Αρχές μεταφοράς ρύπων
|
|
- Τελαμών Μαρκόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΚΕΦΑΛΑΙΟ 4 Αρχές μεταφοράς ρύπων 4.1 Διεργασίες μεταφοράς ρύπων Η γενικότερη έννοια της μεταφοράς περιλαμβάνει κάθε διεργασία που συντελεί στη μετακίνηση μάζας ή ενέργειας. Στα προβλήματα ρύπανσης του υπεδάφους, ενδιαφέρει το φαινόμενο της μεταφοράς της μάζας των ρύπων. Τα φαινόμενα τα οποία συμβάλλουν στη μεταφορά των ρύπων (contaminant transport) μπορούν να διαχωριστούν ως προς τη φύση τους σε μηχανικά (μεταγωγή και διασπορά) και μοριακά (διάχυση). Η μεταγωγή (adection) είναι η μεταφορά του ρύπου που οφείλεται στην κίνηση του υπόγειου νερού με ταχύτητα /n (ταχύτητα arc/πορώδες), δηλαδή με τη μέση γραμμική ταχύτητα που συναντήσαμε στο Κεφάλαιο, στην οποία μπορούμε να αναφερόμαστε για μεγαλύτερη ακρίβεια με το συνώνυμο όρο ταχύτητα μεταγωγής. Το χαρακτηριστικό της μεταφοράς λόγω μεταγωγής μόνον είναι ότι, αν παρακολουθήσουμε την κίνηση ενός στοιχειώδους όγκου ρευστού, η μάζα (και άρα και η συγκέντρωση) του ρύπου σ αυτόν τον όγκο δεν μεταβάλλεται, καθώς η μεταφορά του ρύπου λόγω μεταγωγής παρακολουθεί τη ροή. Επειδή όμως υπάρχουν αποκλίσεις γύρω από τη μέση ταχύτητα κίνησης του υπόγειου νερού, και στο μέγεθος και στην κατεύθυνση, αυτές οι διαφορές έχουν σαν αποτέλεσμα τη διασπορά της μάζας του ρύπου. Η μηχανική διασπορά (mechanical dispersion) είναι ένα φαινόμενο μεταγωγής σε μικροκλίμακα (στην κλίμακα του εδαφικού πόρου) που συντελεί στην ανάμιξη του ρύπου στη μακροκλίμακα (στην κλίμακα του πεδίου ροήςμεταφοράς). Αναφορά στα αποτελέσματα της μεταφοράς λόγω μηχανικής διασποράς μόνον δεν έχει νόημα να γίνει, καθώς δεν μπορεί να υπάρξει μηχανική διασπορά χωρίς μεταγωγή. Τέλος η διάχυση (diffusion) είναι ένα μοριακό φαινόμενο που έχει ως αποτέλεσμα τη μετακίνηση του ρύπου από περιοχές υψηλής συγκέντρωσης (πχ από την πηγή του ρύπου) προς περιοχές χαμηλής συγκέντρωσης, συντελώντας περαιτέρω στην ανάμιξη των μορίων του ρύπου με τα μόρια του νερού. Ο μηχανισμός της διάχυσης είναι ανεξάρτητος από την κίνηση του νερού: η διάχυση θα λάβει χώρα και αν το νερό δεν κινείται. Αν όμως τα φαινόμενα διαχωριστούν ως προς τα αποτελέσματά τους, τότε μελετάμε ξεχωριστά τη μεταγωγή, η οποία δεν συντελεί στην περαιτέρω ανάμιξη του ρύπου με το υπόγειο νερό. Ο υπολογισμός του χρόνου άφιξης ρύπου του Κεφαλαίου είναι ένα παράδειγμα μεταφοράς ρύπου λόγω μεταγωγής και μόνον, μια απλοποίηση που θα δούμε στη συνέχεια κάτω από ποιες συνθήκες μπορεί να δίνει ικανοποιητικής ακρίβειας αποτελέσματα. Παράλληλα, για αναλυτική ευκολία, υπολογίζουμε από κοινού τα αποτέλεσματα της διάχυσης και της μηχανικής διασποράς, στις οποίες αναφερόμαστε με τον κοινό όρο υδροδυναμική διασπορά (hdrodnamic dispersion). Τα αποτελέσματα των πιο πάνω φαινομένων θα περιγραφούν μαθηματικά στις Ενότητες 4. έως 4.4 και με λυμένα παραδείγματα στην Ενότητα
2 4.1.1 Διεργασίες σχετικές με τη μεταφορά Για την πλήρη περιγραφή της εξέλιξης της ρύπανσης, εκτός από τις πιο πάνω διεργασίες μεταφοράς, πρέπει να λάβουμε υπόψη μας και την αλληλεπίδραση της υδατικής φάσης με τη στερεά φάση μέσω του μηχανισμού της ρόφησης (ή εκρόφησης σε προβλήματα αποκατάστασης) καθώς και τη δυνατότητα διάσπασης του ρύπου με χημικές ή βιολογικές διεργασίες, δηλαδή το μηχανισμό της αποδόμησης. Η ρόφηση θα επιφέρει μοίρασμα της μάζας του ρύπου ανάμεσα στο νερό των πόρων και τα εδαφικά στερεά (εδαφικοί κόκκοι και οργανικό εδαφικό κλάσμα). Όταν παρατηρούμε τα αποτελέσματα του φαινομένου της ρόφησης στην κατεύθυνση της κίνησης του υπόγειου νερού, καθώς ένα ποσοστό της μεταφερόμενης μάζας του ρύπου συγκρατείται από τα εδαφικά στερεά, βλέπουμε μικρότερη μάζα (και άρα μικρότερη συγκέντρωση) να φτάνει στο ίδιο σημείο στον ίδιο χρόνο, σε σύγκριση με την περίπτωση μηδενικής ρόφησης. Με άλλα λόγια, η μεταφορά του ρύπου καθυστερεί σε σχέση με την περίπτωση μηδενικής ρόφησης. Έντονα φαινόμενα ρόφησης αντιστοιχούν σε σημαντική υστέρηση. Σε αυτές τις περιπτώσεις που η ταχύτητα εξάπλωσης του ρύπου είναι χαμηλή, λέμε ότι ο ρύπος χαρακτηρίζεται από μικρή κινητικότητα. Προσοχή όμως! Ο ροφημένος ρύπος δεν αποθηκεύεται κάπου μόνιμα, αφού, όπως είδαμε στο Κεφάλαιο 3, με την εξαίρεση της χημικής προσρόφησης, το φαινόμενο της ρόφησης είναι αντιστρεπτό. Έτσι σε μια εφαρμογή άντλησης σε ρυπασμένο χώρο, δεν θα αντλήσουμε μόνο τη μάζα τού διαλυμένου ρύπου, αλλά σταδιακά και τη μάζα τού αρχικώς ροφημένου ρύπου που, κατά τη διεργασία της εκρόφησης, σταδιακά θα περάσει από τα εδαφικά στερεά στο νερό. Αντίθετα με τη ρόφηση, η αποδόμηση επιτυγχάνει μόνιμη μείωση της μάζας του ρύπου. Όταν παρατηρούμε τα αποτελέσματα της αποδόμησης στην κατεύθυνση της κίνησης του υπόγειου νερού, πάλι βλέπουμε μικρότερη μάζα (και άρα μικρότερη συγκέντρωση) να φτάνει στο ίδιο σημείο στον ίδιο χρόνο σε σύγκριση με την περίπτωση μηδενικής αποδόμησης. Ένας ρύπος με χαμηλό ρυθμό αποδόμησης ή, ισοδύναμα, μεγάλο χρόνο ημιζωής (βλέπε Κεφάλαιο 3) χαρακτηρίζεται ως επίμονος. 4. Μεταφορά λόγω μεταγωγής Το βασικό μέγεθος της ταχύτητας στα προβλήματα ροής μπορεί να διατυπωθεί και ως ροή όγκου ρευστού, δηλαδή ως ο λόγος του όγκου ρευστού προς το γινόμενο του χρόνου επί την επιφάνεια διαμέσου της οποίας διέρχεται το ρευστό [ή, με σύμβολα: V/(t A)Q/A]. Αντίστοιχα, για τα προβλήματα μεταφοράς θα ορίσουμε τη ροή μάζας ρύπου, J, ως: J Μάζα / (χρόνος επιφάνεια) (όγκος συγκέντρωση) / (χρόνος επιφάνεια) (παροχή συγκέντρωση) / (επιφάνεια) J (Q ) / A (4.1) όπου είναι η φαινόμενη ταχύτητα ή ταχύτητα arc ( ki). Θεωρώντας έναν κυβικό όγκο αναφοράς μήκους d και επιφάνειας ds, βοηθάει να απεικονίσουμε τη ροή μάζας αναφορικά με ένα σκαρίφημα: 4-
