Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 5: Εκτίμηση αβεβαιότητας στην ενόργανη ανάλυση
|
|
- Αθος Κοντόσταυλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 5: Εκτίμηση αβεβαιότητας στην ενόργανη ανάλυση Θωμαΐδης Νικόλαος Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
2 ΕΙΣΗΓΗΣΗ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΗΣΕΙΣ ΤΟΥ ISO/IEC 1705 ΟΡΙΣΜΟΙ ΑΒΕΒΑΙΟΤΗΤΑ ΣΤΙΣ ΑΝΑΛΥΤΙΚΕΣ ΜΕΤΡΗΣΕΙΣ ΒΗΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ
3 AΝΑΓΚΗ ΔΗΛΩΣΗΣ ΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΣΤΙΣ ΧΗΜΙΚΕΣ ΜΕΤΡΗΣΕΙΣ Το αποτέλεσμα μιας μέτρησης δεν μπορεί ουσιαστικά να αξιοποιηθεί αν δεν συνοδεύεται από μια δήλωση της αβεβαιότητας του Αναγκαία η γνώση του εύρους διακύμανσης των μετρήσεων 3
4 ISO/IEC 1705 Απαίτηση ο υπολογισμός της U Υποχρεωτική η εφαρμογή διαδικασίας εκτίμησης της U στα εργαστήρια διακρίβωσης ISO GUM (1993) 4
5 Εργαστήρια δοκιμών: ISO/IEC 1705 Υποχρεωτική η ύπαρξη διαδικασίας υπολογισμού της U Δυσκολία υπολογισμού με αυστηρά μετρολογικά κριτήρια Εντοπισμός όλων των πηγών Λογική εκτίμηση της U 5
6 ISO/IEC 1705 Η αυστηρότητα υπολογισμού εξαρτάται: Μέθοδο δοκιμής Απαιτήσεις του πελάτη Όρια συμμόρφωσης 6
7 Αβεβαιότητα και Όρια Άνω Όριο Ελέγχου (i) Αποτέλεσμα και αβεβαιότητα πάνω από το όριο (ii) Αποτέλεσμα πάνω από το όριο αλλά το όριο εντός της αβεβαιότητας (iii) Αποτέλεσμα κάτω από το όριο αλλά το όριο εντός της αβεβαιότητας (iv) Αποτέλεσμα και αβεβαιότητα κάτω από το όριο 7
8 ΟΡΙΣΜΟΙ ΑΒΕΒΑΙΟΤΗΤΑ: μια παράμετρος που χαρακτηρίζει τη διασπορά των τιμών που λογικά μπορούν να αποδοθούν στο προσδιοριζόμενο συστατικό ΤΥΠΙΚΗ ΑΒΕΒΑΙΟΤΗΤΑ: όταν η αβεβαιότητα εκφράζεται ως τυπική απόκλιση, u(y(x i )) 8
9 ΟΡΙΣΜΟΙ ΣΥΝΔΥΑΣΜΕΝΗ ΤΥΠΙΚΗ ΑΒΕΒΑΙΟΤΗΤΑ: νόμος διάδοσης σφαλμάτων u c y y = u x 1 x 1 + u x x + + u x i x i ΔΙΕΥΡΥΜΕΝΗ ΑΒΕΒΑΙΟΤΗΤΑ: U = k u C k: συντελεστής κάλυψης ( για c.l. 95%) Καλύπτει ανάγκες των τελικών χρηστών 9
10 Κανόνας 1 Για μοντέλα που περιλαμβάνουν μόνο αθροίσματα διαφορετικών ποσοτήτων, π.χ. y = k (p + q + r + ), όπου το K είναι σταθερά, η συνδυασμένη τυπική αβεβαιότητα δίνεται από τη σχέση: u c y p, q, = k u p + u q + 10
11 Κανόνας Για μοντέλα που περιλαμβάνουν μόνο γινόμενα ή πηλίκα, π.χ. y = k (p q r ), όπου το k είναι σταθερά, η συνδυασμένη τυπική αβεβαιότητα υπολογίζεται από τη σχέση: u c y = yk u p p + u q q + u r r + 11
