Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb
|
|
- Πρίσκα Σερπετζόγλου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb Ν u Τ 81
2 Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb 82
3 Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb 83
4 Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb Τριβή κόκκων φ μ Αλληλεμπλοκή κόκκων φ ψ Ν Τ Μοντέλο ολισθαίνοντος σώματος Ν φ ψ Τ 84
5 Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb 85
6 Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb 86
7 Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb 87
8 Μηχανική συμπεριφορά εδαφών υπό «αστράγγιστες συνθήκες» Μηδενική ανάπτυξη υδατικών υπερπιέσεων (u=p w =0): Απουσία ασυμπίεστου ρευστού στο πορώδες. Δυνατότητα γρήγορης στράγγισης χωρίς ανάπτυξη υπερπιέσεων. u = p w = 0 σ = σ 88
9 Δσ v Ανάπτυξη υδατικών υπερπιέσεων υπό συνθήκες μονοδιάστατης συμπίεσης Εδαφικό δοκίμιο πλήρως κορεσμένο ύδατος 89
10 Ανάπτυξη υδατικών υπερπιέσεων υπό συνθήκες ισότροπης συμπίεσης Δσ c Δσ c Εδαφικό δοκίμιο πλήρως κορεσμένο ύδατος 90
11 Ανάπτυξη υδατικών υπερπιέσεων υπό συνθήκες απλής διάτμησης Απροφόρτιστη άργιλος Δσ v Δτ Δτ τ Δσ h ε v =ΔV/V γ Εδαφικό δοκίμιο πλήρως κορεσμένο ύδατος ελεύθερη διαφυγή ύδατος από τους πόρους του δοκιμίου γ 91
12 Ανάπτυξη υδατικών υπερπιέσεων υπό συνθήκες απλής διάτμησης Απροφόρτιστη άργιλος Εδαφικό δοκίμιο πλήρως κορεσμένο ύδατος αδύνατη η διαφυγή του ύδατος από τους πόρους του δοκιμίου Δτ = Δτ + Δσ ε v =ΔV/V=0 Μείωση όγκου ΔV>0, Δu=0 Αύξηση όγκου ΔV<0, Δσ <0 92
13 Ανάπτυξη υδατικών υπερπιέσεων υπό συνθήκες απλής διάτμησης Απροφόρτιστη άργιλος τ Πλήρης στράγγιση Δu=0 Αστράγγιστες συνθήκες Δu>0 Δu γ Αστράγγιστες συνθήκες Δu=αΔτ τ Δu γ Πλήρης στράγγιση 93 σ
14 Ανάπτυξη υδατικών υπερπιέσεων υπό συνθήκες απλής διάτμησης Προφορτισμένη άργιλος Δσ v Δτ Δτ τ Δσ h Εδαφικό δοκίμιο πλήρως κορεσμένο ύδατος ελεύθερη διαφυγή ύδατος από τους πόρους του δοκιμίου ε v =ΔV/V γ γ 94
15 Ανάπτυξη υδατικών υπερπιέσεων υπό συνθήκες απλής διάτμησης Προφορτισμένη άργιλος Εδαφικό δοκίμιο πλήρως κορεσμένο ύδατος αδύνατη η διαφυγή του ύδατος από τους πόρους του δοκιμίου Δτ Δτ Δσ = + ε v =ΔV/V=0 Αύξηση όγκου ΔV<0, Δu=0 Μείωση όγκου ΔV>0, Δσ >0 95
16 Ανάπτυξη υδατικών υπερπιέσεων υπό συνθήκες απλής διάτμησης Προφορτισμένη άργιλος τ Αστράγγιστες συνθήκες Δu<0 Πλήρης στράγγιση Δu=0 Δu γ τ Δu γ Πλήρης στράγγιση Αστράγγιστες συνθήκες Δu=αΔτ 96 σ
17 Ανάπτυξη υδατικών υπερπιέσεων υπό συνθήκες τριαξονικής θλίψης Εδαφικό δοκίμιο πλήρως κορεσμένο ύδατος Δσ 1 =Δσ c +Δσ d Δσ 2 =Δσ 3 =Δσ c Δσ 3 =Δσ 2 =Δσ c 97
18 σ 1 -σ 3 Ανάπτυξη υδατικών υπερπιέσεων υπό συνθήκες τριαξονικής θλίψης Χαλαρή/Πυκνή άμμος Πλήρης στράγγιση Δu=0 σ 1 -σ 3 Αστράγγιστες συνθήκες Δu<0 Δu Αστράγγιστες συνθήκες Δu>0 ε 1 Αστράγγιστες συνθήκες Δu Πλήρης στράγγιση Δu Πλήρης στράγγιση Δu=0 γ Πλήρης στράγγιση γ τ Δu ε 1 τ Αστράγγιστες συνθήκες Δu Δu σ σ 98
19 Ανάπτυξη υδατικών υπερπιέσεων υπό συνθήκες τριαξονικής θλίψης Παράμετρος Α 99
20 τ Η έννοια της τασικής όδευσης ή διαδρομή των τάσεων (σ 1 -σ 3 )/2 t (σ 1 -σ 3 )/2 σ 3 (σ σ 1 1 +σ 3 )/2 σ q σ 1 -σ 3 (σ 1 +σ 3 )/2 s (σ 1 + σ 2 +σ 3 )/3 100 p
21 Παραδείγματα ολικών τασικών οδεύσεων q or t ΑΣΚΗΣΗ: Βρείτε την κλίση των ολικών (dq/dp) και ενεργών (dq/dp ) τασικών οδεύσεων για τις κάτωθι εντατικές καταπονήσεις. Απλή διάτμηση Τριαξονική συμπίεση Μονοδιάστατη συμπίεση Ισότροπη συμπίεση (p 0 or s 0,0) p or s 101
22 Αστράγγιστη διατμητική αντοχή η έννοια της «φ=0» 3 εδαφικά δοκίμια πλήρως κορεσμένα ύδατος. Αρχική εντατική κατάσταση και για τα 3 δοκίμια: σ 1 =σ 2 =σ 3 =100kPa, u=0kpa. Επιβολή ισότροπης συμπίεσης/εφελκυσμού σε αστράγγιστες συνθήκες: Δσ c1 =-80kPa, Δσ c2 =50kPa, Δσ c3 =150kPa. Επιβολή τριαξονικής θλίψης μέχρι αστοχία δοκιμίου. Δσ d =70kPa. σ 1 τ [kpa] σ 2 =σ 3 σ 3 =σ 2 s u σ 1 20 σ σ [kpa] 102
23 Υδατική ροή διαμέσου του εδάφους Εδάφη: Διαπερατοί σχηματισμοί με ανοικτό πορώδες το οποίο δημιουργεί συνεχείς διόδους ροής ρευστού. Η μελέτη της υδατικής ροής διάμεσω εδαφών μας ενδιαφέρει στον υπολογισμό των παροχών διαρροής, π.χ. φράγματα, καταβιβασμό υπόγειου υδροφορέα, στον υπολογισμό της χρονικής εξέλιξης καθιζήσεων και στον υπολογισμό των ενεργών τάσεων & αντοχής σε ευστάθεια πρανών, υποσκαφές, αντίστηρίξεις. 103
24 Υπενθύμιση από τη Μηχανική των ρευστών Παραδοχές: (α) Μόνιμη ροή (β) Ασυμπίεστο ρευστό z A v Β v 104
25 Ο νόμος του Henry D Arcy Henry Darcy, k:= Συντελεστής διαπερατότητας ή διαπερατότητα [m/sec] 105
26 13/12/2010 Εδαφομηχανική Ι, Τμήμα Πολιτικών Μηχανικών, Πολυτεχνική Σχολή Θεσσαλίας 106