3 ds J ροή μάζας J διερχόμενη από επιφάνεια ds για στοιχειώδη όγκο αναφοράς d ds d Αξίζει να σημειωθεί ότι στα παραπάνω δεν έγινε διάκριση μεταξύ ροής σε αγωγό ή πορώδες μέσο, επειδή η έκφραση για τη ροή μάζας είναι η ίδια. Όμως στο έδαφος, συχνά χρησιμεύει να ανάγουμε τη μάζα διαλυμένης ουσίας σε μοναδιαίο όγκο εδαφικού δείγματος (όχι δηλαδή στον όγκο νερού/πόρων στον οποίο ανάγεται η συγκέντρωση). Έτσι αν γράψουμε την εξίσωση (4.1) ως: J n Aw n Aw (4.) n και αντικαταστήσουμε το πορώδες και τη συγκέντρωση ρύπου Α στην υδατική φάση, Aw, με τον ορισμό τους: n Aw Vw M A M A, V V V w V d ds βλέπουμε ότι το γινόμενο (πορώδες συγκέντρωση) δίνει αυτό που ψάχναμε, δηλαδή τη μάζα διαλυμένης ουσίας στο μοναδιαίο όγκο δείγματος. Για τη ροή μάζας σε εδαφικό δείγμα, προκύπτει η σχέση: M A J (4.3) d ds η οποία επιβεβαιώνει ότι η ταχύτητα λόγω μεταγωγής ρύπου Α είναι η μέση γραμμική ταχύτητα, άρα ο χρόνος άφιξης ρύπου Τ που υπολογίσαμε στο Κεφάλαιο με τη L σχέση T (εξίσωση.1) αντιστοιχεί στη μεταφορά ρύπου λόγω μεταγωγής μόνο. Για το υπόλοιπο αυτού του κεφαλαίου θα χρησιμοποιούμε για τη μέση γραμμική ταχύτητα,, τον όρο ταχύτητα μεταγωγής. 4.3 Μεταφορά λόγω διάχυσης Ορίσαμε στην προηγούμενη ενότητα το μέγεθος της ροής μάζας. Η ροή μάζας λόγω διάχυσης σε διάλυμα δίνεται από την πιο κάτω εμπειρική σχέση, που είναι γνωστή ως 1 ος νόμος του Fick (Fetter, 1999): J (4.4) όπου J είναι η ροή μάζας για μοναδιαία επιφάνεια και μοναδιαίο χρόνο [M/L Τ], είναι η συγκέντρωση της διαλυμένης ουσίας (δηλ. του ρύπου), με μονάδες μάζα ρύπου ανά όγκο διαλύματος [M/L 3 ], και είναι ο συντελεστής διάχυσης σε διάλυμα 4-3
4 [L /T]. Χρησιμοποιώντας τη σχέση (4.4) και θεωρώντας ισοζύγιο της μάζας του ρύπου σε μία διάσταση, προκύπτει ο ος νόμος του Fick ως ακολούθως: ds J J J + d Διαφορά μάζας στον όγκο αναφοράς dds σε χρόνο t d Εισερχόμενη ροή μάζας μέσω επιφάνειας ds - Εξερχόμενη ροή μάζας μέσω ds t [ d ds] J ds J + d ds J (4.5) t Η εξίσωση (4.5), που αναφέρεται ακόμα και σε μαθηματικά εγχειρίδια ως εξίσωση διάχυσης, έχει προκύψει θεωρώντας ισοζύγιο μάζας για διαλύματα και άρα ισχύει για διαλύματα. Για να περιγράψουμε μαθηματικά το φαινόμενο της διάχυσης στο πορώδες εδαφικό μέσο, χρειάζεται να αναγάγουμε τη μάζα του ρύπου στον όγκο εδαφικού δείγματος. Γι αυτόν το λόγο, πρέπει να πολλαπλασιάσουμε τη συγκέντρωση με το πορώδες. Eπί πλέον, πρέπει να λάβουμε υπόψη ότι ο διαθέσιμος προς διάχυση όγκος δεν είναι ο συνολικός, αλλά μόνο το δίκτυο των εδαφικών πόρων. Διαισθητικά καταλαβαίνουμε ότι η διάχυση γίνεται πιο δύσκολη και άρα στο έδαφος περιμένουμε μικρότερο, σε σχέση με το διάλυμα, συντελεστή διάχυσης. Σαν συνέπεια των παραπάνω, ο 1 ος νόμος του Fick γράφεται ως: J en (4.6) όπου e είναι ο συντελεστής διάχυσης για κορεσμένο έδαφος, που είναι ίσος με το γινόμενο του συντελεστή διάχυσης σε διάλυμα και ενός απομειωτικού εμπειρικού συντελεστή ω, e ω. Οι Freee και herr (1979) δίνουν τιμές για το συντελεστή ω μεταξύ 0.01 και 0.5, ενώ ο Fetter (1999) αναφέρει μετρήσεις σε άμμους που έδωσαν ω 0.7. Θεωρώντας ισοζύγιο της μάζας του ρύπου στον όγκο διαλύματος, ndds, που αντιστοιχεί στον όγκο αναφοράς γράφουμε: t J [ n d ds] J ds J + d ds (4.7) και χρησιμοποιώντας τη σχέση (4.6), προκύπτει ο ος νόμος του Fick για εδαφικό στοιχείο: 4-4
5 t e (4.8) Αν τώρα λάβουμε υπόψη μας και το φαινόμενο της ρόφησης, θα πρέπει να αλλάξουμε το ισοζύγιο μάζας της εξίσωσης (4.7) ως ακολούθως: Διαφορά διαλυμένης μάζας στον όγκο διαλύματος (του όγκου αναφοράς) ndds σε χρόνο t + διαφορά ροφημένης μάζας στη μάζα εδάφους (του όγκου αναφοράς) ddsρ d σε χρόνο t (Εισερχόμενη Εξερχόμενη) ροή μέσω επιφάνειας ds t w t J ρ d (4.9) s [ n d ds] + [ d ds ] d ds Στη συνέχεια θα συνδέσουμε τη συγκέντρωση της ροφημένης μάζας, s, με τη συγκέντρωση της διαλυμένης μάζας, w, χρησιμοποιώντας το συντελεστή διαχωρισμού, K d (εξίσωση 3.4), κι έτσι ο όρος που εκφράζει τη διαφορά ροφημένης μάζας γίνεται: t s d ds ρ d t w K d d ds ρ d (4.10) Ο συνδυασμός των (4.6), (4.9) και (4.10) δίνει (στα επόμενα η συγκέντρωση της διαλυμένης μάζας συμβολίζεται με, χωρίς το δείκτη w, αφού δεν υπάρχει ανάγκη διάκρισης με τη ροφημένη μάζα): n d ds + K t t d d ds ρ d ne d ds (4.11) Τέλος, με ομαδοποίηση όρων, απλοποίηση του όγκου αναφοράς και διαίρεση με το πορώδες, προκύπτει ο ος νόμος του Fick για εδαφικό στοιχείο με ρόφηση: 1 + t Kd ρ d n e (4.1) Ο συντελεστής που πολλαπλασιάζει τη μερική παράγωγο ως προς το χρόνο εκφράζει το αποτέλεσμα της ρόφησης: καθώς είναι πάντα μεγαλύτερος της μονάδας, η μεταφορά λόγω των συνδυασμένων φαινομένων διάχυσης-ρόφησης είναι πιο αργή σε σχέση με την περίπτωση μηδενικής ρόφησης. Γι αυτόν το λόγο ονομάζεται συντελεστής υστέρησης (retardation factor), R: Kd ρ d R 1 + (4.13) n Με τη βοήθεια του συντελεστή υστέρησης, R, μπορούμε να γράψουμε την πιο γενική σχέση για τη μεταφορά ρύπου λόγω διάχυσης σε μία διάσταση στο υπόγειο νερό: 4-5
6 t e, e (4.14) R e Είναι φανερό, ότι στην περίπτωση μηδενικής ρόφησης (R 1), η εξίσωση (4.14) δίνει την εξίσωση (4.8). Η λύση της εξίσωσης μονοδιάστατης διάχυσης για αρχικά καθαρό πεδίο (δηλ. 0 για > 0, t 0) και πηγή σταθερής συγκέντρωσης o που επιβάλλεται στο χρόνο t 0 δίνεται ως (Fetter, 1999): (, t) o erfc (4.15) t όπου ο συντελεστής είναι ίσος με e ή e, ανάλογα με την περίπτωση, και erfc είναι η συμπληρωματική συνάρτηση σφάλματος, τιμές της οποίας δίνονται σε πίνακα στο τέλος του κεφαλαίου. 4.4 Μεταφορά λόγω μεταγωγής και διάχυσης-διασποράς Μονοδιάστατη μεταφορά Για να λάβουμε υπόψη τις διεργασίες μεταφοράς ρύπων της Ενότητας 4.1, πρέπει να εκφράσουμε τη ροή μάζας ως: J n (4.16) όπου τώρα είναι ο συντελεστής υδροδυναμικής διασποράς, δηλαδή ο συντελεστής που εκφράζει τα αποτελέσματα της διάχυσης και της μηχανικής διασποράς. Χρησιμοποιώντας την εξίσωση (4.9) για το ισοζύγιο μάζας σε μία διάσταση με ρόφηση, την εξίσωση (4.10) και την εξίσωση (4.16), προκύπτει: R t n + (4.17) Τέλος, η διαίρεση με το συντελεστή υστέρησης δίνει την εξίσωση μεταφοράς ρύπου λόγω μεταγωγής, διάχυσης και διασποράς: t (4.18) όπου R και R. Η λύση της εξίσωσης μεταφοράς ρύπου λόγω μεταγωγής διάχυσης/διασποράς για τις πιο κάτω συνοριακές και αρχικές συνθήκες: (1) o, 0, t 0: πηγή σταθερής συγκέντρωσης o στην αρχή του άξονα () 0, t 0, > 0: μηδενική συγκέντρωση τη χρονική στιγμή μηδέν παντού εκτός από την πηγή (3) 0, t 0, : σε άπειρη απόσταση από την πηγή, η συγκέντρωση παραμένει πάντα μηδέν 4-6