12 Παράδειγμα 1 y = m (p-q+r). Οι τιμές είναι m=1, p=5.0, q=6.45 και r=9.04 με τυπικές αποκλίσεις δείγματος s p = 0.13, s q = 0.05 και s r = 0. y = = 7.61 u y = = 0.6 Εφόσον το y υπολογίζεται με δύο δεκαδικά ψηφία, η τελική αβεβαιότητα δεν θα πρέπει να εκφράζεται σε περισσότερα από δυο σημαντικά ψηφία. 1
13 Παράδειγμα y = (op/qr) όπου o=.46, p=4.3, q=6.38 και r=.99, με τυπικές αβεβαιότητες u(o)=0.0, u(p)=0.13, u(q)=0.11 και u(r)=0.07. y=(.46 x 4.3)/(6.38 x.99) = 0.56 u y = u y = =
14 ΟΡΙΣΜΟΙ ΑΒΕΒΑΙΟΤΗΤΑ ΤΥΠΟΥ Α: υπολογίζεται με στατιστικές μεθόδους ΑΒΕΒΑΙΟΤΗΤΑ ΤΥΠΟΥ Β: υπολογίζεται με οποιοδήποτε άλλο τρόπο εκτός στατιστικής 14
15 Αβεβαιότητα τύπου Β Δεδομένα από προηγούμενη εμπειρία: Πιστοποιητικά προμηθευτών Διεργαστηριακές εξετάσεις Δεδομένα εσωτερικού ελέγχου ποιότητας Εμπειρική σχέση Horwitz: CV % = log C 15
16 Αβεβαιότητα τύπου Β Πιστοποιητικά: Δηλώνεται η διευρυμένη αβεβαιότητα (±U) ή οι ανοχές (±α) μέσα στις οποίες κυμαίνεται η τιμή της παραμέτρου που μας ενδιαφέρει (μάζα, όγκος, πιστοποιημένη τιμή υλικού αναφοράς κ.ά.): u = U/k Πρέπει να γνωρίζουμε την κατανομή από την οποία έχει προκύψει η τιμή της παραμέτρου 16
17 Αβεβαιότητα τύπου Β Κατανομές: Κανονική κατανομή Τετραγωνική κατανομή Τριγωνική κατανομή 17
18 Κανονική Κατανομή Όταν η τιμή έχει προκύψει από επαναλαμβανόμενες μετρήσεις και δηλώνεται η αβεβαιότητα της και το επίπεδο εμπιστοσύνης (συνήθως 95%): u = U/1,96 (95%) ή συνήθως: u = U/ 18
19 Τετραγωνική Κατανομή Όταν δηλώνονται όρια (±α) χωρίς να δηλώνεται το επίπεδο εμπιστοσύνης, ούτε να έχουμε γνώση της κατανομής: 1/(α) u = α 3 -α 0 +α 19
20 Τριγωνική Κατανομή Όταν δηλώνονται όρια (±α) χωρίς να δηλώνεται το επίπεδο εμπιστοσύνης, ούτε έχουμε γνώση της κατανομής, αλλά οι πιθανότερες τιμές βρίσκονται κοντά στη μέση τιμή παρά στα όρια: f(x) u = α 6 -α 0 +α 0
21 EURACHEM Guide 000 Οδηγός της EURACHEM: Ο υπολογισμός της U των χημικών μετρήσεων πρέπει να περιλαμβάνεται και να προκύπτει από τις υπάρχουσες διαδικασίες διασφάλισης ποιότητας. 1
22 EURACHEM Guide 000 Διαδικασίες διασφάλισης ποιότητας χημικών μετρήσεων: Επικύρωση αναλυτικής μεθόδου Εσωτερικός έλεγχος ποιότητας (διαγράμματα QC) Διεργαστηριακές δοκιμές ικανότητας Ιχνηλασιμότητα
23 ΣΦΑΛΜΑΤΑ και ΑΒΕΒΑΙΟΤΗΤΑ ΚΛΙΜΑΚΑ ΣΦΑΛΜΑΤΩΝ: 1. Συστηματικό σφάλμα μεθόδου (method bias). Συστηματικό σφάλμα εργαστηρίου (laboratory bias) 3. Τυχαίο σφάλμα από δείγμα σε δείγμα (run error) 4. Τυχαίο σφάλμα επαναληψιμότητας (reproducibility error) 3
