems of the third declension: πόλις, πρέσβυς We review side by side a model of stems ending in ι: πόλις, πόλεως, ἡ = city-state and a masculine model of stems ending in υ: πρέσβυς,
Διαβάστε περισσότεραΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ
Διαβάστε περισσότεραΑπόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ηλεκτρονική Υγεία
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ηλεκτρονική Υγεία Ενότητα: Use Case - an example of ereferral workflow Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr Τμήμα Μηχανικών Πληροφορικής
Διαβάστε περισσότερα