7 δίνεται ως:, t) 1 erfc o ( t + e t + erfc t t (4.19) Είναι πρακτικά χρήσιμο να αναφερθεί ότι όταν ο λόγος είναι μεγαλύτερος από 100 (ή, οριακά, μεγαλύτερος από 10) ο δεύτερος όρος της εξίσωσης (4.19) μπορεί να αγνοηθεί (Fetter, 1999). Η συμβολή των διεργασιών μεταφοράς μπορούν να περιγραφούν πιο παραστατικά με γραφήματα της συγκέντρωσης όπως αυτά προκύπτουν από την εξίσωση (4.19). Το διάγραμμα του Σχήματος 4.1 απεικονίζει τη συγκέντρωση σε κάποιο σημείο που απέχει απόσταση από την πηγή σαν συνάρτηση του χρόνου. Για κάποιο χρονικό διάστημα, η συγκέντρωση θα παραμείνει μηδέν. Αν λαμβάναμε υπόψη μόνο μεταγωγή, τη χρονική στιγμή t R (δηλ. στο χρόνο άφιξης ρύπου της εξίσωσης.1, με τη διαφορά ότι εδώ έχει συνυπολογιστεί και η υστέρηση λόγω ρόφησης) θα φτάσει το μέτωπο του ρύπου στο υπόψη σημείο και από κει και πέρα η συγκέντρωση θα παραμείνει σταθερή, ίση με τη συγκέντρωση της πηγής, o. Aν λάβουμε υπόψη και διάχυση, κάποιες μικρές συγκεντρώσεις ρύπου θα προηγηθούν του χρόνου άφιξης ρύπου λόγω μεταγωγής, ενώ αν λάβουμε υπόψη μας και τη διασπορά, η χρονική διαφορά θα είναι ακόμα μεγαλύτερη. Το Σχήμα 4.1 επίσης βοηθάει στην κατανόηση του ρόλου της ρόφησης: όσο μεγαλώνει ο συντελεστής υστέρησης, τόσο το διάγραμμα μετατοπίζεται σε μεγαλύτερους χρόνους, δηλαδή η εξάπλωση του ρύπου καθυστερεί. β α γ t Σχήμα 4.1: Η καμπύλη της συγκέντρωσης ως συνάρτησης του χρόνου t σε σημείο που απέχει απόσταση από πηγή σταθερή συγκέντρωσης o : λόγω μεταγωγής (α) ή σύμφωνα με την εξίσωση (4.19) λαμβάνοντας υπόψη διάχυση (β) ή διάχυση και διασπορά (γ) Υδροδυναμική διασπορά Αναφερθήκαμε στο ότι η υδροδυναμική διασπορά και άρα και ο αντίστοιχος συντελεστής υδροδυναμικής διασποράς εκφράζει το συνδυασμένο αποτέλεσμα της διάχυσης και της μηχανικής διασποράς. Είδαμε ότι η μηχανική διασπορά οφείλεται στις διαφορές της ταχύτητας του υπόγειου νερού, κι άρα είναι λογικό να αναμένουμε να έχει κάποια σχέση αναλογίας με την ταχύτητα. Επί πλέον, επεξεργασία αποτελεσμάτων από πειράματα μεταφοράς στο εργαστήριο και στο πεδίο έχει δείξει ότι η μηχανική διασπορά μεγαλώνει με την κλίμακα του προβλήματος, αυτή μάλιστα 4-7
8 η αύξηση μπορεί να προσεγγιστεί γραμμικά, τουλάχιστον για εργαστηριακά πειράματα και μικρές κλίμακες πεδίου (omenico and Schwart, 1990). Με βάση αυτές τις παρατηρήσεις προκύπτει ότι: e α + (4.0) όπου ο παράγοντας α εκφράζει την εξάρτηση της μηχανικής διασποράς από την κλίμακα του προβλήματος: για γραμμική συσχέτιση, συχνά χρησιμοποιείται η σχέση 0.1 α (πχ, USEPA, 005) όπου είναι ένα μέτρο της κλίμακας του πεδίου ροήςμεταφοράς. Ο συντελεστής διάχυσης στο έδαφος, e, έχει ήδη συζητηθεί πιο πάνω. Ανάλογα με τον τύπο του υπό εξέταση προβλήματος, μπορεί να αγνοηθεί η διάχυση, αν η ταχύτητα μεταγωγής είναι σημαντική (πιθανό σε ένα χονδρόκκοκο έδαφος), ή, αντίστροφα, για πολύ μικρή ταχύτητα (αναμενόμενο σε αργιλικά εδάφη) μπορεί να αγνοηθεί η συμβολή της μηχανικής διασποράς Μεταφορά με υποβάθμιση Η εξίσωση (4.18) περιγράφει τη μεταφορά ρύπου στο υπόγειο νερό για την ιδανική περίπτωση όπου η μάζα του ρύπου δεν υφίσταται καμιά αλλαγή στο υπόγειο περιβάλλον. Σημειώσαμε όμως στο Κεφάλαιο 3 ότι είναι αναμενόμενο ο ρύπος να αποδομηθεί με κάποια βιολογική ή χημική διεργασία, με σταθερό, υποθέσαμε, ρυθμό αντίδρασης λ: η μεγάλη διαφορά μεταξύ των ρύπων είναι η τιμή της σταθεράς λ, η οποία εξαρτάται και από τα βιογεωχημικά χαρακτηριστικά του υπεδάφους. Σε περίπτωση υποβάθμισης, το ισοζύγιο της εξίσωσης (4.9) διαφοροποιείται ως προς το αριστερό σκέλος όπου πρέπει να προστεθεί η μείωση της μάζας του ρύπου στον όγκο αναφοράς λόγω της αποδόμησης του ρύπου, οπότε προκύπτει η εξίσωση: R R t, λ (4.1) Η λύση της εξίσωσης (4.1) για αρχικά καθαρό έδαφος, για σταθερής έντασης πηγή, για καθαρό έδαφος σε άπειρη απόσταση είναι: t t erfc e t t erfc e o λ λ β β 4 4 ep (4.) όπου 4 1 λ β +. Είναι σχετικά απλό να διαπιστωθεί ότι από την εξίσωση (4.) για λ0 προκύπτει η εξίσωση (4.19) Τριδιάστατη ροή και μεταφορά Έως τώρα θεωρήσαμε μονοδιάστατη ροή και μεταφορά. Στη γενική τριδιάστατη περίπτωση, η έκφραση του ισοζύγιου μάζας και στις τρεις διαστάσεις δίνει: t R + + (4.3) 4-8
9 Η εξίσωση (4.3) λύνεται αριθμητικά, αφού έχει προηγουμένως λυθεί το πρόβλημα ροής ώστε να είναι γνωστές οι συνιστώσες της ταχύτητας μεταγωγής. Στη βιβλιογραφία δίνονται αναλυτικές λύσεις της εξίσωσης (4.3), για απλή γεωμετρία του πεδίου ροής και συγκεκριμένες αρχικές και συνοριακές συνθήκες, σε μερικές από τις οποίες θα αναφερθούμε πιο κάτω Μονοδιάστατη ροή, διδιάστατη μεταφορά Αρκετά προβλήματα μπορούν να αντιμετωπιστούν με ικανοποιητική προσέγγιση θεωρώντας ροή σε μία διάσταση κα μεταφορά σε δύο διαστάσεις: + R t (4.4) όπου και είναι οι συντελεστές υδροδυναμικής διασποράς στις κατευθύνσεις και, αντίστοιχα. Η διαφορά τους έγκειται στη συμβολή της μηχανικής διασποράς, η οποία είναι πιο σημαντική στην κατεύθυνση της κίνησης του υπόγειου νερού (δηλ. στον άξονα ). Έτσι λοιπόν γράφουμε: α +, α + (4.5) L e T e διακρίνουμε δηλαδή μεταξύ του παράγοντα διαμήκους μηχανικής διασποράς, α L, και του παράγοντα εγκάρσιας μηχανικής διασποράς, α T. Εργαστηριακά πειράματα σε άμμους έχουν δείξει ότι η μηχανική διασπορά στην εγκάρσια κατεύθυνση είναι 5 έως φορές μικρότερη σε σχέση με τη διαμήκη, α T εως α L (Freee and 0 5 herr, 1979), ενώ όπως προαναφέρθηκε, ο παράγοντας διαμήκους μηχανικής διασποράς εξαρτάται από την κλίμακα του προβλήματος ( α L 0.1). Ο Fetter (1999) δίνει μια αναλυτική λύση της (4.4) για συνθήκες μόνιμης μεταφοράς (δηλ. για πολύ μεγάλο χρόνο μετά την εμφάνιση της ρύπανσης), για σημειακή πηγή καθ όλο το βάθος του υδροφορέα, στην οποία εισπιέζεται νερό σταθερής παροχής Q και σταθερής συγκέντρωσης o (σελ. 67) Μονοδιάστατη ροή, τριδιάστατη μεταφορά Η γενίκευση της (4.4) ως προς τη μεταφορά δίνει: + + t (4.6) Για την εξίσωση (4.6) επίσης βρίσκονται αναλυτικές λύσεις στη βιβλιογραφία για διαφορετικές συνοριακές συνθήκες. Μια συχνή περίπτωση είναι ένα ατύχημα όπου μια σημειακή πηγή ( 0) εκλύει τη χρονική στιγμή t0 μάζα ρύπου Μ V o o (Freee and herr, 1979): (,,, t) 8( πt) 3 M X ep 4t Y 4 Z t 4 t (4.7) 4-9