24 ΣΦΑΛΜΑΤΑ και ΑΒΕΒΑΙΟΤΗΤΑ Το αποτέλεσμα μιας ανάλυσης μετά τη διόρθωση του συστηματικού σφάλματος μπορεί τυχαία να είναι πολύ κοντά στην αληθή τιμή του μετρούμενου και κατά συνέπεια το σφάλμα του εξαιρετικά μικρό. Αντιθέτως, η αβεβαιότητα μπορεί να εξακολουθεί να είναι μεγάλη. Δηλαδή η αβεβαιότητα μιας μέτρησης δεν θα πρέπει να θεωρείται ότι αντανακλά στο σφάλμα αυτό καθ αυτό, ούτε στο σφάλμα μετά τη διόρθωση. 4
25 ΕΠΙΚΥΡΩΣΗ ΜΕΘΟΔΟΥ ΑΝΑΛΥΣΗ CRMs (method + laboratory bias) ΑΝΑΠΑΡΑΓΩΓΙΜΟΤΗΤΑ (τυχαία σφάλματα: run + reproducibility error) ΒΑΘΜΟΝΟΜΗΣΗ ΑΝΘΕΚΤΙΚΟΤΗΤΑ ΜΕΘΟΔΟΥ ΠΑΡΕΜΠΟΔΙΣΕΙΣ 5
26 ΠΑΡΑΔΕΙΓΜΑ Προσδιορισμός Cd σε πλαστικά μετά από χώνευση με οξέα και προσδιορισμό της συγκέντρωσης με AAS: m Χώνευση V AAS C i (mg/l) X i (mg/kg) 6
27 ΥΠΟΛΟΓΙΣΜΟΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΒΗΜΑ 1 ο : Ορισμός του μετρούμενου συστατικού Εξίσωση υπολογισμού: X i = C i V m X i = C i V m F HOM F REC 7
28 ΥΠΟΛΟΓΙΣΜΟΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΒΗΜΑ ο : Ταυτοποίηση πηγών αβεβαιότητας: 1. Δειγματοληψία - Ομογενοποίηση. Προκατεργασία δείγματος 3. Βαθμονόμηση 4. Ανάλυση CRMs 5. Τελική μέτρηση 6. Επεξεργασία αποτελεσμάτων 8
29 ΥΠΟΛΟΓΙΣΜΟΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΒΗΜΑ 3 ο : Ποσοτικοποίηση πηγών αβεβαιότητας: Υπολογίζεται η u κάθε συστατικού και εκφράζεται ως τυπική απόκλιση ή σχετική τυπική απόκλιση 9
30 ΑΒΕΒΑΙΟΤΗΤΑ από ΣΤΟΙΧΕΙΑ ΕΠΙΚΥΡΩΣΗΣ Μελέτες αναπαραγωγιμότητας 1. Ανάλυση n υποδειγμάτων, S r. Ανάλυση m υποδειγμάτων n φορές σε m διαφορετικές μέρες S x = S 0 n 30
31 Προσδιορισμός Cd σε PVC μετά από χώνευση και AAS Ημέρα X 1 Χ Χ 3 Χ 4 X i S r,i 1 η η η η η Συνολική μέση τιμή, x και η συνολική διακύμανση του δείγματος, S S x = S 0 n = 1.16 mg Kg 31
32 ΑΒΕΒΑΙΟΤΗΤΑ από ΣΤΟΙΧΕΙΑ ΕΠΙΚΥΡΩΣΗΣ Συστηματικό σφάλμα μεθόδου και εργαστηρίου 1. Ανάλυση CRMs. Σύγκριση της μεθόδου με πρότυπη 3. Ανακτήσεις 3
33 ΑΒΕΒΑΙΟΤΗΤΑ από ΣΤΟΙΧΕΙΑ ΕΠΙΚΥΡΩΣΗΣ Χρήση πιστοποιημένων υλικών αναφοράς Ανάλυση CRM n φορές X, S r u x = S r n Από πιστοποιητικό: ±α (95%) u CRM= α u bias = α + S r n 33
34 ΑΒΕΒΑΙΟΤΗΤΑ από ΣΤΟΙΧΕΙΑ ΕΠΙΚΥΡΩΣΗΣ Παράδειγμα: Χ 1 Χ Χ 3 Χ 4 Χ 5 Χ 6 Χ S r 0,1 196,3 00,3 196,6 197,6 01,6 199,1,57 Από πιστοποιητικό: 197,9±4,8 mg/kg u bias = u CRM + S r n = mg Kg 34
35 ΑΒΕΒΑΙΟΤΗΤΑ από ΣΤΟΙΧΕΙΑ ΕΠΙΚΥΡΩΣΗΣ Πειράματα ανακτήσεων Αντιμετωπίζεται όπως τα CRMs: n πειράματα ανάκτησης μέση R, S r t-test με τη θεωρητική R=1,0 u bias= Sr n 35