27 Μέτρηση διαπερατότητας μέσω δοκιμής σταθερού υδραυλικού φορτίου 13/12/2010 Εδαφομηχανική Ι, Τμήμα Πολιτικών Μηχανικών, Πολυτεχνική Σχολή Θεσσαλίας 107
28 Μέτρηση διαπερατότητας μέσω δοκιμής μεταβαλλόμενου υδραυλικού φορτίου 13/12/2010 Εδαφομηχανική Ι, Τμήμα Πολιτικών Μηχανικών, Πολυτεχνική Σχολή Θεσσαλίας 108
29 Εμπειρικές σχέσεις υπολογισμού διαπερατότητας 13/12/2010 Εδαφομηχανική Ι, Τμήμα Πολιτικών Μηχανικών, Πολυτεχνική Σχολή Θεσσαλίας 109
30 Μεταβολή ενεργών τάσεων λόγω υδατικής ροής z 4 Δh=z 4 -z 3 z 3 u L z 2 z h z z 1 γ w (z 3 -z 1 ) (γ-γ w )(z 2 -z 1 ) γ(z 2 -z 1 )+γ w (z 3 -z 2 ) z 3 Βαλβίδα κλειστή Υδροστατικές συνθήκες σ =γ(z 2 -z 1 )+γ w (z 3 -z 2 )-γ w (z 3 -z 1 )= (γ-γ w )(z 2 -z 1 )= σ-u=γ L 13/12/2010 Εδαφομηχανική Ι, Τμήμα Πολιτικών Μηχανικών, Πολυτεχνική Σχολή Θεσσαλίας 110
31 Μεταβολή ενεργών τάσεων λόγω υδατικής ροής z 4 Δh=z 4 -z 3 z 3 z 3 L u z h z z 1 γ w (z 4 -z 1 ) γ(z 2 -z 1 )+γ w (z 3 -z 2 ) Βαλβίδα ανοικτή Συνθήκες ροής 13/12/2010 σ =γ(z 2 -z 1 )+γ z 2 w (z 3 -z 2 )-γ w (z 4 -z 1 )= γ(z 2 -z 1 )+γ w (z 3 -z 2 )-γ w (z 3 -z 1 )-γ w Δh= (γ-γ w )(z 2 -z 1 ) γ w Δh=γ L-γ w Δh z 3 z 4 Εδαφομηχανική Ι, Τμήμα Πολιτικών Μηχανικών, Πολυτεχνική Σχολή Θεσσαλίας σ =0 όταν i=i cr =Δh/L=γ /γ w 111
32 Στερεοποίηση εδαφικού στοιχείου Διαδικασία κατά την οποία πραγματοποιείται διαφυγή του ρευστού των πόρων του εδάφους λόγω εξωτερικής φόρτισης και αύξηση της συνολικής αντοχής του υλικού με παράλληλη μείωση των κενών του. Παράδειγμα από δοκιμή μονοδιάστατης συμπίεσης: σ v Διαφυγή ρευστού των πόρων κατά την επιβολή της εξωτερικής φόρτισης σ v. 112
33 Μηχανικό ανάλογο της διαδικασίας στερεοποίησης 113
34 Βασικές παραδοχές θεωρίας μονοδιάστατης στερεοποίησης Ομογενές εδαφικό υλικό. Πλήρως κορεσμένο εδαφικό υλικό (S r =100%). Ασυμπιεστότητα στερεάς και ρευστής φάσεως (C s, C w ). Μονοδιάστατη συμπίεση, γραμμική σχέση μεταξύ τάσεων και παραμορφώσεων, μικρές παραμορφώσεις (σ v =Dε v ). Μονοδιάστατη ροή, νόμος Darcy για υδατική ροή διαμέσω εδάφους (v=-ki). Εξίσωση συνέχειας ως προς την εισροή-εκροή ρευστού των πόρων. Καταστατικός νόμος ενεργών τάσεων κατά Terzaghi (σ=σ +u). 114
35 Εξίσωση μονοδιάστατης στερεοποίησης 115
36 Εξίσωση μονοδιάστατης στερεοποίησης Συντελεστής στερεοποίησης c v 116
37 Επίλυση της εξίσωσης μονοδιάστατης στερεοποίησης Δσ v z 2H Αναζήτηση λύσης της μορφής: u(z,t)=f(z) G(t) Αρχικές συνθήκες (t=0): u(z,0)=δσ v Συνοριακές συνθήκες (t>0): u(0,t)=u(2h,t)=0 117
38 Επίλυση της εξίσωσης μονοδιάστατης στερεοποίησης 118
39 Επίλυση της εξίσωσης μονοδιάστατης στερεοποίησης Η αρχική συνθήκη για t=0 δεν μπορεί να ισχύσει!!! 119
40 Επίλυση της εξίσωσης μονοδιάστατης στερεοποίησης Η αρχική συνθήκη για t=0 μπορεί τώρα να ισχύσει!!! 120
41 Η λύση της εξίσωσης μονοδιάστατης στερεοποίησης 121
42 Χρονική εξέλιξη καθίζησης στην επιφάνεια Καθίζηση στο τέλος της στερεοποίησης Καθίζηση μετά από χρόνο t από την εφαρμογή της φόρτισης 122
43 Προσεγγιστικές σχέσεις χρονικής εξέλιξης βαθμού στερεοποίησης after Casagrande (1932) & Taylor (1948) 123
44 Γενικές παρατηρήσεις επί φαινομένου στερεοποίησης Ο χρόνος στερεοποίησης t c : αυξάνεται με την συμπιεστότητα m v αυξάνεται με το πάχος της στρώσης Η μειώνεται με την αύξηση της διαπερατότητας k είναι ανεξάρτητος της φόρτισης Δσ v 124
45 Μετάδοση τάσεων λόγω επιβολής εξωτερικών φορτίων στο έδαφος P q p p 125
46 Συγκεντρωμένο φορτίο P σε ελαστικό ημίχωρο (Ε,ν) Το πρόβλημα του Boussinesq (1885) P 126
47 Η λύση στο πρόβλημα του Boussinesq (1885) 127
48 Συγκεντρωμένο φορτίο P Κατανομή σ z 128
49 Συγκεντρωμένο φορτίο P Κατανομή τ rz 129
50 Συγκεντρωμένο φορτίο P Κατανομή σ z 130
51 Συγκεντρωμένο φορτίο P Ισοτασικές καμπύλες σ z 131
52 Συγκεντρωμένο φορτίο P Ισοτασικές καμπύλες τ rz 132
53 Γραμμικό φορτίο q σε ελαστικό ημίχωρο (Ε,ν) q 133
54 Γραμμικό φορτίο q σε ελαστικό ημίχωρο (Ε,ν) 134
55 Γραμμικό φορτίο q Κατανομή σ z 135
56 Γραμμικό φορτίο q Κατανομή σ z 136
57 Γραμμικό φορτίο q Κατανομή σ y 137
58 Γραμμικό φορτίο q Κατανομή τ yz 138
59 Γραμμικό φορτίο q Ισοτασικές καμπύλες σ z 139
60 Γραμμικό φορτίο q Ισοτασικές καμπύλες σ y 140
61 Γραμμικό φορτίο q Ισοτασικές καμπύλες τ yz 141
62 Γραμμικό φορτίο q Ισοτασικές καμπύλες σ 1 142
63 Γραμμικό φορτίο q Ισοτασικές καμπύλες σ R 143
64 Ομοιόμορφο φορτίο p (απειρομήκης λωρίδα) σε ελαστικό ημίχωρο 2b p 144
65 Ομοιόμορφο φορτίο p (απειρομήκης λωρίδα) σε ελαστικό ημίχωρο 145
66 Απειρομήκης λωρίδα p Κατανομή σ z 146
67 Απειρομήκης λωρίδα p Κατανομή σ z 147