10 όπου X t, Y, Z. Επίσης, για πηγή πεπερασμένων διαστάσεων, Ζ π και Υ π, σταθερής συγκέντρωσης o (για 0) δίνεται η αναλυτική λύση (omenico and Schwart, 1990): (,,, t) 8 o Y + π t erfc erf t Y π erf + Z erf π Z erf (4.8) π Στις εξισώσεις (4.7) και (4.8) υπενθυμίζεται ότι α L + e, ενώ α Προβλήματα T e Παράδειγμα 4.1: Επιπτώσεις παραδοχών - παραμέτρων Κάποιες από τις παρατηρήσεις των προηγούμενων ενοτήτων μπορούν να διευκρινιστούν καλύτερα με ένα παράδειγμα μεταφοράς ρύπου σε ένα πρόβλημα απλής γεωμετρίας. Ας υποθέσουμε ότι μετά από ένα ατύχημα, ρύπος (τριχλωροαιθένιο διαλυμένο στο νερό) διαρρέει στον ταμιευτήρα του Σχήματος 4.. υπάρχει ανησυχία για το πόσο γρήγορα θα επηρεαστεί το κανάλι στα κατάντη αν δεν ληφθούν μέτρα. 15m ταμιευτήρας 5m L 90m ιλύς-άμμος Κ m/ημέρα Βράχος χαμηλής διαπερατότητας κανάλι 0m Σχήμα 4.: Διαρροή ρύπου σε ταμιευτήρα δημιουργεί ανησυχίες σε κατάντη κανάλι. Θεωρούμε τη γεωμετρία και τα δεδομένα που δίνονται στο Σχήμα 4.. Υποθέτουμε ότι η διαρροή του ρύπου έχει μόλις αρχίσει από τον ταμιευτήρα. Υποθέτουμε περαιτέρω σταθερό ρυθμό διαρροής που δίνει σταθερή συγκέντρωση στον ταμιευτήρα ίση με o, πορώδες του εδαφικού στρώματος 0.3, συντελεστή διάχυσης (σε διάλυμα) 10-9 m /s, και παράγοντα διαμήκους μηχανικής διασποράς α L 1m. Ζητούνται τα εξής: (α) Ποιoς είναι ο χρόνος άφιξης στο κανάλι συγκέντρωσης ίσης με 0.5 o ; (β) Πότε θα είναι η συγκέντρωση ίση με 0.01 o στο ίδιο σημείο που θεωρήσαμε στο ερώτημα (α); (γ) Πώς αλλάζει η απάντηση στο ερώτημα (β) αν α L 0.1m; (δ) Σχόλια για τη σημασία των αποτελεσμάτων. Παραδοχές Υποθέτουμε μονοδιάστατη ροή μεταξύ ταμιευτήρα-καναλιού (ροή μόνο στον οριζόντιο, άξονα), αγνοώντας την κατακόρυφη συνιστώσα της ταχύτητας. Θεωρούμε ροή κυρίως στο εδαφικό υλικό, δηλ. όχι στο βράχο (λογικό). Για να προσδιορίσουμε το μήκος ροής, θεωρούμε τη μικρότερη απόσταση μεταξύ ταμιευτήρακαναλιού (παραδοχή υπέρ της ασφάλειας), L 90m Αγνοούμε τη ρόφηση, δηλαδή K d 0 και R 1 (παραδοχή υπέρ της ασφάλειας) 4-10
11 - Θα χρησιμοποιήσουμε τη λύση της εξίσωσης μεταγωγής-υδροδυναμικής διασποράς, για συνοριακές συνθήκες (1) o, 0, t 0, () 0, t 0, > 0, (3) 0, t 0,, όπου o είναι η συγκέντρωση στον ταμιευτήρα, δηλαδή την εξίσωση (4.19). - Δύο είναι οι βασικές παράμετροι που πρέπει να υπολογίσουμε, η μέση γραμμική ταχύτητα κίνησης του υπόγειου νερού ή ταχύτητα μεταγωγής και ο συντελεστής υδροδυναμικής διασποράς. Αρχίζουμε από το πρόβλημα ροής Καθορίζουμε το πεδίο ροής (τραπέζιο που καταδεικνύεται με διακεκομμένη γραμμή στο Σχήμα 4.) i ΔH / ΔL 5m 0m / 90m K i m / ημέρα m / ημέρα /n m / ημέρα / m / ημέρα Επίλυση προβλήματος μεταφοράς Υπολογισμός συντελεστή υδροδυναμικής διασποράς e ω m /s m / ημέρα α L + e 1m 0.16 m / ημέρα m / ημέρα 0.16 m / ημέρα Σημείωση: Εκ των υστέρων (δηλ. αφού κάνουμε τις πράξεις), βλέπουμε ότι θα μπορούσαμε να είχαμε αγνοήσει τη διάχυση στο συγκεκριμένο πρόβλημα: για το σχετικά περατό έδαφος του παραδείγματος και τη δεδομένη υδραυλική κλίση, η ταχύτητα μεταγωγής και κατά συνέπεια η συμβολή της μηχανικής διασποράς είναι πολύ πιο σημαντική σε σχέση με τη συμβολή της διάχυσης Ελέγχουμε 90 > Άρα μπορούμε να αγνοήσουμε το δεύτερο όρο της εξίσωσης (4.19). (α) Επειδή 90 > ο χρόνος άφιξης της /o 0.5 είναι περίπου ίσος με το χρόνο άφιξης ρύπου λόγω μεταγωγής. Αυτό συμβαίνει γιατί όταν η συμβολή του δεύτερου όρου της (4.19) είναι μικρή, η καμπύλη της συγκέντρωσης είναι, σε καλή προσέγγιση, συμμετρική ως προς το μέτωπο της μεταγωγής (βλέπε Σχήμα 4.1). Άρα, t L / 90 m / 0.16 m / ημέρα 563 ημέρες 1.5 χρόνια t (β) /o 0.01 ½ erfc 0.16t t Για erfc t 398 ημέρες 1.1 χρόνια 0.16t Προσοχή! Έχουμε λύσει τη δευτεροβάθμια εξίσωση για τη μεταβλητή T t (γ) α L + e 0.1m 0.16 m / ημέρα m / ημέρα m / ημέρα /o 0.01 ½ erfc t 0.016t 4-11
12 Για erfc t 0.016t 1.65 t 504 ημέρες 1.4 χρόνια (δ) Σύγκριση (α) (β): για σημαντική ταχύτητα ροής, δεν είναι υπέρ της ασφάλειας να αγνοούμε τη διασπορά. Σύγκριση (β) (γ): μικρότερες τιμές α L (ή, ισοδύναμα, μικρότερη μηχανική διασπορά) δίνουν πιο στενές κατανομές συγκεντρώσεων ρύπου, δηλαδή οι χρόνοι άφιξης μικρών τιμών συγκεντρώσεων είναι πιο κοντά στο χρόνο άφιξης της συγκέντρωσης 0.5 o ή, ισοδύναμα, στο χρόνο άφιξης ρύπου λόγω μεταγωγής [σύγκριση (α) (γ)]. Παράδειγμα 4.: πηγή μεταβλητής έντασης Σε υδατικό δείγμα από ένα δειγματοληπτικό φρέαρ βρίσκεται το 1995 ρύπος σε συγκέντρωση 3500 μg/l. Σε απόσταση 1830m ανάντη του φρέατος βρίσκεται εργοστάσιο το οποίο πιθανολογείται ότι ευθύνεται για τη ρύπανση. Με δεδομένα ότι (α) το εργοστάσιο λειτουργεί μεν συνέχεια από το 1935, αλλά από το 1970 και μετά ελήφθησαν μέτρα ασφαλείας που καθιστούν ελάχιστα πιθανή τη διαρροή του ρύπου στο υπέδαφος και ότι (β) κατά το χρονικό διάστημα είναι δυνατό να υποθέσουμε μια σταθερή, μέση συγκέντρωση ρύπου στο υπόγειο νερό στη θέση της πηγής (του εργοστάσιου δηλαδή) ίση με μg/l, θέλουμε να αξιολογήσουμε αν η συγκέντρωση στο φρέαρ μπορεί πράγματι να είναι αποτέλεσμα διαρροής στο εργοστάσιο. m m m m Δίδονται: και R ημ ετος R ημ ετος 1830 m ΠΡ Νο? Εργοστάσιο: Πιθανός Ρυπαίνων Νο ΠΡ Νο 3? Φρέαρ: Ανίχνευση 1995 ροή Σχήμα 4.3: Κάποια περιστατικά ανίχνευσης ρύπανσης είναι δυνατό να οφείλονται σε περισσότερους του ενός πιθανούς ρυπαίνοντες (ΠΡ). Τι έχουμε να προσέξουμε σ αυτήν την άσκηση; Επειδή ο υπολογισμός της συγκέντρωσης αναφέρεται σε χρόνο μεταγενέστερο της παύσης λειτουργίας της πηγής, δεν μπορούμε να χρησιμοποιήσουμε κατ ευθείαν τη γνωστή λύση της εξίσωσης μεταφοράς του ρύπου (4.19), γιατί αυτή ισχύει μόνο για συγκεκριμένες συνοριακές συνθήκες, οι οποίες περιλαμβάνουν και τη συνθήκη της σταθερής συγκέντρωσης στην πηγή. Μπορούμε όμως να χρησιμοποιήσουμε την αρχή της επαλληλίας για δύο πηγές, επειδή η εξίσωση (4.18) είναι γραμμική: (Ι) μία πηγή που είναι ενεργή το χρονικό διάστημα με συγκέντρωση μg/l και (ΙΙ) μία δεύτερη που είναι ενεργή το με αρνητική συγκέντρωση μg/l (προφανώς πρόκειται για κάποια μαθηματική μανούβρα, η οποία δεν έχει φυσικό ανάλογο, αλλά μας δίνει τη σωστή λύση). Πρώτα θα ελέγξουμε αν μπορούμε να αγνοήσουμε το δεύτερο όρο της εξίσωσης (4.19) όλα καλά! 7 4-1