36 ΑΒΕΒΑΙΟΤΗΤΑ από ΣΤΟΙΧΕΙΑ ΕΠΙΚΥΡΩΣΗΣ Σύγκριση με πρότυπη μέθοδο: Μέθοδος 1: n 1, Χ 1, S 1 Μέθοδος : n, Χ, S S P ( n 1 1) S ( n 1 1 ( n n 1) S ) u bias S P 1 n 1 1 n 36
37 ΒΑΘΜΟΝΟΜΗΣΗ Γραμμική καμπύλη αναφοράς: y = a + bx Προσδιορισμός C Η αβεβαιότητα, u(c), δίνεται από την εξίσωση: u c = S y x b 1 m + 1 n + y 0 y b i x i x 1 37
38 ΒΑΘΜΟΝΟΜΗΣΗ όπου b: η κλίση της καμπύλης αναφοράς n: ο αριθμός των προτύπων διαλυμάτων που χρησιμοποιήθηκαν για την κατασκευή της καμπύλης αναφοράς m: ο αριθμός των επαναλήψεων κατά τη μέτρηση του άγνωστου δείγματος y o : o μέσος όρος των αποκρίσεων αυτών των επαναλήψεων y : ο μέσος όρος των αποκρίσεων των προτύπων διαλυμάτων X i : η συγκέντρωση κάθε πρότυπου διαλύματος x :ο μέσος όρος των συγκεντρώσεων των προτύπων διαλυμάτων, και 38
39 ΒΑΘΜΟΝΟΜΗΣΗ S y x: η τυπική απόκλιση των υπολοίπων των τιμών y που προκύπτουν από την γραμμική συσχέτιση και δίνεται από τη σχέση: S y x= i y i y n 1 39
40 ΒΑΘΜΟΝΟΜΗΣΗ Παράδειγμα Κατά τον προσδιορισμό Cd σε δείγμα PVC μετά από χώνευση με οξέα και μέτρηση με AAS, κατασκευάστηκε καμπύλη αναφοράς με χρήση πρότυπων διαλυμάτων (n=4), με συγκεντρώσεις (x i ) 0.50, 1.00, 1.50 και.00 mg/l και καταγράφηκαν οι αντίστοιχες απορροφήσεις (y i ): X i (mg/l) y i
41 ΒΑΘΜΟΝΟΜΗΣΗ Η εξίσωση της γραμμικής παλινδρόμησης με τη μέθοδο των ελαχίστων τετραγώνων δίνει: y i = x i, με r= X i (mg/l) y i x i y x i y E E E E-06 y = i x i y =.7E 05 S y x =
42 ΒΑΘΜΟΝΟΜΗΣΗ X i (mg/l) x i x x = 1. 5 i x i x =
43 ΒΑΘΜΟΝΟΜΗΣΗ Στη συνέχεια μετράμε το διάλυμα του άγνωστου δείγματος πέντε φορές (m=5) και ο μέσος όρος των απορροφήσεων είναι y o = Από την εξίσωση της καμπύλης αναφοράς, για y o =0.106 προκύπτει C = 0.64 mg/l. Η αβεβαιότητα στην συγκέντρωση που προσδιορίστηκε προκύπτει από την εφαρμογή της εξίσωσης και είναι: u c = S y x b y 0 y m n b i x i x 1 = mg L 43
44 Μέτρηση όγκου 1. Ανοχή στο πιστοποιητικό: ±α, u 1 =α/ 3. Μηνίσκος: πειράματα επαναληψιμότητας γέμισμα - ζύγιση, u = S r 3. Θερμική διαστολή: διαφορά θερμοκρασίας εργαστηρίου θερμοκρασίας αναφοράς (0 C). ΔV = V 0 a W ΔΤ, u 3 =ΔV/ 3 u V = u 1 + u + u 3 44
45 Μέτρηση μάζας Η αβεβαιότητα στον προσδιορισμό της μάζας υπολογίζεται από τα δεδομένα της διακρίβωσης του ζυγού, τα οποία υπάρχουν στο πιστοποιητικό διακρίβωσης. Συχνά παρέχεται εξίσωση Όταν ζυγίζουμε εκ διαφοράς (έχουμε δύο ζυγίσεις (απόβαρο και απόβαρο-δείγμα), W = W 1 W τότε: u w = u 1 w 1 + u w = u i w 45