68 Απειρομήκης λωρίδα p Κατανομή σ y 148
69 Απειρομήκης λωρίδα p Κατανομή σ y 149
70 Απειρομήκης λωρίδα p Κατανομή τ yx 150
71 Απειρομήκης λωρίδα p Ισοτασικές καμπύλες σ 1 151
72 Απειρομήκης λωρίδα p Ισοτασικές καμπύλες σ 3 152
73 Απειρομήκης λωρίδα p Ισοτασικές καμπύλες τ max 153
74 Ομοιόμορφο κυκλικό φορτίο p σε ελαστικό ημίχωρο 2R p Δεν υπάρχουν αναλυτικές εκφράσεις για τις τάσεις και προσφεύγουμε στη χρήση αδιάστατων καμπύλων, οι οποίες προκύπτουν από αριθμητικές ολοκληρώσεις 154
75 Ομοιόμορφο κυκλικό φορτίο p Κατανομή σ z Η κατακόρυφη τάση σ z για (y=r=0) ήτοι για το κέντρο του κύκλου, δίνεται αναλυτικά: 155
76 Ομοιόμορφο κυκλικό φορτίο p Κατανομή σ z στο κέντρο της κυκλικής επιφάνειας 156
77 Σύγκριση κυκλικού φορτίου και απειρολωρίδας Κατανομή τάσεων σ z στο κέντρο 157
Εδαφομηχανική Ι. Ανώτατη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης Τμήμα Πολιτικών Έργων Υποδομής. Ιωάννης-Ορέστης Γεωργόπουλος
Ανώτατη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης Τμήμα Πολιτικών Έργων Υποδομής Εδαφομηχανική Ι Ιωάννης-Ορέστης Γεωργόπουλος Δρ Πολιτικός Μηχανικός Ε.Μ.Π., Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Εργαστήριο
Διαβάστε περισσότεραΤελική γραπτή εξέταση διάρκειας 2,5 ωρών
τηλ: 410-74178, fax: 410-74169, www.uth.gr Τελική γραπτή εξέταση διάρκειας,5 ωρών Ονοματεπώνυμο: Αριθμός Μητρώου Φοιτητή: Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης-Ορέστης Σ. Γεωργόπουλος,
Διαβάστε περισσότεραΕδαφομηχανική. Εισηγητής: Αλέξανδρος Βαλσαμής
Εισηγητής: Αλέξανδρος Βαλσαμής Εδαφομηχανική Μηχανική συμπεριφορά: - Σχέσεις τάσεων και παραμορφώσεων - Μονοδιάστατη Συμπίεση - Αστοχία και διατμητική αντοχή Παραμορφώσεις σε συνεχή μέσα ε vol =-dv/v=ε
Διαβάστε περισσότεραΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΔΟΚΙΜΗΣ:
ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΔΟΚΙΜΗΣ: Στερεοποίηση Εδαφών Επιστημονικός Συνεργάτης: Δρ. Αλέξανδρος Βαλσαμής, Πολιτικός Μηχανικός Εργαστηριακός Υπεύθυνος: Παναγιώτης Καλαντζάκης, Καθηγητής Εφαρμογών Εργαστηριακοί
Διαβάστε περισσότεραΜηχανική Συμπεριφορά Εδαφών. Νικόλαος Σαμπατακάκης Νικόλαος Δεπούντης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας
Μηχανική Συμπεριφορά Εδαφών Νικόλαος Σαμπατακάκης Νικόλαος Δεπούντης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Σκοποί ενότητας Η κατανόηση των βασικών χαρακτηριστικών του εδάφους που οριοθετούν τη μηχανική
Διαβάστε περισσότεραα) Προτού επιβληθεί το φορτίο q οι τάσεις στο σημείο Μ είναι οι γεωστατικές. Κατά συνέπεια θα είναι:
6 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Μιχάλης Μπαρδάνης, Υποψήφιος Διδάκτορας ΕΜΠ Για την επίλυση των ασκήσεων σειράς αυτής αρκούν οι σχέσεις και οι πίνακες που παρατίθενται στα οικεία κεφάλαια
Διαβάστε περισσότερα. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.
Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Υδατική ροή
Διαβάστε περισσότεραΔΙΑΛΕΞΗ 2 Θεωρία Κρίσιμης Κατάστασης Αργιλικών Εδαφών
ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΥΠΟΛΟΓΙΣΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ Μέρος» 9ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 006-07 ΔΙΑΛΕΞΗ Θεωρία Κρίσιμης Κατάστασης Αργιλικών Εδαφών 0.0.006 ΔΙΑΛΕΞΗ Θεωρία Κρίσιμης Κατάστασης
Διαβάστε περισσότεραΣτερεοποίηση. Στερεοποίηση
Στερεοποίηση Στερεοποίηση Όταν ένα κορεσμένο έδαφος φορτίζεται με κάποιο εξωτερικό φορτίο, αυτό σε πρώτη φάση παραλαμβάνεται από το νερό το οποίο λόγου της υπερπίεσης που εμφανίζεται απομακρύνεται σταδιακά.
Διαβάστε περισσότεραΥπόδειξη: Στην ισότροπη γραμμική ελαστικότητα, οι τάσεις με τις αντίστοιχες παραμορφώσεις συνδέονται μέσω των κάτωθι σχέσεων:
Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Π.Δ.407/80, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Σχέσεις τάσεων παραμορφώσεων στο έδαφος. Ημερομηνία: Δευτέρα
Διαβάστε περισσότερα1. Αστοχία εδαφών στην φύση & στο εργαστήριο 2. Ορισμός αστοχίας [τ max ή (τ/σ ) max?] 3. Κριτήριο αστοχίας Μohr 4. Κριτήριο αστοχίας Mohr Coulomb
ΚΕΦΑΛΑΙΟ VΙ: ΑΣΤΟΧΙΑ & ΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ Ε ΑΦΩΝ 1. Αστοχία εδαφών στην φύση & στο εργαστήριο 2. Ορισμός αστοχίας [τ max ή (τ/σ ) max?] 3. Κριτήριο αστοχίας Μohr 4. Κριτήριο αστοχίας Mohr Coulomb Παράμετροι
Διαβάστε περισσότεραΓραπτή εξέταση περιόδου Ιουνίου 2011 διάρκειας 2,0 ωρών
Γραπτή εξέταση περιόδου Ιουνίου 011 διάρκειας,0 ωρών Ονοματεπώνυμο: Αριθμός Μητρώου Φοιτητή: Μάθημα: Εδαφομηχανική (ΜΕ0011), 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επ.Συν.Τμ.Πολ.Εργ.Υποδ.