13 Πηγή (Ι) ενεργή για 60 χρόνια ( ): I (, t) 1 0 erfc 1 t erfc R t R 1 1 m 1830m 78 60ετη ετος erfc m ετη ετος ( 3.64) [ erfc( 3.64) ] 1 ( 1830,60) 5000μg / l Πηγή (ΙΙ) ενεργή για 5 χρόνια ( ): I ( 1830m,5ετη) II erfc 5000μg / l (1830,5) 315μg / l II 1 erfc ( 0.34) Υποθέτοντας λοιπόν ότι ευθύνεται το εργοστάσιο, υπολογίζουμε ότι η ολική συγκέντρωση στο φρέαρ είναι ίση με: (φρέαρ, 1995) I + II μg/l Αυτή η τιμή είναι αρκετά μικρότερη αυτής που μετρήθηκε. Επί πλέον, στο πραγματικό τριδιάστατο πεδίο μεταφοράς του ρύπου, η συγκέντρωση θα είναι ακόμα μικρότερη από την τιμή που βρήκαμε για μονοδιάστατη μεταφορά. Άρα ένα πρώτο συμπέρασμα είναι ότι δεν ευθύνεται το εργοστάσιο, τουλάχιστον όχι αποκλειστικά. Βέβαια οι υπολογισμοί μας περιέχουν αρκετές αβεβαιότητες, οπότε σε μια πραγματική περίπτωση μάλλον θα χρειαστούν πρόσθετα στοιχεία, υπολογισμοί και επί τόπου μελέτες. Παράδειγμα 4.3: απορρύπανση μέσω άντλησης Το Σχήμα 4.4 δείχνει ένα υδροφορέα πάχους 10m ρυπασμένο σε μια έκταση 00m επί 0m με μέση συγκέντρωση o 1000 μg/l. Θεωρούμε μια απλουστευμένη περίπτωση όπου η ρυπασμένη περιοχή περιβάλλεται από καθαρό νερό, και ένα εκτεταμένο σύστημα φρεάτων άντλησης (η συμπεριφορά του οποίου μπορεί να προσεγγιστεί με μια συνεχή τάφρο άντλησης) και επεξεργασίας, που δημιουργεί μονοδιάστατη ροή με φαινόμενη (όπως υπολογίζεται δηλαδή από το νόμο του arc) ταχύτητα ίση με 0.70 m/ημέρα. Με αυτά τα δεδομένα ζητείται να υπολογίσουμε: (α) το χρόνο που θα χρειαστεί για να μειωθεί η συγκέντρωση σε μg/l και (β) τον όγκο νερού που θα έχει αντληθεί έως τότε. φρέατα άντλησης Q 0m 10m ΚΑΤΟΨΗ 100m 0 ΤΟΜΗ 100m Σχήμα 4.4: Άντληση από ρυπασμένη περιοχή 00m 0m μέσης αρχικής συγκέντρωσης o. 4-13
14 Θα χρησιμοποιήσουμε τις εξής παραμέτρους: πορώδες n 0.35, πυκνότητα (ξηρού) εδάφους ρ d 1.6 g/cm 3, συντελεστής διαχωρισμού Κ d 10 l/kg (πολύ μεγάλη τιμή!) και συντελεστής διαμήκους μηχανικής διασποράς α 1m (θα αγνοήσουμε τη διάχυση). L ΛΥΣΗ: Θα χρησιμοποιήσουμε την αρχή της επαλληλίας και τη γνωστή λύση της εξίσωσης μεταγωγήςδιάχυσης/διασποράς. Το κόλπο είναι να περιγράψουμε την κίνηση του καθαρού νερού σαν μια πηγή αρνητικής συγκέντρωσης, όπως φαίνεται στο πιο κάτω σκαρίφημα. +o +o Λύση I t Λύση I -o Λύση II Λύση II -o Διάγραμμα συγκέντρωσης στην πηγή (100m), για κάθε t Διάγραμμα συγκέντρωσης στον υδροφορέα, για σταθερό t Αρχή της επαλληλίας Στην πηγή, στο όριο δηλαδή της ρυπασμένης-καθαρής περιοχής (αριστερό διάγραμμα): o I + o II 0, όπου o I 1000 μg/lt, o II μg/lt Στον υδροφορέα (δεξιό διάγραμμα): I + IΙ, όπου I o I 1000 μg/lt και IΙ (o II /) erfc t t Υπολογισμός παραμέτρων: Συντελεστής υστέρησης, R 1 + (ρ d K d )/n 1 + (1.6 g/cm 3 10 cm 3 /g)/ Μέση γραμμική ταχύτητα, /n 0.70 m/ημέρα / 0.35 m/ημέρα Συντελεστής διασποράς, α L 1m m /ημέρα m /ημέρα /R m/ημέρα / m/ημέρα /R m /ημέρα / m /ημέρα 100 Έχουμε ελέγξει ότι 100 (α) I + IΙ μg/lt 1000 μg/lt 1000 μg/lt / erfc Αν β t t erfc β β -.05 κι έτσι κρατάμε μόνο τον πρώτο όρο της εξίσωσης (4.19) t t 4-14
15 Σημείωση: erfc (-.05) erfc (.05) t -.05 t 3750 ημέρες 10 έτη 0.04t (β) όγκος αντλούμενου νερού V αντλ Q t A t 0.70 m/ημέρα (0m 10m) 3750 ημέρες m 3 Σημείωση: Στον υπολογισμό του V αντλ πολλαπλασιάζουμε με για να λάβουμε υπόψη τα δύο τμήματα του υδροφορέα, αριστερά και δεξιά από τα φρέατα άντλησης. Είναι επίσης πολύ σημαντικό να προσέξουμε ότι ενώ στον υπολογισμό της ποσότητας νερού που κινείται στο υπέδαφος χρησιμοποιούμε την ταχύτητα arc (ταχύτητα ανηγμένη στην συνολική επιφάνεια μιας διατομής), στον υπολογισμό της μεταφοράς του ρύπου λόγω μεταγωγής χρησιμοποιούμε τη μέση γραμμική ταχύτητα (ταχύτητα ανηγμένη στην επιφάνεια των εδαφικών πόρων μιας διατομής). Χρησιμεύει πρακτικά να συγκρίνουμε τον όγκο του αντλούμενου νερού με τον όγκο νερού πόρων, για να ξέρουμε πόσες φορές πρέπει να αδειάσουμε τον υδροφορέα για να πετύχουμε τη ζητούμενη αποκατάσταση. V w V n 00m 0m 10m m 3 Βρίσκουμε ότι χρειάζεται να αντλήσουμε όγκο ίσο με 75 φορές το περιεχόμενο του υδροφορέα, V w, για να μειωθεί η συγκέντρωση από 1000 μg/lt σε μg/lt. Αυτό το μεγάλο πολλαπλάσιο είναι μη ρεαλιστικό, παρ όλο που ο χρόνος απορρύπανσης που υπολογίσαμε είναι ικανοποιητικός. 4.6 Κύρια σημεία του κεφαλαίου Αναφερθήκαμε στις διεργασίες που πρέπει να ληφθούν υπόψη στον υπολογισμό της ροής μάζας και τις περιγράψαμε μαθηματικά: διακρίναμε μεταξύ μεταφοράς ρύπου λόγω κλίσης υδραυλικού φορτίου (δηλαδή μεταγωγής) και λόγω κλίσης συγκέντρωσης (δηλαδή διάχυσης). Είδαμε τη διαφορική εξίσωση που περιγράφει το φαινόμενο της μεταφοράς ρύπων στη γενική περίπτωση, καθώς και λύσεις της εξίσωσης για επί μέρους περιπτώσεις όπου μπορούμε να απλουστεύσουμε τη γεωμετρία ή τις συνοριακές συνθήκες του προβλήματος. Αυτές οι λύσεις μάς βοηθάνε να προσεγγίσουμε το πρόβλημα της εξάπλωσης της ρύπανσης και να ποσοτικοποιήσουμε τις επιπτώσεις της ή να προβλέψουμε την απόκριση του ρυπασμένου υδροφορέα σε μέτρα απορρύπανσης. 4.7 Βιβλιογραφικές αναφορές omenico, P.A. and F.W. Schwart (1990). Phsical and hemical Hdrogeolog, Wile. Fetter,.W. (1999). ontaminant Hdrogeolog, nd edition, Prentice Hall. Freee, R.A. and J.A. herr (1979). Groundwater, Prentice Hall. USEPA (005). EPA On-line Tools for Site Assessment alculation,
16 Τιμές της συνάρτησης σφάλματος erf() και της συμπληρωματικής συνάρτησης σφάλματος erfc(), για θετικές τιμές erf() erfc() erf() erfc() erf ( ) ε e dε π 0 erfc( ) 1 erf ( ) erf ( ) erf ( ) erfc( ) 1 erf ( ) 1+ erf ( ) 1+ 1 erfc( ) erfc( ) 4-16
Mεταφορά διαλυμένου ρύπου σε κορεσμένο έδαφος: Μαθηματική περιγραφή
Mεταφορά διαλυμένου ρύπου σε κορεσμένο έδαφος: Μαθηματική περιγραφή Βασικό ερώτημα: Πού θα πάει ο ρύπος; Παρουσίαση 3 από 4 Tρία λυμένα παραδείγματα & μαθησιακοί στόχοι (έως τώρα) Τρία ερωτήματα μεταφοράς
Διαβάστε περισσότεραΤρία ερωτήματα μεταφοράς. Που πρέπει να γίνουν «άσκηση», και να λυθεί η άσκηση για να απαντηθεί το ερώτημα...