46 Συνδυασμένη αβεβαιότητα, u C Διάδοση σφαλμάτων u C Cd Cd = u bias Cd CRM + RSD r + u C C + u V V + u m m = u C Cd Cd = 0.07 Διαφορετικές μονάδες συνδυασμός σχετικών τυπικών αβεβαιοτήτων 46
47 Συνδυασμένη αβεβαιότητα, u C Για την προσδιορισθείσα συγκέντρωση [Cd] = 54.8 mg/kg, η συνδυασμένη τυπική αβεβαιότητα είναι u C Cd = mg Kg u([cd]) (mg/kg) bias RSDr C(cal) V m 0,00 1,00,00 3,00 4,00 5,00 6,00 47
48 Διευρυμένη αβεβαιότητα, U U = k u C Παρουσίαση αποτελέσματος: Αποτέλεσμα: ( Χ ± U ) μονάδες Π.χ. [Cd]: (55 ± 14) (mg/kg) Όπου η αναφερόμενη αβεβαιότητα είναι η διευρυμένη αβεβαιότητα, υπολογισμένη με συντελεστή κάλυψης (95%) 48
49 Τέλος
50 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 50
51 Σημειώματα
52 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.0. Έχουν προηγηθεί οι κάτωθι εκδόσεις: Έκδοση διαθέσιμη εδώ. 5
53 Σημείωμα Αναφοράς Copyright Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών, Θωμαΐδης Νικόλαος 015. Θωμαΐδης Νικόλαος. «Έλεγχος και Διασφάλιση Ποιότητας». Έκδοση: 1.0. Αθήνα 015. Διαθέσιμο από τη δικτυακή διεύθυνση: 53
54 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. 54
55 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. 55
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο
Έλεγχος και Διασφάλιση Ποιότητας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 6: Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ΔΙΑΚΡΙΒΩΣΗ ΚΑΙ ΕΛΕΓΧΟΣ ΘΕΡΜΟΜΕΤΡΩΝ (1) Παράμετροι προς εξέταση: Ακρίβεια σε σχέση με διακριβωμένο
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας 5.7. ΔΕΙΓΜΑΤΟΛΗΨΙΑ (1) 5.7.1. Το Εργαστήριο πρέπει να διαθέτει σχέδιο και διαδικασία δειγματοληψίας,
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας 4.13.1 Γενικά (1) ISO 17025 4.13. ΕΛΕΓΧΟΣ ΑΡΧΕΙΩΝ (1) 4.13.1.1 Το Εργαστήριο πρέπει να καθιερώσει
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας 5.5. ΕΞΟΠΛΙΣΜΟΣ (1) 5.5.1. Το Εργαστήριο πρέπει να είναι εφοδιασμένο με όλα τα στοιχεία εξοπλισμού
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ΔΙΑΠΙΣΤΕΥΣΗ ΕΡΓΑΣΤΗΡΙΩΝ ΔΟΚΙΜΩΝ Σύμφωνα με το πρότυπο EN ISO/IEC 17025: 2005 «Γενικές Απαιτήσεις
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Έλεγχος και Διασφάλιση Ποιότητας - Διαπίστευση Ενότητα 2: Tο πρότυπο ΕΛΟΤ ΕΝ ISO/IEC 17025:2005 Σ. ΣΥΝΟΥΡΗ (Γ.Χ.Κ.) Ν. ΘΩΜΑΪΔΗΣ (Ε.Κ.Π.Α.