Διαβάστε περισσότερα(αργιλικών εδαφών) 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. 6.2 Διάφορες Περιπτώσεις Προφόρτισης
6. ΠΡΟΦΟΡΤΙΣΗ (αργιλικών εδαφών) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 2013 ΠΕΡΙΕΧΟΜΕΝΑ 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ 6.2 Διάφορες Περιπτώσεις Προφόρτισης 6.3 Συνδυασμός
Διαβάστε περισσότεραΕπαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος. Ιανουάριος 2011
ΕΔΑΦΟΜΗΧΑΝΙΚΗΔ Α Φ Ο Μ Α Ν Ι Κ Η Επαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος Ι Ελέγξτε τις γνώσεις σας με τις παρακάτω ερωτήσεις οι οποίες συνοψίζουν τα βασικά σημεία του κάθε κεφαλαίου. Γ. Μπουκοβάλας
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ VΙI. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ & ΑΣΤΟΧΙΑ ΤΟΥ ΚΟΡΕΣΜΕΝΟΥ ΕΔΑΦΟΥΣ. 1. Ο τρίπτυχος ρόλος της υγρής φάσης (νερού)
ΚΕΦΑΛΑΙΟ VΙI. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ & ΑΣΤΟΧΙΑ ΤΟΥ ΚΟΡΕΣΜΕΝΟΥ ΕΔΑΦΟΥΣ 1. Ο τρίπτυχος ρόλος της υγρής φάσης (νερού) Χημική αλληλεπίδραση Φυσική αλληλεπίδραση Μηχανική αλληλεπίδραση 2. Ανάπτυξη (υπερ-) πίεσης
Διαβάστε περισσότεραΚαθηγητής Ε.Μ.Π. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. 6.2 Δά Διάφορες Περιπτώσεις Προφόρτισης. 6.3 Συνδυασμός Προφόρτισης με Στραγγιστήρια. 6.4 Σταδιακή Προφόρτιση
6. ΠΡΟΦΟΡΤΙΣΗ (αργιλικών εδαφών) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 016 ΠΕΡΙΕΧΟΜΕΝΑ Ε 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ 6. Δά Διάφορες Περιπτώσεις Προφόρτισης 6.3 Συνδυασμός
Διαβάστε περισσότεραΕΠΙΔΡΑΣΗ ΤΗΣ ΡΟΗΣ ΝΕΡΟΥ ΣΕ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΕΔΑΦΟΜΗΧΑΝΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,
Διαβάστε περισσότεραΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκοντες: Βασίλειος Παπαδόπουλος,
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ ΕΔΑΦΩΝ ΑΣΤΟΧΙΑ ΕΔΑΦΙΚΟΥ ΥΛΙΚΟΥ ΕΡΓΑΣΤΗΡΙΑΚΗ ΠΡΟΣΟΜΟΙΩΣΗ
ΚΕΦΑΛΑΙΟ 3 ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ ΕΔΑΦΩΝ ΑΣΤΟΧΙΑ ΕΔΑΦΙΚΟΥ ΥΛΙΚΟΥ ΕΡΓΑΣΤΗΡΙΑΚΗ ΠΡΟΣΟΜΟΙΩΣΗ σ1 σ3 σ3 Εντατικές καταστάσεις που προκαλούν αστοχία είναι η ταυτόχρονη επίδραση ορθών (αξονικών και πλευρικών) τάσεων
Διαβάστε περισσότεραΣΤΕΡΕΟΠΟΙΗΣΗ - ΚΑΘΙΖΗΣΕΙΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,
Διαβάστε περισσότεραΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 5 Καθιζήσεις Επιφανειακών Θεμελιώσεων : Υπολογισμός καθιζήσεων σε αργιλικά εδάφη 02.11.2005 Υπολογισμός καθιζήσεων
Διαβάστε περισσότεραΝ. Σαμπατακάκης Αν. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών
ΚΕΦΑΛΑΙΟ 2 ΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ Ε ΑΦΩΝ σ1 σ3 σ3 Εντατικές καταστάσεις που προκαλούν αστοχία είναι η ταυτόχρονη επίδραση ορθών (αξονικών και πλευρικών) τάσεων ή ακόμα διατμητικών. σ11 Γενικά, υπάρχει ένας κρίσιμος
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 10 ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ Ε ΑΦΩΝ ΣΤΗ ΟΚΙΜΗ ΤΗΣ ΚΥΛΙΝ ΡΙΚΗΣ ΤΡΙΑΞΟΝΙΚΗΣ ΦΟΡΤΙΣΗΣ
οκιµή Κυλινδρικής Τριαξονικής Φόρτισης Σελίδα ΚΕΦΑΛΑΙΟ 0 ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ Ε ΑΦΩΝ ΣΤΗ ΟΚΙΜΗ ΤΗΣ ΚΥΛΙΝ ΡΙΚΗΣ ΤΡΙΑΞΟΝΙΚΗΣ ΦΟΡΤΙΣΗΣ 0. Εισαγωγή Σε προηγούµενα Κεφάλαια µελετήθηκε η παραµόρφωση των
Διαβάστε περισσότεραΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΔΟΚΙΜΩΝ:
ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΔΟΚΙΜΩΝ: Αντοχή Εδαφών Επιστημονικός Συνεργάτης: Δρ. Αλέξανδρος Βαλσαμής, Πολιτικός Μηχανικός Εργαστηριακός Υπεύθυνος: Παναγιώτης Καλαντζάκης, Καθηγητής Εφαρμογών Εργαστηριακοί
Διαβάστε περισσότερα6. ΠΡΟΦΟΡΤΙΣΗ. Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. MAΡΤΙΟΣ Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. ιάφορες Περιπτώσεις Προφόρτισης
6. ΠΡΟΦΟΡΤΙΣΗ (αργιλικών εδαφών) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. MAΡΤΙΟΣ 9 ΠΕΡΙΕΧΟΜΕΝΑ 6. Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ 6. ιάφορες Περιπτώσεις Προφόρτισης 6.3 Συνδυασμός Προφόρτισης
Διαβάστε περισσότερα(& επανάληψη Εδαφομηχανικής)
2. ΥΠΟΛΟΓΙΣΜΟΣ ΕΔΑΦΙΚΩΝ ΩΘΗΣΕΩΝ (& επανάληψη Εδαφομηχανικής) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΜΑΡΤΙΟΣ 2009 ΠΕΡΙΕΧΟΜΕΝΑ 2.1 Ξηρό ή κορεσμένο έδαφος υπό στραγγιζόμενεςσυνθήκεςφόρτισης 2.2 Κορεσμένο έδαφος
Διαβάστε περισσότεραΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ - ΠΑΡΑΛΛΑΓΗ "Α"
Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ - ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΝΔΙΑΜΕΣΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ: ΕΔΑΦΟΜΗΧΑΝΙΚΗ Ι (Τμήμα Μ-Ω) Ακαδ. έτος 007-08 5 Ιανουαρίου 008 Διάρκεια: :30 ώρες ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
Διαβάστε περισσότεραΘεμελιώσεις τεχνικών έργων. Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας
Θεμελιώσεις τεχνικών έργων Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Ορισμός Θεμελίωση (foundation) είναι το κατώτερο τμήμα μιας κατασκευής και αποτελεί τον τρόπο διάταξης των δομικών
Διαβάστε περισσότεραΜΕ ΚΛΕΙΣΤΑ ΒΙΒΛΙΑ - ΣΗΜΕΙΩΣΕΙΣ - ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ A
Σχολή Πολιτικών Μηχανικών ΕΜΠ Τομέας Γεωτεχνικής Εδαφομηχανική Ι Διαγώνισμα 26-10-2007 1 ΜΕ ΚΛΕΙΣΤΑ ΒΙΒΛΙΑ - ΣΗΜΕΙΩΣΕΙΣ - ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ A ΘΕΜΑ 1 ο : [Αναλογία στο βαθμό = 10%+15%+10%+10% = 45%] Βράχος
Διαβάστε περισσότερα2. Υπολογισμός Εδαφικών Ωθήσεων
2. Υπολογισμός Εδαφικών Ωθήσεων (επανάληψη από ΕΔΑΦΟ Ι & ΙΙ) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 2015 2.1 Ξηρό ή κορεσμένο έδαφος υπό στραγγιζόμενες συνθήκες φόρτισης 2.2 Κορεσμένο έδαφος
Διαβάστε περισσότεραΓ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1
Εύκαμπτες Αντιστηρίξεις & Αγκυρώσεις Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1 2. ΥΠΟΛΟΓΙΣΜΟΣ ΕΔΑΦΙΚΩΝ ΩΘΗΣΕΩΝ (& επανάληψη Εδαφομηχανικής) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ
Διαβάστε περισσότεραAΡΧΙΚΕΣ ή ΓΕΩΣΤΑΤΙΚΕΣ ΤΑΣΕΙΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,
Διαβάστε περισσότερα(αργιλικών εδαφών) 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π.
6. ΠΡΟΦΟΡΤΙΣΗ (αργιλικών εδαφών) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 013 ΠΕΡΙΕΧΟΜΕΝΑ 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ 6. Διάφορες Περιπτώσεις Προφόρτισης 6.3 Συνδυασμός
Διαβάστε περισσότεραΔΙΑΛΕΞΗ 2 Ανάλυση της ευστάθειας γεωφραγμάτων
ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΕΙΔΙΚΑ ΓΕΩΤΕΧΝΙΚΑ ΕΡΓΑ - Γεωτεχνική Φραγμάτων» 9ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 2006-07 ΔΙΑΛΕΞΗ 2 Ανάλυση της ευστάθειας γεωφραγμάτων 20.10.2006 Μέθοδος λωρίδων για
Διαβάστε περισσότεραΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ ΙΙ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ ΙΙ ΕΠΙΠΛΕΟΝ ΣΗΜΕΙΩΣΕΙΣ για φέρουσα ικανότητα αβαθών θεµελίων (βασισµένες εν πολλοίς σε σηµειώσεις των Μ. Καββαδά, Καθηγητή
Διαβάστε περισσότεραΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκοντες: Βασίλειος Παπαδόπουλος,
Διαβάστε περισσότεραΣτερεοποίηση των Αργίλων
Στερεοποίηση των Αργίλων Costas Sachpazis, (M.Sc., Ph.D.) Διάρκεια: 17 Λεπτά. 1 Τι είναι Στερεοποίηση ; Όταν μία κορεσμένη άργιλος φορτίζεται εξωτερικά, GL Στάθμη εδάφους κορεσμένη άργιλος το νερό συμπιέζεται
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ ΤΩΝ ΕΔΑΦΩΝ
Διατμητική Αντοχή των Εδαφών Σελίδα ΚΕΦΑΛΑΙΟ 9 ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ ΤΩΝ ΕΔΑΦΩΝ 9. Εισαγωγή Όταν σε ένα εδαφικό υλικό (όπως και σε οποιοδήποτε άλλο υλικό) επιβληθούν εξωτερικά φορτία, αναπτύσσονται εσωτερικές
Διαβάστε περισσότεραΥπολογισμός Διαπερατότητας Εδαφών
ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΔΟΚΙΜΗΣ: Υπολογισμός Διαπερατότητας Εδαφών Επιστημονικός Συνεργάτης: Δρ. Αλέξανδρος Βαλσαμής, Πολιτικός Μηχανικός Εργαστηριακός Υπεύθυνος: Παναγιώτης Καλαντζάκης, Καθηγητής
Διαβάστε περισσότεραΑΣΚΗΣΗ 1: Υπολογίστε την ορθή και διατμητική τάση, οι οποίες ασκούνται στα επίπεδα με κλίση α ως, όπως φαίνονται στα παρακάτω σχήματα.
Ν. Ηράκλειο, Αττικής Τ.Κ. 4 2 Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π.
Διαβάστε περισσότερα8.1.7 Σχεδιασμός και μη-γραμμική ανάλυση
Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 12 ΕΙΔΙΚΑ ΘΕΜΑΤA Εκτίμηση των Υποχωρήσεων των Κατασκευών
Ειδικά Θέματα Σελίδα ΚΕΦΑΛΑΙΟ ΕΙΔΙΚΑ ΘΕΜΑΤA Στο Κεφάλαιο αυτό αναπτύσσονται μερικά ειδικά θέματα Εδαφομηχανικής, τα οποία είτε συνθέτουν όσα αναφέρθηκαν στα προηγούμενα Κεφάλαια (όπως π.χ. η εκτίμηση των
Διαβάστε περισσότεραΣτερεοποίηση των Εδαφικών Υλικών Σελίδα 1 ΚΕΦΑΛΑΙΟ 7 ΣΤΕΡΕΟΠΟΙΗΣΗ ΤΩΝ Ε ΑΦΙΚΩΝ ΥΛΙΚΩΝ
Στερεοποίηση των Εδαφικών Υλικών Σελίδα 1 ΚΕΦΑΛΑΙΟ 7 ΣΤΕΡΕΟΠΟΙΗΣΗ ΤΩΝ Ε ΑΦΙΚΩΝ ΥΛΙΚΩΝ 7.1 Εισαγωγή Σε προηγούµενο Κεφάλαιο παρουσιάσθηκε η αρχή του φαινοµένου της στερεοποίησης των εδαφών και αναφέρθηκε
Διαβάστε περισσότεραΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,
Διαβάστε περισσότεραΕδαφομηχανική Ι. Ιωάννης-Ορέστης Γεωργόπουλος
Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Εδαφομηχανική Ι Ιωάννης-Ορέστης Γεωργόπουλος Δρ Πολιτικός Μηχανικός Ε.Μ.Π., Π.Δ.407/80 Λέκτορας Εργαστήριο Γεωυλικών, Τομέας Μηχανικής, Σ.Ε.Μ.Φ.Ε., Ε.Μ.Π. I.Georgopoulos@mechan.ntua.gr
Διαβάστε περισσότεραΥπόγεια ροή. Εξισώσεις (μονοφασικής) ροής Εξισώσεις πολυφασικής ροής
Υπόγεια ροή Εξισώσεις (μονοφασικής) ροής Εξισώσεις πολυφασικής ροής Ποια προβλήματα λύνονται με ποια εργαλεία; Μονοδιάστατα προβλήματα (ή μονοδιάστατη απλοποίηση -D πεδίων ροής), σταθερή υδραυλική κλίση
Διαβάστε περισσότεραΥπόγεια Υδραυλική. 1 η Εργαστηριακή Άσκηση Εφαρμογή Νόμου Darcy
Υπόγεια Υδραυλική 1 η Εργαστηριακή Άσκηση Εφαρμογή Νόμου Darcy Τα υπόγεια υδατικά συστήματα Τα υπόγεια υδατικά συστήματα είναι συγκεντρώσεις υπόγειου νερού, που εμφανίζουν τα χαρακτηριστικά της υπόγειας
Διαβάστε περισσότεραΕισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις
Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις Φέρουσα Ικανότητα Επιφανειακών θεμελιώσεων (πεδίλων) Φέρουσα Ικανότητα Τάσεις κάτω από το
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ
εκέµβριος 2006 ΕΙΣΑΓΩΓΗ ΣΤΗΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ 1. Ε ΑΦΟΤΕΧΝΙΚΗ ΕΡΕΥΝΑ Γίνεται µε τους εξής τρόπους: 1.1. Γεωτρύπανο 1.2. Στατικό Πενετρόµετρο Ολλανδικού Τύπου 1.3. Επίπεδο Ντιλατόµετρο Marchetti 1.4. Πρεσσιόµετρο
Διαβάστε περισσότεραΑΣΚΗΣΗ 1: Υπολογίστε τη συνισταμένη κατακόρυφη δύναμη σε οριζόντιο επίπεδο με για συγκεντρωμένο σημειακό φορτίο, σύμφωνα με το σχήμα.
Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Π.Δ.407/80, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Μετάδοση τάσεων στο έδαφος (8 η σειρά ασκήσεων). Ημερομηνία:
Διαβάστε περισσότεραΜικροζωνικές Μελέτες. Κεφάλαιο 24. Ε.Σώκος Εργαστήριο Σεισμολογίας Παν.Πατρών
Μικροζωνικές Μελέτες Κεφάλαιο 24 Ε.Σώκος Εργαστήριο Σεισμολογίας Παν.Πατρών Ορισμός Με τον όρο μικροζωνική μελέτη εννοούμε την εκτίμηση των αναμενόμενων εδαφικών κινήσεων σε μία περιοχή λαμβάνοντας υπ
Διαβάστε περισσότερα.. - : (5.. ) 2. (i) D, ( ).. (ii) ( )
.. - : (5.. ) 64 ( ). v, v u : ) q. ) q. ) q. ( ) 2. (i) D, ( ) ( ).. (ii) e ( ). 3. e 1 e 2. ( ) 1 0. +1.00 1. (+5.00) 4. q = 50 kn/m 2, (...) 1.0m... = 1.9 Mg/m 3 (...) 5. p = 120 5m. 2 P = 80. ( 40m
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ΜΟΝΙΜΗ Υ ΑΤΙΚΗ ΡΟΗ ΙΑΜΕΣΟΥ ΤΟΥ Ε ΑΦΟΥΣ
Μόνιµη Υδατική Ροή διαµέσου του Εδάφους Σελίδα 1 ΚΕΦΑΛΑΙΟ 4 ΜΟΝΙΜΗ Υ ΑΤΙΚΗ ΡΟΗ ΙΑΜΕΣΟΥ ΤΟΥ Ε ΑΦΟΥΣ 4.1 Εισαγωγή Το πρόβληµα της υδατικής ροής διαµέσου του εδάφους ενδιαφέρει ιδιαίτερα το Γεωτεχνικό Μηχανικό.
Διαβάστε περισσότερα3 η ΕΝΟΤΗΤΑ ΦΥΣΙΚΕΣ ΚΑΙ ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΤΕΧΝΙΚΑ ΥΛΙΚΑ 3 η ΕΝΟΤΗΤΑ ΦΥΣΙΚΕΣ ΚΑΙ ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ Ε. Βιντζηλαίου (Συντονιστής), Ε. Βουγιούκας, Ε. Μπαδογιάννης Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΔιάλεξη ΣΤΗΡΙΞΗ ΑΣΤΑΘΟΥΣ ΜΕΤΩΠΟΥ ΣΗΡΑΓΓΑΣ
Εργαστήριο Τεχνολογίας Διάνοιξης Σηράγγων, Ε.Μ.Π. Καθηγητής: ΑΙ ΣΟΦΙΑΝΟΣ. Διάλεξη ΣΤΗΡΙΞΗ ΑΣΤΑΘΟΥΣ ΜΕΤΩΠΟΥ ΣΗΡΑΓΓΑΣ Μέτρα Υποστήριξης Σηράγγων ΔΠΜΣ: Σχεδιασμός και Κατασκευή Υπογείων Έργων ΑΙ Σοφιανός
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ (γιατί υπάρχουν οι γεωτεχνικοί µελετητές;)
Απρίλιος 2008 ΕΙΣΑΓΩΓΗ ΣΤΗΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ (γιατί υπάρχουν οι γεωτεχνικοί µελετητές;) Τι είναι η Εδαφοµηχανική και τι είναι Γεωτεχνική Μελέτη; Ετοιµολογία: Γεωτεχνική: Επιθετικός προσδιορισµός που χαρακτηρίζει
Διαβάστε περισσότεραΕισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Γενικά
Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Γενικά Το πρόβλημα Γεωτεχνική Επιστήμη Συνήθη προβλήματα Μέσο έδρασης των κατασκευών (θεμελιώσεις) Μέσο που πρέπει να στηριχθεί (βαθιές εκσκαφές, αντιστηρίξεις,
Διαβάστε περισσότεραΕργαστήριο Εδαφομηχανικής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εργαστήριο Εδαφομηχανικής Ενότητα 9η: Δοκιμή Συμπιεσομέτρου - Μέρος Α Πλαστήρα Βιολέττα Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Διδάσκων: Μπελόκας Γεώργιος
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΔΑΦΟΜΗΧΑΝΙΚΗ Διδάσκων: Μπελόκας Γεώργιος Επίκουρος Καθηγητής ΤΕΙ Αθήνας (http://users.teiath.gr/gbelokas/)
Διαβάστε περισσότεραΕισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά
Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Το πρόβλημα Γεωτεχνική Επιστήμη Συνήθη προβλήματα Μέσο έδρασης των κατασκευών (θεμελιώσεις) Μέσο που πρέπει
Διαβάστε περισσότεραΚατασκευές στην επιφάνεια του βράχου 25
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 5 ΣΥΜΒΟΛΙΣΜΟΙ 13 Κατασκευές στην επιφάνεια του βράχου 25 EIΣΑΓΩΓΗ 27 ΚΕΦΑΛΑΙΟ 1 - Η ΣΥΝΑΡΜΟΓΗ ΤΟΥ ΒΡΑΧΟΥ 29 Παράμετροι οι οποίες ορίζουν τη συναρμογή 29 Ο προσανατολισμός των ασυνεχειών
Διαβάστε περισσότεραΔιατμητική Αντοχή των Εδαφών
Διατμητική Αντοχή των Εδαφών Διάρκεια = 17 λεπτά & 04 δευτερόλεπτα Costas Sachpazis, (M.Sc., Ph.D.) 1 Διατμητική Αστοχία Γενικά τα εδάφη αστοχούν σε διάτμηση Θεμέλιο Πεδιλοδοκού ανάχωμα Επιφάνεια αστοχίας
Διαβάστε περισσότεραΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Θεματική Ενότητα 4 Υπόγεια ροή Εξισώσεις ροής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θεμελιώσεις
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θεμελιώσεις Ενότητα 4 η : Φέρουσα Ικανότητα Αβαθών Θεμελιώσεων Δρ. Εμμανουήλ Βαϊρακτάρης Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τμήμα
Διαβάστε περισσότεραΘ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών ομικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ Παραδόσεις Θεωρίας ιδάσκων: Κίρτας Εμμανουήλ Σέρρες, Σεπτέμβριος 2010 Τεχνολογικό
Διαβάστε περισσότεραΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ 13 Θεμελιώσεις με πασσάλους : Εγκάρσια φόρτιση πασσάλων 1.05.005 1. Κατηγορίες πασσάλων. Αξονική φέρουσα ικανότητα
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΔΟΜΟΣΤΑΤΙΚΟΣ ΤΟΜΕΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΔΟΜΟΣΤΑΤΙΚΟΣ ΤΟΜΕΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Ανάλυση τάσεων στο εσωτερικό του εδάφους λόγω εξωτερικών φορτίων με χρήση αναλυτικών και αριθμητικών
Διαβάστε περισσότεραΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους Συνοχή (c) Γωνία τριβής (φ ο ) 2. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας
Διαβάστε περισσότεραΑΝΤΙΣΕΙΣΜΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ & ΑΝΑΛΥΣΗ ΣΗΡΑΓΓΩΝ
Αναπλ. Καθ. Αιμίλιος Κωμοδρόμος 1 Φορτίσεις Σεισμική Δράση Ιδιο Βάρος Ωθήσεις Γαιών Υδροστατική Φόρτιση Κινητά Φορτία Θερμοκρασιακές Μεταβολές Καταναγκασμοί Κινηματική Αλληλεπίδραση Αδρανειακές Δυνάμεις
Διαβάστε περισσότεραΙΔΙΟΤΗΤΕΣ ΤΟΥ ΕΔΑΦΟΥΣ
ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΕΔΑΦΟΥΣ Το αντικείμενο της εδαφομηχανικής είναι η μελέτη των εδαφών, με στόχο την κατανόηση και πρόβλεψη της συμπεριφοράς του εδάφους για μία ποικιλία σκοπών: συμπεριλαμβανομένων των θεμελίων
Διαβάστε περισσότεραΕιδικά Θέματα Θεμελιώσεων 2016 16-2017 Γ. Μπουκοβάλας Αχ. Παπαδημητρίου Σοφ. Μαρονικολάκης Αλ. Βαλσαμής www.georgebouckovalas.com Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1.1 Γ. Δ. Μπουκοβάλας,
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6 ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ-ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΤΩΝ Ε ΑΦΙΚΩΝ ΥΛΙΚΩΝ
Σχέσεις Τάσεων-Παραµορφώσεων των Εδαφικών Υλικών Σελίδα ΚΕΦΑΛΑΙΟ 6 ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ-ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΤΩΝ Ε ΑΦΙΚΩΝ ΥΛΙΚΩΝ 6. Εισαγωγή Η µηχανική συµπεριφορά των υλικών εκφράζεται ποσοτικά µε τους καταστατικούς
Διαβάστε περισσότεραΘεμελιώσεις. Εισηγητής: Αλέξανδρος Βαλσαμής. Καθιζήσεις Επιφανειακών Θεμελιώσεων Ι Γενικά
Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Καθιζήσεις Επιφανειακών Θεμελιώσεων Ι Γενικά Τμήμα των διαφανειών έχει συνταχθεί σύμφωνα με τις σχετικές διαφάνειες του καθηγητή του Ε.Μ.Π. Μιχάλη Καββαδά. Θεμελιώσεις
Διαβάστε περισσότεραΚατακόρυφα Γεωσύνθετα Στραγγιστήρια. Πολιτικός Μηχ., Μ.Εng., ΓΕΩΣΥΜΒΟΥΛΟΙ Ε.Π.Ε.
Κατακόρυφα Γεωσύνθετα Στραγγιστήρια ΠΛΑΤΗΣ, Α.Δ. Πολιτικός Μηχ., Μ.Εng., ΓΕΩΣΥΜΒΟΥΛΟΙ Ε.Π.Ε. Κατακόρυφα Γεωσύνθετα Στραγγιστήρια ΠΛΑΤΗΣ, Α.Δ. Πολιτικός Μηχ, Μ.Εng., ΓΕΩΣΥΜΒΟΥΛΟΙ Ε.Π.Ε. ΕΙΣΑΓΩΓΗ Προφόρτιση:
Διαβάστε περισσότεραΑΝΤΟΧΗ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ
ΑΝΤΟΧΗ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ ΟΡΙΣΜΟΙ ΑΝΤΟΧΗ = Οριακή αντίδραση ενός στερεού μέσου έναντι ασκούμενης επιφόρτισης F F F F / A ΑΝΤΟΧΗ [Φέρουσα Ικανότητα] = Max F / Διατομή (Α) ΑΝΤΟΧΗ = Μέτρο (δείκτης) ικανότητας
Διαβάστε περισσότεραΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΕΔΑΦΟΥΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,
Διαβάστε περισσότεραΠροχωρημένη Εδαφομηχανική Π. Ντακούλας, Αν. Καθηγητής Πανεπιστήμιο Θεσσαλίας, Βόλος
Πρόγραμμα Μεταπτυχιακών Σπουδών Προχωρημένη Εδαφομηχανική Π. Ντακούλας, Αν. Καθηγητής Πανεπιστήμιο Θεσσαλίας, Βόλος Στόχος του μαθήματος Η μελέτη και εφαρμογή προχωρημένων καταστατικών σχέσεων για την
Διαβάστε περισσότεραΕ ΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 3 ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΟΥ Ε ΑΦΟΥΣ. β) Τάσεις λόγω εξωτερικών φορτίων. Αναπτυσσόμενες τάσεις στο έδαφος
Ε ΑΦΟΜΗΧΑΝΙΚΗ Κεφάλαιο 3 Αναπτυσσόμενες τάσεις στο έδαφος Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 3.1 ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΟΥ Ε ΑΦΟΥΣ ΤΑΣΕΙΣ ΠΟΥ ΡΟΥΝ ΣΤΟ Ε ΑΦΟΣ α) Τάσεις λόγω
Διαβάστε περισσότεραΘεμελιώσεις. Ενότητα 2 η : Καθιζήσεις. Δρ. Εμμανουήλ Βαϊρακτάρης Τμήμα Πολιτικών Μηχανικών Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θεμελιώσεις Ενότητα 2 η : Καθιζήσεις Δρ. Εμμανουήλ Βαϊρακτάρης Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΔιδάσκων: Κίρτας Εμμανουήλ Χειμερινό Εξάμηνο Εξεταστική περίοδος Ιανουαρίου Διάρκεια εξέτασης: 2 ώρες Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Εξέταση Θεωρίας: Σχολή Τεχνολογικών Εφαρμογών ΕΔΑΦΟΜΗΧΑΝΙΚΗ Τμήμα Πολιτικών Δομικών Έργων Διδάσκων: Κίρτας Εμμανουήλ Χειμερινό Εξάμηνο 010-011 Εξεταστική περίοδος
Διαβάστε περισσότεραΠαροράµατα. Σηµειώσεις Θεωρίας: Ε ΑΦΟΜΗΧΑΝΙΚΗ. (για την έκδοση Σεπτέµβριος 2010)
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ - ΤΜΗΜΑ ΟΜΙΚΩΝ ΕΡΓΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Παροράµατα Σηµειώσεις Θεωρίας: Ε ΑΦΟΜΗΧΑΝΙΚΗ (για την έκδοση Σεπτέµβριος 010) Επιµέλεια-Συγγραφή:
Διαβάστε περισσότεραΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισµός Διατµητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων 1. Υπολογισµός Διατµητικής Αντοχής Εδάφους Συνοχή (c) Γωνία τριβής (φ ο ) 2. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας
Διαβάστε περισσότερα8.4.2 Ρευστοποίηση (ΙΙ)
Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης
Διαβάστε περισσότερα) θα πρέπει να είναι μεγαλύτερη ή ίση από την αντίστοιχη τάση μετά από την κατασκευή της ανωδομής ( σ. ). Δηλαδή, θα πρέπει να ισχύει : σ ΚΤΙΡΙΟ A
ΜΑΘΗΜΑ : ΕΔΑΦΟΜΗΧΑΝΙΚΗ Ι - 5 ο Εξ. Πολιτικών Μηχανικών - Ακαδημαϊκό Έτος : 001 00 1η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια : Γιάννης Κουκούλης, Υποψήφιος Διδάκτορας ΕΜΠ Για την επίλυση των ασκήσεων
Διαβάστε περισσότεραKάθε γνήσιο αντίτυπο φέρει την υπογραφή των συγγραφέων. Copyright: Γεωργιάδης Μ., Γεωργιάδης Κ., Eκδόσεις Zήτη, Μάιος 2009
ii Στοιχεία Εδαφομηχανικής Kάθε γνήσιο αντίτυπο φέρει την υπογραφή των συγγραφέων ISBN 978-960-456-157-5 Copyright: Γεωργιάδης Μ., Γεωργιάδης Κ., Eκδόσεις Zήτη, Μάιος 2009 Tο παρόν έργο πνευματικής ιδιοκτησίας
Διαβάστε περισσότεραΠεδιλοδοκοί και Κοιτοστρώσεις
/7/0 ΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 0 - ΙΑΛΕΞΗ 7 Πεδιλοδοκοί και Κοιτοστρώσεις 8.0.0 Πεδιλοδοκοί και Κοιτοστρώσεις Η θεµελίωση µπορεί να γίνει µε πεδιλοδοκούς ή κοιτόστρωση
Διαβάστε περισσότεραΜεθοδολογία επίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011)
Μεθοδολογία ίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011) Στη συνέχεια δίνονται ενδεικτικά τα βήματα που πρέπει να γίνουν, όπως και κάποια σημεία που χρίζουν ιδιαίτερης προσοχής, κατά τη διαδικασία
Διαβάστε περισσότεραΑΜΕΣΗ ΔΙΑΤΜΗΣΗ ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΔΟΚΙΜΗΣ 1. Σταθερά μηκ/τρου ορ.μετακ/σης (mm/υποδ): 0,0254 Σταθερά μηκ/τρου κατ.
ΓΕΩΤΡΗΣΗ: ΒΑΘΟΣ ΔΕΙΓΜΑΤΟΣ : ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΔΟΚΙΜΗΣ 1 Τύπος Δοκιμής : UU Χ CU CD Δοκίμιο: Αδιατάρακτο Διαμορφωμένο Χ Ρυθμός φόρτισης (mm/min): 1,7272 Σταθερά δυναμ/κου δακτυλίου (kn/υποδ.):
Διαβάστε περισσότεραΚΟΡΕΣΜΕΝΟ ΕΔΑΦΟΣ ΜΕΤΑΦΟΡΑ ΡΥΠΟΥ ΛΟΓΩ ΜΕΤΑΓΩΓΗΣ. Σχόλιο: ίδια έκφραση για ροή ρευστού σε αγωγό ή πορώδες μέσο V V
ΚΟΡΕΣΜΕΝΟ ΕΔΑΦΟΣ ΜΕΤΑΦΟΡΑ ΡΥΠΟΥ ΛΟΓΩ ΜΕΤΑΓΩΓΗΣ Ροή μάζας ρύπου = Μάζα / (χρόνος επιφάνεια) = (όγκος συγκέντρωση) / (χρόνος επιφάνεια) = (παροχή συγκέντρωση) / (επιφάνεια) Για μονοδιάστατη ροή, η φαινόμενη
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ IV: ΠΑΡΑΜΟΡΦΩΣΕΙΣ ΣΤΟ Ε ΑΦΟΣ
ΚΕΦΑΛΑΙΟ IV: ΠΑΡΑΜΟΡΦΩΣΕΙΣ ΣΤΟ Ε ΑΦΟΣ. Παραμορφώσεις σε συνεχή μέσα : Ορισμοί 2. Σχέσεις τάσεων παραμορφώσεων: Υπενθύμιση από την «Μηχανική» 3. Παραμορφώσεις σε α-συνεχή μέσα: Φύση και προέλευση των ελαστικών
Διαβάστε περισσότεραΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων A. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας και Υδρογεωλογίας
Διαβάστε περισσότεραΠερατότητα και Διήθηση διαμέσου των εδαφών
Περατότητα και Διήθηση διαμέσου των εδαφών Costas Sachpazis, (M.Sc., Ph.D.) Διάρκεια = 17 λεπτά 1 Τι είναι Περατότητα των εδαφών? Ένα μέτρο για το πόσο εύκολα ένα ρευστό (π.χ., νερό) μπορεί να περάσει
Διαβάστε περισσότεραχαρακτηριστικά και στην ενεσιμότητα των αιωρημάτων, ενώ έχει ευμενείς επιπτώσεις στα τελικό ποσοστό εξίδρωσης (μείωση έως και κατά 30%) και στην
ΠΕΡΙΛΗΨΗ Η μέθοδος των ενέσεων εμποτισμού εφαρμόζεται συχνά για τη βελτίωση των μηχανικών ιδιοτήτων και της συμπεριφοράς εδαφικών και βραχωδών σχηματισμών σε εφαρμογές που περιλαμβάνουν φράγματα, σήραγγες.
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ Ε ΑΦΟΜΗΧΑΝΙΚΗΣ
ΤΕΙ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΣΗΜΕΙΩΣΕΙΣ Ε ΑΦΟΜΗΧΑΝΙΚΗΣ Σύνταξη σηµειώσεων : Πλαστήρα Β. ΑΙΓΑΛΕΩ, 2010 2 3 ΠΡΟΛΟΓΟΣ Στις σηµειώσεις αυτές έχουν καταγραφεί θεµελιώδεις
Διαβάστε περισσότεραwebsite:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Νευτώνια και μη Νευτώνια ρευστά Μαάιτα Τζαμάλ-Οδυσσέας 15 Απριλίου 2019 1 Καταστατικές εξισώσεις Νευτώνιου ρευστού Νευτώνια ή Νευτωνικά
Διαβάστε περισσότεραΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 8β Θεμελιώσεις με πασσάλους : Αξονική φέρουσα ικανότητα εμπηγνυόμενων πασσάλων με στατικούς τύπους 25.12.2005
Διαβάστε περισσότεραΓεωτεχνική Έρευνα Μέρος 1. Nigata Καθίζηση και κλίση κατασκευών
Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης
Διαβάστε περισσότεραΥπόγεια ροή. Παρουσίαση 2 από 4: Νόμος Darcy
Υπόγεια ροή Παρουσίαση 2 από 4: Νόμος Darcy 1 Κύρια ερωτήματα ροής & νόμος Darcy Πόσον όγκο νερού μπορούμε να αντλήσουμε; Σχετικά μεγέθη: ταχύτητα, παροχή σε απλά μονοδιάστατα προβλήματα, τα βρίσκουμε
Διαβάστε περισσότεραΕπίλυση & Αντιμετώπιση προβλημάτων Γεωτεχνικής
ΚΕΦΑΛΑΙΟ Ι: ΕΙΣΑΓΩΓΗ Tί είναι το Ε Δ Α Φ Ο Σ; Έδαφος και Πολιτικός Μηχανικός Επίλυση & Αντιμετώπιση προβλημάτων Γεωτεχνικής Ιδιαιτερότητες & Δυσκολίες Βιβλιογραφία, Ασκήσεις, Βαθμολόγηση για ανακοινώσεις
Διαβάστε περισσότερα