Τρία ερωτήματα μεταφοράς Που πρέπει να γίνουν «άσκηση», και να λυθεί η άσκηση για να απαντηθεί το ερώτημα... Ερώτημα Άσκηση Lundell-Sällfors and Sällfors (2000) Τι μπορώ να «πετάξω»; Πού πρέπει να εστιάσω;
Διαβάστε περισσότεραΤο πρόβλημα. 15m. ταμιευτήρας. κανάλι
Το πρόβλημα Μετά από ατύχημα, ρύπος (τριχλωροαιθένιο διαλυμένο στο νερό) διαρρέει στον ταμιευτήρα στο πιο κάτω σχήμα. Υπάρχει ανησυχία για το πόσο γρήγορα θα επηρεαστεί κανάλι στα κατάντη αν δεν ληφθούν
Διαβάστε περισσότεραΠεριβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό
Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό Λυμένες ασκήσεις Πότε θα φτάσει η ρύπανση στο κανάλι; Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδειες
Διαβάστε περισσότεραΚΟΡΕΣΜΕΝΟ ΕΔΑΦΟΣ ΜΕΤΑΦΟΡΑ ΡΥΠΟΥ ΛΟΓΩ ΜΕΤΑΓΩΓΗΣ. Σχόλιο: ίδια έκφραση για ροή ρευστού σε αγωγό ή πορώδες μέσο V V
ΚΟΡΕΣΜΕΝΟ ΕΔΑΦΟΣ ΜΕΤΑΦΟΡΑ ΡΥΠΟΥ ΛΟΓΩ ΜΕΤΑΓΩΓΗΣ Ροή μάζας ρύπου = Μάζα / (χρόνος επιφάνεια) = (όγκος συγκέντρωση) / (χρόνος επιφάνεια) = (παροχή συγκέντρωση) / (επιφάνεια) Για μονοδιάστατη ροή, η φαινόμενη
Διαβάστε περισσότεραΑΠΟΚΑΤΑΣΤΑΣΗ ΡΥΠΑΣΜΕΝΩΝ ΧΩΡΩΝ ΣΧΟΛΙΑ ΓΙΑ ΤΕΧΝΟΛΟΓΙΕΣ ΓΙΑ ΤΙΣ ΟΠΟΙΕΣ ΔΙΝΟΝΤΑΙ ΑΡΙΘΜΗΤΙΚΑ ΠΑΡΑΔΕΙΓΜΑΤΑ
ΑΠΟΚΑΤΑΣΤΑΣΗ ΡΥΠΑΣΜΕΝΩΝ ΧΩΡΩΝ ΣΧΟΛΙΑ ΓΙΑ ΤΕΧΝΟΛΟΓΙΕΣ ΓΙΑ ΤΙΣ ΟΠΟΙΕΣ ΔΙΝΟΝΤΑΙ ΑΡΙΘΜΗΤΙΚΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Σχόλια για 1. άντληση με επεξεργασία - Δοκιμασμένη τεχνολογία - Κατ αρχήν κατάλληλη για κάθε είδος ρύπου
Διαβάστε περισσότεραMεταφορά διαλυμένου ρύπου σε κορεσμένο έδαφος: Μαθηματική περιγραφή
Mεταφορά διαλυμένου ρύπου σε κορεσμένο έδαφος: Μαθηματική περιγραφή Βασικό ερώτημα: Πού θα πάει ο ρύπος; Παρουσίαση από 4 Μεταφορά λόγω μεταγωγής+διάχυσης+διασποράς Ροή μάζας λόγω μεταγωγής Ροή μάζας ρύπου
Διαβάστε περισσότεραΠεριβαλλοντική Γεωτεχνική Θεματική Ενότητα 8 Τεχνολογίες αποκατάστασης υπεδάφους
Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 8 Τεχνολογίες αποκατάστασης υπεδάφους Λυμένες ασκήσεις Απαιτούμενος χρόνος και όγκος άντλησης Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Σχολή Πολιτικών Μηχανικών
Διαβάστε περισσότεραΠεριβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό
Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό Εξισώσεις και λύσεις για τη μεταφορά ρύπων Α Μέρος Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδειες
Διαβάστε περισσότεραΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό Σχόλια για λυμένα προβλήματα Μαθησιακοί στόχοι Άδειες Χρήσης
Διαβάστε περισσότεραMεταφορά διαλυμένου ρύπου σε κορεσμένο έδαφος: Μαθηματική περιγραφή
Mεταφορά διαλυμένου ρύπου σε κορεσμένο έδαφος: Μαθηματική περιγραφή Βασικό ερώτημα: Πού θα πάει ο ρύπος; Παρουσίαση 4 από 4 Γενική εξίσωση μεταφοράς και επιμέρους αναλυτικές λύσεις Επίλυση προβλημάτων
Διαβάστε περισσότεραΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό Μεταφορά λόγω μεταγωγής και υδροδυναμικής διασποράς Άδειες
Διαβάστε περισσότεραΠαραδείγματα μεταφοράς για εφαρμογές αποκατάστασης & σχόλια. Άντληση και επεξεργασία, φυσική εξασθένηση, διάλυση κηλίδας NAPL, περατά διαφράγματα
Παραδείγματα μεταφοράς για εφαρμογές αποκατάστασης & σχόλια Άντληση και επεξεργασία, φυσική εξασθένηση, διάλυση κηλίδας NAPL, περατά διαφράγματα Σχόλια για άντληση με επεξεργασία Δοκιμασμένη τεχνολογία
Διαβάστε περισσότεραMεταφορά διαλυμένου ρύπου σε κορεσμένο έδαφος: Μαθηματική περιγραφή
Mεταφορά διαλυμένου ρύπου σε κορεσμένο έδαφος: Μαθηματική περιγραφή Βασικό ερώτημα: Πού θα πάει ο ρύπος; Παρουσίαση 1 από 4 Μεταφορά λόγω διάχυσης Κύριος στόχος παρουσίασης Γιατί ασχολούμαστε εδώ με τη
Διαβάστε περισσότεραΠεριβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό
Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό Εξισώσεις και λύσεις για τη μεταφορά ρύπων Β Μέρος Μ. Πανταζίδου Αναπληρώτρια Καθηγήτρια ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδειες
Διαβάστε περισσότεραΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό Μεταφορά λόγω διάχυσης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΠρόβλεψη εξέλιξης ρύπανσης. Βασικά ερωτήματα: Πού θα πάει ο ρύπος; Πώς θα συμπεριφερθεί; Τι θα απογίνει;
Πρόβλεψη εξέλιξης ρύπανσης Βασικά ερωτήματα: Πού θα πάει ο ρύπος; Πώς θα συμπεριφερθεί; Τι θα απογίνει; Τι θα απογίνει ο ρύπος; Μηχανισμοί που εμπλέκονται στην εξάπλωση των ρύπων στο έδαφος και στο υπόγειο
Διαβάστε περισσότεραΠεριβαλλοντική Γεωτεχνική Άσκηση από διαγώνισμα
Περιβαλλοντική Γεωτεχνική Άσκηση από διαγώνισμα 007-008 Στο πιο κάτω σχήμα φαίνεται η διερευνητική γεώτρηση Α η οποία διανοίχθηκε από λάθος, όπως αποδείχθηκε εκ των υστέρων, διαμέσου της κορεσμένης ζώνης
Διαβάστε περισσότεραΕθνικό Μετσόβιο Πολυτεχνείο - Σχολή Πολιτικών Μηχανικών Περιβαλλοντική Γεωτεχνική - 2 η σειρά ασκήσεων - 25 Οκτωβρίου, 2018
Καλόν είναι μαζί με τις απαντήσεις να παραδίνετε και την εκφώνηση. Είναι απαραίτητο όταν χρειάζεται να σημειώσετε/μετρήσετε κάτι πάνω στο σχήμα. Υπενθύμιση: οι απαντήσεις σας να είναι σε συρραμμένα φύλλα,
Διαβάστε περισσότεραΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Θεματική Ενότητα 3 Μηχανισμοί Εξάπλωσης της Ρύπανσης Εξέλιξη διαρροής στο υπέδαφος Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΠεριβαλλοντική Γεωτεχνική. Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό
Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό Λυμένες ασκήσεις Πότε θα επηρεαστεί η γεώτρηση από τη ρύπανση στα ανάντη; Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Σχολή Πολιτικών
Διαβάστε περισσότεραΑρχές ροής υπογείων υδάτων
ΚΕΦΑΛΑΙΟ 2 Αρχές ροής υπογείων υδάτων 2.1 Το εφαρμοσμένο πρόβλημα Το κίνητρο για να μελετήσουμε αρχές της υπόγειας ροής μάς το δίνουν μια σειρά ερωτημάτων που ανακύπτουν σε περιστατικά ρύπανσης των υπογείων
Διαβάστε περισσότερα. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.
Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Υδατική ροή
Διαβάστε περισσότεραΠεριβαλλοντική Γεωτεχνική Θεματική Ενότητα 4 Υπόγεια Ροή
Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 4 Υπόγεια Ροή Λυμένες ασκήσεις Χρόνος παραμονής ρύπου σε περατό διάφραγμα Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδειες Χρήσης Το
Διαβάστε περισσότεραΥπόγεια ροή. Παρουσίαση 3 από 4: Ταχύτητα κίνησης υπόγειου νερού & ρύπου. (Tαχύτητα μεταγωγής)
Υπόγεια ροή Παρουσίαση 3 από : Ταχύτητα κίνησης υπόγειου νερού & ρύπου (Tαχύτητα μεταγωγής) Απλό μοντέλο εδαφικής στήλης: συμπαγής κύλινδρος επιφάνειας Α με πολλά κυλινδρικά ανοίγματα R=0.5cm R=1cm =100cm
Διαβάστε περισσότεραΥπόγεια ροή. Εξισώσεις (μονοφασικής) ροής Εξισώσεις πολυφασικής ροής
Υπόγεια ροή Εξισώσεις (μονοφασικής) ροής Εξισώσεις πολυφασικής ροής Ποια προβλήματα λύνονται με ποια εργαλεία; Μονοδιάστατα προβλήματα (ή μονοδιάστατη απλοποίηση -D πεδίων ροής), σταθερή υδραυλική κλίση
Διαβάστε περισσότεραΒ Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής
Διαβάστε περισσότεραΥπόγεια ροή. Παρουσίαση 2 από 4: Νόμος Darcy
Υπόγεια ροή Παρουσίαση 2 από 4: Νόμος Darcy 1 Κύρια ερωτήματα ροής & νόμος Darcy Πόσον όγκο νερού μπορούμε να αντλήσουμε; Σχετικά μεγέθη: ταχύτητα, παροχή σε απλά μονοδιάστατα προβλήματα, τα βρίσκουμε
Διαβάστε περισσότεραΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Θεματική Ενότητα Υπόγεια ροή Ταχύτητα κίνησης υπόγειου νερού και ρύπου Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΕκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων Ενότητα 6: Μεταφορά ρύπων σε υδροφορείς Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου
Διαβάστε περισσότεραΤύποι Διαρροών. Κίνηση Ρύπου. Ανίχνευση Ρύπου. Ρύπος. εμείς τι παίρνουμε χαμπάρι με χημικές αναλύσεις δειγμάτων νερού;
Ρύπος υγρός στερεός Υ 1 Υ 2 διαρροή σε διάλυμα διαρροή σε καθαρή φάση πχ οινόπνευμα, βενζίνη διαλυμένος σε οργανική ουσία διαλυμένος σε νερό σαν Υ 2a ή Υ 2b σαν Υ 1 Τύποι Διαρροών μεταφορά διαλυμένης ουσίας
Διαβάστε περισσότεραΥπόγεια Υδραυλική. 1 η Εργαστηριακή Άσκηση Εφαρμογή Νόμου Darcy
Υπόγεια Υδραυλική 1 η Εργαστηριακή Άσκηση Εφαρμογή Νόμου Darcy Τα υπόγεια υδατικά συστήματα Τα υπόγεια υδατικά συστήματα είναι συγκεντρώσεις υπόγειου νερού, που εμφανίζουν τα χαρακτηριστικά της υπόγειας
Διαβάστε περισσότεραΑπορρόφηση Αερίων (2)
Απορρόφηση Αερίων (2) Λεπτομερής Ανάλυση Θεωρούμε έναν πύργο απορρόφησης που μπορεί να περιέχει δίσκους ή να είναι τύπου πληρωτικού υλικού ή άλλου τύπου. Τελικός σκοπός είναι να βρούμε το μέγεθος του πύργου.
Διαβάστε περισσότεραΡύπανση Υδάτων και Εδαφών
Ρύπανση Υδάτων και Εδαφών Ενότητα: Ενδεικτικές λυμένες ασκήσεις ρύπανσης υδάτων και εδαφών. Τσικριτζής Λάζαρος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραI. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
Διαβάστε περισσότεραΥπόγεια ροή. Παρουσίαση 1 από 4: Κατεύθυνση κίνησης υπόγειου νερού. Περιεχόμενα
Υπόγεια ροή Παρουσίαση 1 από 4: Κατεύθυνση κίνησης υπόγειου νερού Περιεχόμενα 1) Εισαγωγή (κίνητρο μελέτης υπόγειας ροής) 2) Αναζήτηση απάντησης στην ερώτηση «προς τα πού κινείται το υπόγειο νερό» 1 Βασικό
Διαβάστε περισσότεραΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Θεματική Ενότητα 4 Υπόγεια ροή Νόμος Darcy Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΑγωγιμότητα στα μέταλλα
Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo
Διαβάστε περισσότεραΠεριβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό
Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό Οδηγίες χρήσης εκπαιδευτικού λογισμικού Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδειες Χρήσης Το
Διαβάστε περισσότεραΣφαιρικές συντεταγμένες (r, θ, φ).
T T r e r 1 T e r Σφαιρικές συντεταγμένες (r, θ, φ). 1 T e. (2.57) r sin u u e u e u e, (2.58) r r οπότε το εσωτερικό γινόμενο u.t γίνεται: T u T u T u. T ur. (2.59) r r r sin 2.5 Η ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ
Διαβάστε περισσότεραΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ ΙΑΧΥΣΗ Α ΡΑΝΩΝ ΡΥΠΩΝ ΙΑΧΥΣΗ Α ΡΑΝΩΝ ΡΥΠΩΝ Στην αρχική περιοχή
Διαβάστε περισσότεραΑλληλεπίδραση ρύπων εδάφους
Αλληλεπίδραση ρύπων εδάφους Παρουσίαση 1 από 4 Περιεχόμενα 1) Kίνητρο μελέτης αλληλεπίδρασης 2) Έννοιες και όροι 3) Προαπαιτούμενα από φυσικοχημεία & εδαφομηχανική Πώς κατανέμεται ο ρύπος στις εδαφικές
Διαβάστε περισσότεραΣφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης
Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.
Διαβάστε περισσότεραΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Θεματική Ενότητα 4 Υπόγεια ροή Κατεύθυνση κίνησης υπόγειου νερού Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Θεματική Ενότητα 6 Αλληλεπίδραση ρύπων με το έδαφος Αλληλεπίδραση φάσεων στην κορεσμένη ζώνη Άδειες Χρήσης
Διαβάστε περισσότεραΑγωγιμότητα στα μέταλλα
Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo
Διαβάστε περισσότεραΠεριβαλλοντική Γεωτεχνική Θεματική Ενότητα 6 Αλληλεπίδραση ρύπων με το έδαφος
Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 6 Αλληλεπίδραση ρύπων με το έδαφος Υπολογισμός συνολικής μάζας στο έδαφος Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδειες Χρήσης Το
Διαβάστε περισσότεραΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ
Συναρτήσεις Προεπισκόπηση Κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με ένα συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί
Διαβάστε περισσότερα2g z z f k k z z f k k z z V D 2g 2g 2g D 2g f L ka D
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΕΤΑΣΗ ΠΡΟΟΔΟΥ ΝΟΕΜΒΡΙΟΥ 017 Άσκηση 1 1. Οι δεξαμενές Α και Β, του Σχήματος 1, συνδέονται με σωλήνα
Διαβάστε περισσότεραΜαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ
166 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 1. Να αναφέρεται παραδείγματα φαινομένων που μπορούν να ερμηνευτούν με την μελέτη των ρευστών σε ισορροπία. 2. Ποια σώματα ονομάζονται ρευστά;
Διαβάστε περισσότεραΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Θεματική Ενότητα 4 Υπόγεια ροή Εξισώσεις ροής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ 1 .1 ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΙΝΟΥΜΕΝΟΥ ΦΟΡΤΙΟΥ Ας θεωρούμε το μαγνητικό πεδίο ενός κινούμενου σημειακού φορτίου q. Ονομάζουμε τη θέση του φορτίου σημείο πηγής
Διαβάστε περισσότερα20 Ισορροπία στον εξωτερικό τομέα
20 Ισορροπία στον εξωτερικό τομέα Σκοπός Σκοπός αυτού του κεφαλαίου είναι η εξέταση της συνθήκης ισορροπίας του εξωτερικού τομέα. Στο προηγούμενο κεφάλαιο εξετάσαμε τον προσδιορισμό της τιμής του συναλλάγματος
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
Διαβάστε περισσότεραΜαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας
Διαβάστε περισσότερα12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
Διαβάστε περισσότεραΤαχύτητα χημικών αντιδράσεων
Ταχύτητα χημικών αντιδράσεων Η στιγμιαία ταχύτητα μιας αντίδρασης είναι η κλίση της εφαπτομένης στη γραφική παράσταση της συγκέντρωσης ως προς το χρόνο. Για αρνητικές κλίσεις, το πρόσημο αλλάζει, έτσι
Διαβάστε περισσότεραΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Θεματική Ενότητα 6 Αλληλεπίδραση ρύπων με το έδαφος Εισαγωγή Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραMoντελοποίηση Ανοιχτά Ασκήσεις ερωτήματα προς επίλυση 1
Moντελοποίηση Ανοιχτά ερωτήματα Ασκήσεις προς επίλυση 1 Ερώτημα Άσκηση Lundell-Sällfors and Sällfors (2000) Τι μπορώ να «πετάξω»; Πού πρέπει να εστιάσω; 2 Μοντελοποίηση: βασικά συστατικά Στοιχεία κατάστρωσης
Διαβάστε περισσότεραΥπόγεια Υδραυλική και Υδρολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Αναλυτική επίλυση του μαθηματικού ομοιώματος: Σύμμορφη Απεικόνιση Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διαβάστε περισσότεραΛΥΜΕΝΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΟ 2 ο ΚΕΦΑΛΑΙΟ
ΛΥΜΕΝΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΟ 2 ο ΚΕΦΑΛΑΙΟ 1. Έστω συνάρτηση ζήτησης με τύπο Q = 200 4P. Να βρείτε: α) Την ελαστικότητα ως προς την τιμή όταν η τιμή αυξάνεται από 10 σε 12. 1ος τρόπος Αν P 0 10 τότε Q 0 200 410
Διαβάστε περισσότεραΜηχανισμοί εξάπλωσης ρύπων. Βασικό ερώτημα: Πού θα πάει ο ρύπος, πώς θα συμπεριφερθεί;
Μηχανισμοί εξάπλωσης ρύπων Βασικό ερώτημα: Πού θα πάει ο ρύπος, πώς θα συμπεριφερθεί; Πού θα πάει ο ρύπος, πώς θα συμπεριφερθεί; Τι είδους απάντηση μπορεί να είναι ικανοποιητική; Τι πρέπει να ξέρω για
Διαβάστε περισσότεραΙΔΙΟΤΗΤΕΣ ΤΟΥ ΕΔΑΦΟΥΣ
ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΕΔΑΦΟΥΣ Το αντικείμενο της εδαφομηχανικής είναι η μελέτη των εδαφών, με στόχο την κατανόηση και πρόβλεψη της συμπεριφοράς του εδάφους για μία ποικιλία σκοπών: συμπεριλαμβανομένων των θεμελίων
Διαβάστε περισσότεραΟι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς.
ΤΙΜΗ ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ: Η ΖΗΤΗΣΗ Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς. Χρησιμότητα ενός αγαθού, για τον καταναλωτή, είναι η ικανοποίηση
Διαβάστε περισσότεραΣτο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι
Ερωτήσεις θεωρίας - Θέμα Β Εκφώνηση 1η Στο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι α) β) γ) Λύση Εκφώνηση 2η Στο διπλανό υδραυλικό
Διαβάστε περισσότεραkg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)
ΕΙΣΑΓΩΓΗ- ΦΥΣΙΚΑ ΜΕΓΕΘΗ Στα φυσικά φαινόμενα εμφανίζονται κάποιες ιδιότητες της ύλης. Για να περιγράψουμε αυτές τις ιδιότητες χρησιμοποιούμε τα φυσικά μεγέθη. Τέτοια είναι η μάζα, ο χρόνος, το ηλεκτρικό
Διαβάστε περισσότεραΠεριεχόμενα μεθόδευση του μαθήματος
Περιεχόμενα μεθόδευση του μαθήματος. Πως ορίζεται η έννοια. Το όριο. To f() f() ; f() εφόσον υπάρχει είναι μονοσήμαντα ορισμένο; εξαρτιέται από τα άκρα α, β των ( α, ) και (, β ) ;. Πως ορίζονται τα πλευρικά
Διαβάστε περισσότεραΣφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης
Η Εξίσωση Euler-Lagrange Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους
Διαβάστε περισσότεραΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Θεματική Ενότητα 5 Μοντελοποίηση Προβλήματα μεταγωγής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΚεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ
Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Σύνοψη Αυτό το κεφάλαιο έχει επίσης επαναληπτικό χαρακτήρα. Σε πρώτο στάδιο διερευνάται η μορφή της καμπύλης την οποία γράφει το
Διαβάστε περισσότεραΚεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,
Διαβάστε περισσότερα(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η
ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Σειρά Ασκήσεων σε Συναγωγή Θερμότητας Οι λύσεις θα παρουσιαστούν στις παραδόσεις του μαθήματος μετά την επόμενη εβδομάδα. Για να σας φανούν χρήσιμες στην κατανόηση της ύλης του μαθήματος,
Διαβάστε περισσότεραΗ Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση
Διαβάστε περισσότεραΌλα τα θέματα είναι ισοδύναμα από άποψη βαθμού. Σύνολο: 10.5 (προβλήματα: 4x2.5=10, κρίση επίτευξης στόχων βλέπε πιο κάτω: 0.5)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ: ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ (9 ο Εξ. ΠΜ) Ακαδ. έτος: 2014-15 16 Φεβρουαρίου 2015 Διάρκεια: 2.5 h Όνομα: Οδηγίες/επεξηγήσεις/συμβουλές
Διαβάστε περισσότεραΜιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε
Διαβάστε περισσότερα3 η Εργαστηριακή Άσκηση
3 η Εργαστηριακή Άσκηση Βρόχος υστέρησης σιδηρομαγνητικών υλικών Τα περισσότερα δείγματα του σιδήρου ή οποιουδήποτε σιδηρομαγνητικού υλικού που δεν έχουν βρεθεί ποτέ μέσα σε μαγνητικά πεδία δεν παρουσιάζουν
Διαβάστε περισσότεραηλεκτρικό ρεύμα ampere
Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα είναι ο ρυθμός με τον οποίο διέρχεται ηλεκτρικό φορτίο από μια περιοχή του χώρου. Η μονάδα μέτρησης του ηλεκτρικού ρεύματος στο σύστημα SI είναι το ampere (A). 1 A =
Διαβάστε περισσότεραΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ
ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για
Διαβάστε περισσότερα4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ 1. Οι δυναμικές γραμμές ηλεκτροστατικού πεδίου α Είναι κλειστές β Είναι δυνατόν να τέμνονται γ Είναι πυκνότερες σε περιοχές όπου η ένταση του πεδίου είναι μεγαλύτερη δ Ξεκινούν
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ
1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..
Διαβάστε περισσότεραΠεριβαλλοντική Γεωτεχνική: Βασικά ερωτήματα (3/10/2016)
Περιβαλλοντική Γεωτεχνική: Βασικά ερωτήματα (3/10/2016) Ποιος είναι ο κίνδυνος; Πού θα πάει ο ρύπος, πώς θα συμπεριφερθεί; Τι μπορούμε να κάνουμε για να μειώσουμε τον κίνδυνο; Πότε τα πράγματα* είναι σχετικά
Διαβάστε περισσότερα4 Το άτομο ως παραγωγός (η προσφορά των αγαθών)
4 Το άτομο ως παραγωγός (η προσφορά των αγαθών) Σκοπός Στο προηγούμενο κεφάλαιο εξετάσαμε τη ζήτηση των αγαθών, η οποία προέρχεται από τα νοικοκυριά (τους καταναλωτές). Τα αγαθά αυτά παράγονται και προσφέρονται
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Διαβάστε περισσότεραΣυσχέτιση μεταξύ δύο συνόλων δεδομένων
Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,
Διαβάστε περισσότεραΓια την επίλυση αυτής της άσκησης, αλλά και όλων των παρόμοιων χρησιμοποιούμε ιδιότητες των αναλογιών (χιαστί)
ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΟΥ ΑΦΟΡΟΥΝ ΔΙΑΛΥΜΑΤΑ Οι ασκήσεις διαλυμάτων που αφορούν τις περιεκτικότητες % w/w, % w/v και % v/v χωρίζονται σε 3 κατηγορίες: α) Ασκήσεις όπου πρέπει να βρούμε ή
Διαβάστε περισσότεραΦυσική Γ Θετ. και Τεχν/κης Κατ/σης ΚΥΜΑΤΑ ( )
ΚΥΜΑΤΑ ( 2.1-2.2) Για τη δημιουργία ενός κύματος χρειάζονται η πηγή της διαταραχής ή πηγή του κύματος, δηλαδή η αιτία που θα προκαλέσει τη διαταραχή και ένα υλικό (μέσο) στο οποίο κάθε μόριο αλληλεπιδρά
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ
ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ 1. Τι πρέπει να κατανοήσει ο μαθητής Το κεφάλαιο εξετάζει την προσφορά των αγαθών, η οποία βασίζεται στη θεωρία παραγωγής και στη συμπεριφορά της επιχείρησης. Στο
Διαβάστε περισσότεραΗ ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ
Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Οι Ενόργανες Μέθοδοι Ανάλυσης είναι σχετικές μέθοδοι και σχεδόν στο σύνολο τους παρέχουν την αριθμητική τιμή μιας φυσικής ή φυσικοχημικής ιδιότητας, η
Διαβάστε περισσότεραΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.
Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΓΩΓΟΣ VENTURI ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα
ΠΑΡΑΡΤΗΜΑ Γ Επικαμπύλια και Επιφανειακά Ολοκληρώματα Η αναγκαιότητα για τον ορισμό και την περιγραφή των ολοκληρωμάτων που θα περιγράψουμε στο Παράρτημα αυτό προκύπτει από το γεγονός ότι τα μεγέθη που
Διαβάστε περισσότεραΣυνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Διαβάστε περισσότεραΤμήμα Τεχνολογίας Τροφίμων. Ανόργανη Χημεία. Ενότητα 11 η : Χημική ισορροπία. Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής.
Τμήμα Τεχνολογίας Τροφίμων Ανόργανη Χημεία Ενότητα 11 η : Χημική ισορροπία Οκτώβριος 2018 Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής Η Κατάσταση Ισορροπίας 2 Πολλές αντιδράσεις δεν πραγματοποιούνται
Διαβάστε περισσότεραΔιαφορική ανάλυση ροής
Διαφορική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών ΜΕ και ΔΕ ροής: Διαφορές Οριακές και αρχικές συνθήκες Οριακές συνθήκες: Φυσική σημασία αλληλεπίδραση του όγκου ελέγχου με το περιβάλλον
Διαβάστε περισσότεραιόδευση των πληµµυρών
ιόδευση των πληµµυρών Με τον όρο διόδευση εννοούµε τον υπολογισµό του πληµµυρικού υδρογραφήµατος σε µια θέση Β στα κατάντη ενός υδατορρεύµατος, όταν αυτό είναι γνωστό σε µια θέση Α στα ανάντη ή αντίστοιχα
Διαβάστε περισσότεραΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Θεματική Ενότητα 3 Μηχανισμοί Εξάπλωσης της Ρύπανσης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΗ αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb
Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb Ν u Τ 81 Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb 82 Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb 83 Η αστοχία στα εδαφικά υλικά Νόμος Τριβής
Διαβάστε περισσότερα