Έλεγχος και Διασφάλιση Ποιότητας - Διαπίστευση Ενότητα 2: Tο πρότυπο ΕΛΟΤ ΕΝ ISO/IEC 17025:2005 Σ. ΣΥΝΟΥΡΗ (Γ.Χ.Κ.) Ν. ΘΩΜΑΪΔΗΣ (Ε.Κ.Π.Α.) TO ΠΡΟΤΥΠΟ ISO/IEC 17025:2005 1. Ένα σύντομο ιστορικό σημείωμα
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Έλεγχος και Διασφάλιση Ποιότητας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 6: Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ΕΛΕΓΧΟΣ ΕΠΙΔΟΣΗΣ / ΔΙΑΚΡΙΒΩΣΗ Περιλαμβάνει έλεγχο: ΣΥΣΤΗΜΑΤΟΣ HPLC (1) Συστήματος παροχής διαλυτών
Γεωργικά Φάρμακα ΙΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Μέθοδοι ανάλυσης γεωργικών φαρμάκων. Β Μέρος. Ουρανία Μενκίσογλου-Σπυρούδη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας 5. ΤΕΧΝΙΚΕΣ ΑΠΑΙΤΗΣΕΙΣ 5.1. ΓΕΝΙΚΑ (1) 5.1.1. Η ορθότητα και η αξιοπιστία των δοκιμών που
Έλεγχος Ποιότητας Φαρμάκων
Έλεγχος Ποιότητας Φαρμάκων Ενότητα 6: Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Συσκευές Αποσάθρωση Δισκίων (ενός καλαθιού (δεξιά) και δύο καλαθιών (αριστερά) 2 Συσκευή Αποσάθρωσης 4
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 6: Ορισμοί διακρίβωσης. Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 6: Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ΟΡΙΣΜΟΙ (1) Διακρίβωση (Calibration): Σειρά δράσεων, οι οποίες καθορίζουν, κάτω από καθορισμένες
Υδρογεωχημεία Αναλυτική Γεωχημεία Ενότητα 4: Τεχνικές ανάλυσης διαλυμάτων
Υδρογεωχημεία Αναλυτική Γεωχημεία Ενότητα 4: Αριάδνη Αργυράκη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος ΠΕΡΙΕΧΟΜΕΝΑ 1. Φασματοσκοπία ατομικής απορρόφησης 2. Φασματοσκοπία ατομικής εκπομπής
Υδρογεωχημεία Αναλυτική Γεωχημεία Ενότητα 8: Κριτήρια επιλογής κατάλληλης τεχνικής χημικής ανάλυσης
Υδρογεωχημεία Αναλυτική Γεωχημεία Ενότητα 8: Κριτήρια επιλογής κατάλληλης τεχνικής χημικής ανάλυσης Αριάδνη Αργυράκη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος Στόχοι ανάλυσης/ ερευνητή
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 6: Διακρίβωση ογκομετρικών σκευών. Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 6: Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ΣΤΑΘΜΙΚΗ ΜΕΘΟΔΟΣ ΔΙΑΚΡΙΒΩΣΗΣ ΟΓΚΟΜΕΤΡΙΚΩΝ ΣΚΕΥΩΝ ΜΕΤΑΦΟΡΑΣ ΟΓΚΩΝ ISO 8655-6 2 ΑΠΑΙΤΟΥΜΕΝΟΣ ΕΞΟΠΛΙΣΜΟΣ
Θεατρικές Εφαρμογές και Διδακτική της Φυσικής Ι
Θεατρικές Εφαρμογές και Διδακτική της Φυσικής Ι Ενότητα 2: Παράλληλες θεωρητικές και εργαστηριακές προσεγγίσεις των τεχνικών και της δομής του κουκλοθέατρου, της κινούμενης εικόνας και ενός θέματος από
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...
Διδακτική των εικαστικών τεχνών Ενότητα 3
Διδακτική των εικαστικών τεχνών Ενότητα 3 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 3. Ο ρόλος του εκπαιδευτικού: σχεδιασμός
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας 5.10. ΣΥΝΤΑΞΗ ΕΚΘΕΣΕΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ (1) 5.10.1. Γενικά Τα αποτελέσματα κάθε δοκιμής ή σειράς
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ΜΕΘΟΔΩΝ (1) 5.4.1. Γενικά Το Εργαστήριο πρέπει να χρησιμοποιεί κατάλληλες μεθόδους και διαδικασίες
Μηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 3: Κλασικά Υποδείγματα της Διεθνούς Οικονομικής Θεωρίας (Heckscher-Ohlin model) Γρηγόριος
Διδακτική των εικαστικών τεχνών Ενότητα 1
Διδακτική των εικαστικών τεχνών Ενότητα 1 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 1. Ιστορική αναδρομή της διδακτικής της
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης
Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Στατιστική Ι Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 9: Μέτρηση Αγωγιμότητας Διαλυμάτων Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί
Γενική Φυσική Ενότητα: Ταλαντώσεις
Γενική Φυσική Ενότητα: Ταλαντώσεις Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Ταλαντώσεων... 4 1.1 Ερώτηση 1... 4 2. Ασκήσεις Ταλαντώσεων... 4 2.1 Άσκηση 1... 4 2.2 Άσκηση
Ορισμός κανονικής τ.μ.
Πιθανότητες και Στατιστική Ενότητα 4: Τυχαίες τυχαίες μεταβλητές Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Ορισμός κανονικής τ.μ. Ορισμός κανονικής τ.μ. Μια συνεχής τ.μ.
Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών
Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 2: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Τυχαίες Διαδικασίες: Ορισμοί, Μέσες τιμές συνόλου (Ensemble averages),
Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.3: Μεθοδολογία εφαρμογής προγράμματος Ολικής Ποιότητας
Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.3: Ψωμάς Ευάγγελος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Υποενότητα
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου
Ενόργανη Ανάλυση II. Ενότητα 1: Θεωρία Χρωματογραφίας 8 η Διάλεξη. Θωμαΐδης Νικόλαος Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Ενόργανη Ανάλυση II Ενότητα 1: Θεωρία Χρωματογραφίας 8 η Διάλεξη Θωμαΐδης Νικόλαος Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας KINHΤΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ Η χρησιμοποιούμενη αντίδραση κατά τη διάρκεια της
Οικονομετρία Ι. Ενότητα 3: Θεώρημα των Gauss Markov. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 3: Θεώρημα των Gauss Markov Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,
Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας
Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ασκήσεις στην Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας... 4 1.1
Φιλοσοφία της Ιστορίας και του Πολιτισμού
Φιλοσοφία της Ιστορίας και του Πολιτισμού Ενότητα 1: Εισαγωγή στις έννοιες Ιστορίας και Πολιτισμού Λάζου Άννα Εθνικὸ και Καποδιστριακὸ Πανεπιστήμιο Aθηνών Τμήμα Φιλοσοφίας Παιδαγωγικής και Ψυχολογίας Φιλοσοφία
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις
Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση 4: Μερικός γραμμομοριακός όγκος Αθανάσιος Τσεκούρας Τμήμα Χημείας . Θεωρία... 3. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 5 4. Τελικά αποτελέσματα... 7 Σελίδα
Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης
Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 12: Ελαχιστοποίηση κόστους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Ελαχιστοποίηση κόστους
ΧΗΜΕΙΑ. Ενότητα 5: Μίγματα Ουσίες. Χρυσή Κ. Καραπαναγιώτη Τμήμα Χημείας. Κατηγορίες της ύλης σύμφωνα με τα συστατικά της. Ύλη
ΧΗΜΕΙΑ Ενότητα 5: Ουσίες Χρυσή Κ. Καραπαναγιώτη Τμήμα Χημείας Κατηγορίες της ύλης σύμφωνα με τα συστατικά της αποτελούνται από ένα είδος ατόμου ή μορίου Έχουν δικές τους χημικές και φυσικές ιδιότητες αποτελούνται
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 1: Κρίσιμα συμβάντα Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Απομαγνητοφώνηση αποσπάσματος από Β Λυκείου
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.
Οικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 8: Κανονικότητα Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Ενόργανη Ανάλυση II. Ενότητα 1: Θεωρία Χρωματογραφίας 2 η Διάλεξη. Θωμαΐδης Νικόλαος Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Ενόργανη Ανάλυση II Ενότητα : η Διάλεξη Θωμαΐδης Νικόλαος Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ΔΙΑΧΩΡΙΣTIΚΟΤΗΤΑ Ή ΔΙΑΧΩΡΙΣΤΙΚΗ ΙΚΑΝΟΤΗΤΑ ΠΟΙΟΤΗΤΑ ΔΙΑΧΩΡΙΣΜΟΥ A A S W W Z W W Z ) / ( ) / ( ΠΛΗΡΗΣ
Ιστορία της μετάφρασης
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 9: Άσκηση εμπορικής πολιτικής Παράδειγμα άσκησης εμπορικής πολιτικής Γρηγόριος Ζαρωτιάδης
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 4: Τοποθέτηση d ηλεκτρονίων σε οκτάεδρα Σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Επεξεργασία Στοχαστικών Σημάτων
Επεξεργασία Στοχαστικών Σημάτων Βέλτιστα γραμμικά χρονικά αναλλοίωτα συστήματα Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Βέλτιστα γραμμικά χρονικά αναλλοίωτα συστήματα
Έννοιες Φυσικών Επιστημών Ι
Έννοιες Φυσικών Επιστημών Ι Ενότητα 3: Εναλλακτικές όψεις της επιστήμης που προβάλλονται στην εκπαίδευση Βασίλης Τσελφές Εθνικὸ και Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 5: Υποδείγματα Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Οικονομετρία. Απλή Παλινδρόμηση. Υποθέσεις του γραμμικού υποδείγματος και ιδιότητες των εκτιμητών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Απλή Παλινδρόμηση Υποθέσεις του γραμμικού υποδείγματος και ιδιότητες των εκτιμητών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 5: Ανάλυση της Διακύμανσης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις
Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση 7: Κατανομή ουσίας μεταξύ δύο διαλυτών και προσδιορισμός σταθεράς ισορροπίας αντιδράσεως Βασιλική Χαβρεδάκη Τμήμα Χημείας 1. Θεωρία... 3. Μετρήσεις... 5 3. Επεξεργασία
Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Ενότητα. Εισαγωγή στις βάσεις δεδομένων
Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 11 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος
Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Δυναμικής Άκαμπτου Σώματος... 4 1.1 Ερώτηση 1... 4 1.2 Ερώτηση 2... 4 1.3 Ερώτηση
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 1.1: Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική πρακτική: Βασιλική Λεβέντη.
Πληροφοριακά Συστήματα Διοίκησης Ενότητα 10: Διαχείριση Έργων (2ο Μέρος)
Πληροφοριακά Συστήματα Διοίκησης Ενότητα 10: Διαχείριση Έργων (2ο Μέρος) Γρηγόριος Μπεληγιάννης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων και Τροφίμων
Διαχείριση Έργων. Ενότητα 10: Χρονοπρογραμματισμός έργων (υπό συνθήκες αβεβαιότητας)
Διαχείριση Έργων Ενότητα 10: Χρονοπρογραμματισμός έργων (υπό συνθήκες αβεβαιότητας) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &