Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση"

Transcript

1 Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση

2 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε τις τιμές του λ R, ώστε ο ( λ 3)( ) να είναι: α) πραγματικός αριθμός β) φανταστικός αριθμός Θα φέρουμε τον μιγαδικό αριθμό στην μορφή α β, οπότε: για να είναι πραγματικός αρκεί β 0 και για να είναι φανταστικός αρκεί α 0 Έχουμε λ λ 6 3 λ 6 λ 3 (λ 3) (6 λ), οπότε: α) πραγματικός αν και μόνο αν 6 λ 0, δηλαδή λ 6 3 β) φανταστικός αν και μόνο αν λ 3 0, δηλαδή λ ΛΑ Να βρείτε τους πραγματικούς αριθμούς α) ( y) ( y) 3 β) 3 6 ( 3) γ) 9 7 (3 y) y, y για τους οποίους ισχύει: Οι μιγαδικοί α β και γ δ είναι ίσοι τότε και μόνον τότε όταν αγ και βδ, οπότε θα εξισώσουμε τα πραγματικά και τα φανταστικά τους μέρη και θα επιλύσουμε το σύστημα που θα προκύψει Πρόσεξε ότι η ισότητα δυο μιγαδικών αριθμών καταλήγει πάντα σε δυο ισότητες πραγματικών! y 3 α) Είναι: ( y) ( y) 3 (, y) (, ) y β) Είναι: 3 6 ( ) Όμως η (3) 3 4 ή Άρα, αφού μόνο αυτή επαληθεύει τις () και () () () (3)

3 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ 9 y y 9 γ) Είναι: 9 7 (3 y) y y y 7 y (, y) ( 5,7) y 7 Aσκήσεις προς λύση Να βρείτε τους πραγματικούς αριθμούς και y ώστε να ισχύουν οι ισότητες: α) - y - - y β) y 3 - ( ) γ) 4y - 3y δ) ( ) Δίνονται οι μιγαδικοί αριθμοί και w - y,, y R α) Να βρείτε τους, y ώστε w, β) Να βρείτε τον 3 Δίνεται ο μιγαδικός 6 - (3-4) - 3y - (3 - ) (4 - y),, y R α) Να γράψετε τον στη μορφή α β β) Να λύσετε τις εξισώσεις: ) Re () 0 ) Im () 0 ) Re () Im () v) 0 4 Δίνεται ο μιγαδικός αριθμός ( ) (y - ) - 5,, y R α) Να τον γράψετε στη μορφή α β β) Να γράψετε τον συναρτήσει του, αν Im () 0 γ) Να βρείτε τη σχέση που συνδέει τα και y, αν Re () Im () 5 Η ισότητα (y - ) 3 4 ισχύει αν και μόνο αν Α 3 ή y 5 Β 3 και y 4 Γ 3 ή y 4 Δ 3 και y 5 Ε y 7 6 Αν η εικόνα του μιγαδικού w ( ) (y - ),, y R, στο μιγαδικό επίπεδο είναι η αρχή των αξόνων, τότε ο y ισούται με Α - Β Γ - - Δ - E ΛΑ3 Να περιγράψετε γεωμετρικά το σύνολο των εικόνων των μιγαδικών αριθμών που ικανοποιούν τις σχέσεις: α) Το πραγματικό μέρος του είναι ίσο με μηδέν β) Το φανταστικό μέρος του είναι ίσο με μηδέν γ) Το πραγματικό μέρος του είναι ίσο με το φανταστικό του μέρος Μάθε τους πρώτους απλούς γεωμετρικούς τόπους! Κάνε επανάληψη και μάθε τις εξισώσεις: ευθείας, κύκλου, έλλειψης, παραβολής, υπερβολής γιατί θα σου χρειασθούν στη συνέχεια!

4 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ α) Αν y, τότε 0 Άρα, οι εικόνες του είναι τα σημεία της ευθείας με εξίσωση 0, δηλαδή τα σημεία M (0, y), οπότε το σύνολο των εικόνων των μιγαδικών αριθμών με πραγματικό μέρος ίσο με το μηδέν είναι τα σημεία του άξονα y y β) Αν y, τότε y 0 Άρα, οι εικόνες του είναι τα σημεία της ευθείας με εξίσωση y 0, δηλαδή τα σημεία M (,0), οπότε το σύνολο των εικόνων των μιγαδικών αριθμών με φανταστικό μέρος ίσο με το μηδέν είναι τα σημεία του άξονα Είναι 0 Άρα, οι εικόνες του είναι τα σημεία M (,0), δηλαδή τα σημεία του άξονα γ) Αν y, τότε y Άρα, οι εικόνες του είναι τα σημεία της ευθείας με εξίσωση y, δηλαδή τα σημεία M (, ), οπότε το σύνολο των εικόνων των μιγαδικών αριθμών με πραγματικό μέρος ίσο με το φανταστικό είναι τα σημεία της ευθείας που είναι διχοτόμος της ης και 3ης γωνίας των αξόνων Aσκήσεις προς λύση Η εικόνα κάθε φανταστικού αριθμού στο μιγαδικό επίπεδο βρίσκεται πάνω στην ευθεία με εξίσωση Α y Β y - Γ y 0 Δ 0 Ε σε καμία από τις προηγούμενες Οι εικόνες των μιγαδικών 3 και 3 στο μιγαδικό επίπεδο έχουν άξονα συμμετρίας την ευθεία Α Β y 3 Γ y Δ y - Ε 0 3 Αν η διανυσματική ακτίνα του μιγαδικού αριθμού στο μιγαδικό επίπεδο έχει φορέα τη διχοτόμο της ης και 4ης γωνίας των αξόνων του μιγαδικού επιπέδου, τότε ο μπορεί να είναι ο Α Β - Γ Δ - - Ε Αν η εικόνα του μιγαδικού στο μιγαδικό επίπεδο είναι σημείο της ευθείας 3y - 0, τότε ο δεν μπορεί να είναι ο Α Β - 3 Γ 5-3 Δ 3 Ε ΛΑ4 Σε καθεμιά από τις παρακάτω περιπτώσεις να εκτελέσετε τις πράξεις που σημειώνονται και να γράψετε το αποτέλεσμα στη μορφή α β α) ( 4 6) (7 ) β) ( 3 ) (6 4) γ) ( 3 4) ( 8 7) (5 3) δ) ( 3 )(4 5) ε) 3 (6 ) στ) ( 4 3)(4 3) ζ) (3 )( )

5 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ Ας μάθουμε να κάνουμε απλές πράξεις με μιγαδικούς! α) ( 4 6) (7 ) ( 4 7) (6 ) 3 4 β) ( 3 ) (6 4) (3 6) ( 4) 3 6 γ) ( 3 4) ( 8 7) (5 3) (3 8 5) (4 7 3) δ) (3 )(4 5) ε) 3(6 ) στ) (4 3)(4 3) 4 (3) ( ) ζ) (3 )( ) (6 3 ) (6 ) 7 7 ΛΑ5 Να γράψετε τους παρακάτω μιγαδικούς στη μορφή α) β) 6 γ) ( ) δ) ( 3) ε) Ας κάνουμε και άλλες πράξεις! α β : 3 στ) 6 ( ) α) ( )( ) 6 4 β) ( ) 0 γ) ( ) 0 δ) ( 3) (3 ) ( ) ( ) ε) ( )( ) 4 5 στ) 6 (6 ( ) ( ) ( ) 6 7 ) ΛΑ6Αν 3, να βρείτε την τιμή της παράστασης Και άλλες πράξεις!

6 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Έχουμε 3 3 3, οπότε: Άρα: 0 ΛΑ7Να αποδείξετε ότι ( α β) 0 ( β α) 0, όπου α, β R Ας κάνουμε κάτι πιο δύσκολο! Πρέπει να ξέρεις ότι: β α ( ) β α β α ( α β) Είναι β α ( α β) Επομένως: ( α β) 0 ( β α) 0 ( α β) 0 0 ( α β) 0 ( α β) 0 ( α β) 0 0 Aσκήσεις προς λύση Δίνονται οι μιγαδικοί, 3, 3 4 9, 4, 5, Να βρείτε το άθροισμα των απείρων όρων w Να γράψετε στη μορφή α β τους μιγαδικούς αριθμούς: α) β) - - (- ) 3 Να γράψετε στη μορφή α β τους μιγαδικούς αριθμούς: 3 α) 3 (- 5) β) ( ) (- 3) γ) 4 δ) - ε) - - ζ) ( 3) (- ) - 4 Να γράψετε στη μορφή α β τους μιγαδικούς αριθμούς:

7 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ α) ( - 3) (4-5) 7 - β) γ) δ) ε) ( - ) -3 ΛΑ8 Να βρείτε τους, y R, για τους οποίους ισχύει: α) (3 ) ( y) y, β) y γ) ( 3 )( y) ( y) Οι μιγαδικοί α β και γ δ είναι ίσοι τότε και μόνον τότε όταν αγ και βδ, οπότε θα εξισώσουμε τα πραγματικά και τα φανταστικά τους μέρη και θα επιλύσουμε το σύστημα που θα προκύψει Πρόσεξε ότι η ισότητα δυο μιγαδικών αριθμών καταλήγει πάντα σε δυο ισότητες πραγματικών! α) Είναι: (3 ) ( y) y 9 4 y y 9 4 (5 ) 0 Αυτή όμως είναι αδύνατη, αφού το 0 β) Είναι: Άρα η σχέση γράφεται: y y και y y 5 5 y 5 γ) Είναι: ( 3 )( y) ( y) ( 3 )( y) ( y) ( )( y) ( ) y και y 0 Ασκήσεις προς λύση Να προσδιορίσετε τους πραγματικούς αριθμούς α, β ώστε οι μιγαδικοί α β και να είναι ίσοι

8 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Να βρεθούν οι πραγματικοί αριθμοί α, β ώστε να ισχύει: (α β) 5 3 Να υπολογιστεί το R ώστε να ισχύει: 3 - ΛΑ9 Να υπολογίσετε τις παραστάσεις: α) β) Ας θυμηθούμε τις δυνάμεις του 0 4 3, υ και γενικά n, όπου υ το υπόλοιπο της διαίρεσης του φυσικού αριθμού n δια του 4, οπότε υ 0,,, 3 Επίσης n, και γενικά n υ α) 0 β) ΛΑ0Να βρείτε την τιμή της παράστασης ( 0 0 ) ( ) Πρέπει να ξέρεις ότι: ( ), διότι ( ) ( ), διότι ( ) 0 ( ) ( ) (), Είναι ( ) (( ) ) ( ) ( ) 0 ( )

9 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ Άρα ( ) ( ) ( ) 0 ΛΑΠόσες διαφορετικές τιμές μπορεί να πάρει η παράσταση ν ν ; Θα διακρίνουμε σε τέτοιες ασκήσεις 4 περιπτώσεις για το φυσικό ν η ν περίπτωση να είναι της μορφής ν 4 κ 0, οπότε η ν περίπτωση να είναι της μορφής ν 4 κ, οπότε 3 η ν περίπτωση να είναι της μορφής ν 4 κ, οπότε 4 η ν 3 περίπτωση να είναι της μορφής ν 4 κ 3, οπότε ν ν ν Έχουμε A Επομένως: ν Αν ν 4 κ, τότε ν, οπότε A Αν ν 4 κ, τότε ν, οπότε A 0 ν Αν ν 4 κ, τότε, οπότε A ν Αν ν 4 κ 3, τότε, οπότε A 0 Aσκήσεις προς λύση Αν - και [( ] ) 3 κ, τότε η μικρότερη τιμή του θετικού ακεραίου κ είναι Α Β 3 Γ 6 Δ Ε 5 Αν ν Ν, από τις παρακάτω ισότητες δεν είναι σωστή η Α 4ν Β 4ν - Γ 4ν - Δ ν4 ν Ε 4ν3-3 Για τις διάφορες τιμές του ν Ν να βρεθεί η τιμή της παράστασης ν f (ν) 4 Να αποδείξετε ότι για κάθε ν Ν ισχύει ( ) 0ν ( - ) 0ν ΛΑ Ποιος είναι ο, όταν: α) 5 7, β) 4 9, γ) 4, δ), ε), στ) 0

10 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ας θυμηθούμε ότι Ο συζυγής ενός μιγαδικού αριθμού α β είναι ο α β Αν τότε και αντίστροφα Αν» τότε και αντίστροφα Οι εικόνες δυο συζυγών μιγάδων στο μιγαδικό επίπεδο είναι σημεία συμμετρικά ως προς τον άξονα των α) Για 5 7 είναι 5 7, β) Για 4 9 είναι 4 9 γ) Για 4 είναι 4, δ) Για είναι ε) Για είναι, στ) Για 0 είναι 0 ΛΑ3Με ποιες συμμετρίες μπορούν να προκύψουν από την εικόνα του μιγαδικού y οι εικόνες των μιγαδικών, και ; Μάθε τις συμμετρίες που έχουν οι εικόνες των,,, Αν M (, y) είναι η εικόνα στο μιγαδικό επίπεδο του μιγαδικού y, τότε η εικόνα του y είναι το σημείο M (, y), του y είναι το σημείο M (, y) και, τέλος, του y y είναι το σημείο M 3 (, y) Έτσι, μπορούμε M 3 (-,y) M(,y) να πούμε ότι: Ο προκύπτει από τον με συμμετρία ως προς τον άξονα Ο προκύπτει από τον με συμμετρία ως προς κέντρο το O (0,0) και τέλος: M (-,-y) M (,-y) y Ο προκύπτει από τον με συμμετρία ως προς τον άξονα y y ΛΑ4Αν και, να δείξετε ότι ο είναι πραγματικός αριθμός, ενώ ο φανταστικός αριθμός

11 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ Ας θυμηθούμε ότι Αν τότε Αν τότε» Είναι, άρα είναι πραγματικός αριθμός Ομοίως ( ), άρα ο είναι φανταστικός ΛΑ5Να περιγράψετε γεωμετρικά το σύνολο των εικόνων των μιγαδικών αριθμών που ικανοποιούν τις παρακάτω σχέσεις: α) 6 β) γ) δ) Να ξέρουμε ότι στους απλούς γεωμετρικούς τόπους θέτουμε y και αναζητούμε τη σχέση (συνήθως σχέση ισότητας) που συνδέει το με το y Αν y τότε: α) 6 y y 6 y 6 y 3 y 3 Άρα, οι εικόνες των μιγαδικών είναι τα σημεία της οριζόντιας ευθείας με εξίσωση y 3 β) ( y) ( y) ( y) ( y) 0 ( y y)( y y) 0 y 0 0 ή y 0 Άρα, οι εικόνες των μιγαδικών είναι τα σημεία των δύο αξόνων y y και γ) ( y) ( y) (y) y ( y y y y y ( y ) 0 y ± y) Άρα, οι εικόνες των μιγαδικών είναι τα σημεία των διχοτόμων των τεσσάρων τεταρτημορίων δ) y ( y) y ( ) y y y, y R y Άρα, οι εικόνες των μιγαδικών είναι τα σημεία της κατακόρυφης ευθείας

12 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΑ6Αν α β, γ α β είναι πραγματικός αριθμός γ δ, και δ είναι πραγματικοί αριθμοί, να εξετάσετε πότε το πηλίκο Ας θυμηθούμε ότι Αν τότε α β Αφού θέλουμε το να είναι πραγματικός αριθμός θα είναι και γ δ β α β α β α β αγ αδ βγ βδ γ δ γ δ γ δ γ δ βγ αδ βγ αδ α ος Τρόπος α β ( α β)( γ δ) ( αγ βδ) ( βγ αδ) Έχουμε: γ δ ( γ δ)( γ δ) γ δ Άρα: R βγ αδ 0 αδ βγ αγ αδ βγ βδ ΛΑ7Έστω ο μιγαδικός με 0 Να δείξετε ότι ο ότι είναι πραγματικός και Ας θυμηθούμε ότι αν τότε και αντίστροφα, οπότε ο είναι πραγματικός αφού ισούται με τον συζυγή του Στη συνέχεια θέλουμε να δείξουμε ότι Αν y, τότε θέλουμε να δείξουμε ότι (y) y (y) y ( y ) y y

13 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ y y y y ) y ( y 0 0 y y y y που ισχύουν και οι δύο Άρα ισχύει και η αρχική διπλή ανισότητα ΛΑ8Αν και και, να αποδείξετε ότι ο αριθμός u είναι πραγματικός, ενώ ο αριθμός v είναι φανταστικός Αρκεί να δείξουμε ότι u u και v v Επειδή και θα είναι: u u v ) ( v Aσκήσεις προς λύση Αν α β με αβ 0 και ο συζυγής του ποια από τις παρακάτω προτάσεις δεν είναι σωστή; Α πραγματικός αριθμός Β - φανταστικός αριθμός Γ φανταστικός αριθμός Δ - πραγματικός αριθμός Ε πραγματικός αριθμός Στο μιγαδικό επίπεδο, οι εικόνες δύο συζυγών μιγαδικών αριθμών είναι σημεία συμμετρικά Α ως προς τον άξονα y y Β ως προς τον άξονα Γ ως προς την ευθεία y Δ ως προς την ευθεία y - Ε ως προς την αρχή των αξόνων Ας θυμηθούμε για μια ακόμη φορά ότι αν τότε και αντίστροφα

14 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ 3 Να βρεθούν τα, y R ώστε οι μιγαδικοί: y - και - (4 - y) να είναι συζυγείς 4 Αν φανταστικός αριθμός με - δείξτε ότι ο αριθμός ω πραγματικός αριθμός 3 - είναι αρνητικός 5 Αν οι εικόνες δύο μη μηδενικών μιγαδικών αριθμών και στο μιγαδικό επίπεδο είναι στο ίδιο τεταρτημόριο, ποια από τις παρακάτω σχέσεις μπορεί να ισχύει; Α - B Γ - Δ Ιm ( ) Im ( ) 0 E κανένα από τα παραπάνω 6 Να δείξετε ότι αν ω και ω R τότε ο είναι φανταστικός αριθμός ΛΑ9 Να λύσετε στο σύνολο των μιγαδικών αριθμών τις εξισώσεις: α) 3 0 β) 3 0 γ) Να ξέρουμε ότι τις δευτεροβάθμιες εξισώσεις με πραγματικούς συντελεστές τις λύνουμε κατά τον γνωστό τρόπο Αν αυτή έχει ρίζες μιγαδικές τότε οι ρίζες είναι συζυγείς μιγαδικοί Υπενθυμίζουμε ότι η τετραγωνική ρίζα ενός αρνητικού αριθμού υπάρχει στο Για παράδειγμα 6 6 (4) ± 4 3 ± ± α) 3 0 ή ± 4 ± 8 ± 4 ± β) 3 0 ( ± ) ± γ) Είναι 0 και έχουμε: ± 4 ± 3 ± 0 3 ΛΑ0Αν μια ρίζα της εξίσωσης β γ 0, όπου β, γ R, είναι 3, να βρείτε τις τιμές των β και γ

15 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ Να ξέρουμε ότι για τις ρίζες ρ, ρ μιας δευτεροβάθμιες εξίσωσης α β γ 0 με α 0, ισχύουν οι τύποι του Vetta: β γ ρ ρ και ρ ρ α α Αφού οι συντελεστές της εξίσωσης β γ 0 είναι πραγματικοί αριθμοί και μία ρίζα της είναι η 3, η άλλη θα είναι η 3, οπότε θα ισχύει: β β 6 β γ γ γ 6 3 Aσκήσεις προς λύση Η εξίσωση - 6 λ 0, λ R, μπορεί να έχει ρίζα τον αριθμό Α Β - Γ Δ - Ε 3 Η εξίσωση α 5 0, α R μπορεί να έχει ρίζα τον Α - 3 Β - Γ - Δ 3 - Ε Αν η εξίσωση - κ λ 0, κ, λ Ζ έχει ρίζα τον τότε ισχύει Α κ 6 και λ 5 Β κ 4 και λ Γ κ 3 και λ 4 Δ κ 4 και λ 5 Ε κ 5 και λ 4 4 Η εξίσωση α β 0, α, β R έχει ρίζα τον μιγαδικό αριθμό - α) Να βρείτε την άλλη ρίζα β) Να βρείτε τα α και β ΛΑΝα λύσετε τις εξισώσεις α), β) 3 Πρέπει να ξέρεις ότι τις απλές εξισώσεις και ανισώσεις τις λύνουμε θέτοντας y, οπότε καταλήγουμε σε σύστημα εξισώσεων με δυο αγνώστους τους, y το οποίο αφού το επιλύσουμε βρίσκουμε τα, y, άρα τον α) Αν y τότε έχουμε:

16 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ( )y 0 ( y ) ( )y 0 y 0 y ( y) y (y) y y y 0 ή y y 0 y 0 () () Αν 0, δηλαδή αν, τότε η () γράφεται: y 0 y y ± Άρα: ή 4 4 Αν y 0, τότε η () γράφεται: 0 ( ) 0 0 ή Άρα: 0 ή 3 3 β) Αν y, έχουμε: y ( y) y 3 y 3(y) (y) y 3 y 3y y y ( 3 3y ) (3 y )y 3 3y (3 y )y y ( 3y y(3 y ) 0 ) 0 0 y(3 ή y ) 0 3y 0 () () Αν 0, τότε η () γράφεται: y( y ) 0 y 0 ή y ± Άρα: 0 ή ή Αν 3y, τότε η () γράφεται: y[3(3y ) y ] y(8y 4) 0 y 0 Άρα, οπότε ή και επομένως ή Aσκήσεις προς λύση α) Να βρείτε τους μιγαδικούς αριθμούς που επαληθεύουν την ισότητα ( - ) 3 β) Να βρεθεί ο μιγαδικός αριθμός που ικανοποιεί την ισότητα - Να βρείτε τους μιγαδικούς y,, y R, για τους οποίους ισχύει: 0

17 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ ΛΑΝα βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών για τους οποίους ισχύει: α) Re 5Re() β) Im 3Im() Να ξέρουμε ότι στους απλούς γεωμετρικούς τόπους θέτουμε y και αναζητούμε τη σχέση (συνήθως σχέση ισότητας) που συνδέει το με το y Κάνε ακόμα μια φορά επανάληψη και μάθε τις εξισώσεις: ευθείας, κύκλου, έλλειψης, παραβολής, υπερβολής γιατί θα σου χρειασθούν στη συνέχεια! y α) Έστω y Τότε Επομένως: y y Re 5 Re() y y ή y 4 0 ή y Άρα, ο γεωμετρικός τόπος είναι ο άξονας y y με εξαίρεση το σημείο O (0,0) ή ο κύκλος με κέντρο O(0,0) και ακτίνα ρ y y β) Έχουμε: Im 3Im() y 3y 4y 0 y y y 4 0 y y 0 ή 4 y 0 ή y y Άρα, ο γεωμετρικός τόπος είναι ο άξονας με εξαίρεση το σημείο O (0,0) ή κύκλος με κέντρο O (0,0) και ακτίνα ρ Ασκήσεις προς λύση Δίνεται ο μιγαδικός αριθμός y,, y R α) Να γράψετε στη μορφή α β τον μιγαδικό w 8 6 β) Να βρείτε τη σχέση που συνδέει τα και y, αν Im (w) 0 γ) Να βρείτε τη σχέση που συνδέει τα και y, αν Re (w) 0 δ) Να δείξετε ότι η προηγούμενη σχέση (γ) είναι εξίσωση κύκλου και να βρείτε το κέντρο του και την ακτίνα του ε) Να δείξετε ότι ο προηγούμενος κύκλος διέρχεται από την αρχή των αξόνων

18 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η εξίσωση α β 0, α, β R έχει ρίζα τον μιγαδικό αριθμό - α) Να βρείτε την άλλη ρίζα β) Να βρείτε τα α και β 3 Αν η εικόνα του μιγαδικού λ (λ - ) στο μιγαδικό επίπεδο βρίσκεται στην ευθεία y 4, να βρεθεί ο λ R 4 Να συμπληρώσετε το διπλανό σχήμα με το σημείο Μ () Μετά να βρείτε τα σημεία Μ ( ), Μ 3 (-) και Μ 4 (- ) Να βρείτε το εμβαδόν του τετραπλεύρου Μ Μ Μ 3 Μ 4 5 Ο μιγαδικός να αναλυθεί σε άθροισμα δύο μιγαδικών, που οι εικόνες τους βρίσκονται αντίστοιχα στις ευθείες y - και y - Ερωτήσεις αντιστοίχισης Αν α β, να συμπληρώσετε τον παρακάτω πίνακα ώστε κάθε παράσταση της στήλης Α να αντιστοιχεί στην ίση της που βρίσκεται στη στήλη Β Στήλη Α Α α Στήλη Β Β α β Γ - 3 α β 4 α - β Δ 5 β 6 α Α Β Γ Δ

19 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ Να συμπληρώσετε τον παρακάτω πίνακα ώστε σε κάθε σχέση της στήλης Α να αντιστοιχεί ο γεωμετρικός τόπος των εικόνων του που βρίσκεται στη στήλη Β Στήλη Α σχέση που ικανοποιεί ο μιγαδικός αριθμός Α το πραγματικό μέρος του είναι Στήλη Β γεωμετρική περιγραφή των εικόνων του στο μιγαδικό επίπεδο ο άξονας Β το πραγματικό μέρος του είναι ίσο με το φανταστικό μέρος του η ευθεία y 3 η ευθεία y - Γ το πραγματικό μέρος του είναι αντίθετο του φανταστικού μέρους του 4 η ευθεία 5 η ευθεία y - Α Β Γ 3 Αν η εικόνα του μιγαδικού αριθμού στο μιγαδικό επίπεδο είναι το σημείο Μ (, ), να συμπληρώσετε τον παρακάτω πίνακα ώστε κάθε μιγαδικός αριθμός της στήλης Α να αντιστοιχεί στην εικόνα του που βρίσκεται στη στήλη Β Στήλη Α μιγαδικός αριθμός Στήλη Β σημείο στο μιγαδικό επίπεδο Α (-, ) Β - ( 5, ) Γ 3 (, 5 4 )

20 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ 4 (-, ) 5 ( 5, 5 4 ) Α Β Γ 4 Να συμπληρώσετε τον παρακάτω πίνακα ώστε κάθε δύναμη του που υπάρχει στη στήλη Α να αντιστοιχεί στην τιμή της που βρίσκεται στη στήλη Β Στήλη Α δύναμη του Α 3 - Στήλη Β Β Γ Δ Α Β Γ Δ 5 Αν y,, y 0 και c σταθερός πραγματικός αριθμός, διάφορος του μηδενός, να συμπληρώσετε τον παρακάτω πίνακα ώστε σε κάθε παράσταση της στήλης Α να αντιστοιχεί ο γεωμετρικός τόπος των εικόνων του που βρίσκεται στη στήλη Β

21 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ Στήλη Α σχέση που ικανοποιεί ο μιγαδικός αριθμός Α Re () c Στήλη Β γεωμετρικός τόπος του στο μιγαδικό επίπεδο y c Β Im () c y c Γ Re () Im () c 3 y c 4 c y 0 5 c Α Β Γ Ερωτήσεις του τύπου «Σωστό - Λάθος» Αν α β, α, β R και 0, τότε α 0 και β 0 Σ Λ Αν α β και αβ 0, τότε α β Σ Λ 3 Αν κ λ κ, λ R, τότε Re () κ Σ Λ 4 Αν (y - ) και Ιm () 0, τότε y Σ Λ 5 Αν, C με Re ( ) 0, τότε Re ( ) Re ( ) 0 Σ Λ 6 Οι εικόνες των φανταστικών αριθμών στο μιγαδικό επίπεδο βρίσκονται πάνω στον άξονα y y Σ Λ 7 Αν - τότε 003 Σ Λ 8 Οι εικόνες των αντίθετων μιγαδικών αριθμών στο μιγαδικό επίπεδο είναι σημεία συμμετρικά ως προς τον άξονα Σ Λ 9 Για κάθε μιγαδικό αριθμό 0 ορίζεται Σ Λ 0 Αν Μ, Μ είναι οι εικόνες των μιγαδικών και αντιστοίχως στο μιγαδικό επίπεδο και ο άξονας είναι η μεσοκάθετος του ευθυγράμμου τμήματος Μ Μ, τότε είναι Σ Λ Αν α β, C, και α, τότε Σ Λ Αν Re() τότε οι εικόνες των μιγαδικών στο μιγαδικό επίπεδο βρίσκονται πάνω στην ευθεία Σ Λ

22 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ 3 Αν Ιm ( ) 8 τότε οι εικόνες των μιγαδικών στο μιγαδικό επίπεδο βρίσκονται στην ευθεία y 8 Σ Λ 4 Η εξίσωση - λ 0, λ R, μπορεί να έχει ρίζες τους μιγαδικούς και - Σ Λ 5 Αν η εξίσωση α β γ 0, α 0, α, β, γ R έχει 5 ρίζα τον θα έχει και τον Σ Λ 6 Η εξίσωση α β γ 0, α, β, γ, R * έχει πάντοτε λύση στο C Σ Λ 7 Αν Re ( ) 0 τότε ισχύει πάντα Re ( ) Re ( ) 0 Σ Λ Επιλεγμένα Θέματα Να βρεθούν οι μιγαδικοί αριθμοί ώστε να ισχύουν: α) β)» Αν, είναι μιγαδικοί αριθμοί να βρεθούν οι ικανές και αναγκαίες συνθήκες ώστε ο αριθμός να είναι πραγματικός 3 Αν y, όπου, y,θ, να βρεθούν τα, y συναρτήσει συνθ ημθ του θ και να δειχθεί ότι (3 ) 9y 4 Αν,w και w 0, να δειχθεί ότι ο αριθμός w w 3 5 Να λυθεί η εξίσωση 0, αν γνωρίζουμε ότι έχει μια ρίζα πραγματική 6 Να λυθεί στο η εξίσωση: Να δειχθεί ότι αν οι συζυγείς μιγαδικοί w y και w y είναι ρίζες της εξίσωσης α β 0, τότε α, β 8 Να δειχθεί ότι ο αριθμός ν ν ( ) ( ), είναι πραγματικός για κάθε ν Õ 9 Αν α β γ ( αβ βγ γα) δ δ, όπου α, β, γ, δ, να δειχθεί ότι α β γ α 0 Αν y, με α, β,, y * και θ, να δειχθεί ότι β συνθ ημθ ( β )( y ) α αβ

23 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Έλεγχος των γνώσεων Ερωτήσεις του τύπου «Σωστό - Λάθος» Για κάθε μιγαδικό αριθμό ισχύει - Σ Λ Για κάθε, C ισχύει Σ Λ 3 Η εξίσωση - -, C, παριστάνει στο μιγαδικό επίπεδο τη μεσοκάθετο του ευθυγράμμου τμήματος που έχει άκρα τα σημεία Α ( ) και B ( ) Σ Λ 4 Η εξίσωση - - με άγνωστο το C και, C έχει μόνο μια λύση Σ Λ 5 Η εξίσωση - 0 ρ, ρ > 0 παριστάνει στο μιγαδικό επίπεδο κύκλο με κέντρο Κ ( 0 ) και ακτίνα ρ Σ Λ 6 Στο μιγαδικό επίπεδο η εικόνα του μιγαδικού αριθμού 3 είναι εσωτερικό σημείο του κύκλου 4 Σ Λ 7 Στο μιγαδικό επίπεδο του διπλανού σχήματος η εξίσωση του κύκλου είναι - 4 Σ Λ Ερωτήσεις πολλαπλής επιλογής Αν y ποια από τις παρακάτω ισότητες δεν είναι πάντα σωστή; Α Β - Γ Δ (-y ) Ε Αν 3 και 4 3 τότε η μεγαλύτερη τιμή του είναι Α 5 Β 8 Γ 9 Δ Ε 4 3 Αν και - 5 τότε η ελάχιστη τιμή του είναι Α B 3 Γ 5 Δ 7 E 0 4 Αν 3 y και 5, τότε μια τιμή του y είναι η Α 5 B 5 Γ - 4 Δ 3 E 3 5 Αν το σημείο Ρ (, y) είναι εικόνα του μιγαδικού y στο μιγαδικό επίπεδο για τον οποίο ισχύει - 3 5, το Ρ βρίσκεται πάνω σε Α ευθεία B έλλειψη Γ κύκλο

24 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘMΟΙ Δ παραβολή E υπερβολή 6 Η εξίσωση - ( ) 4 παριστάνει στο μιγαδικό επίπεδο κύκλο με Α κέντρο (-, ) και ακτίνα 4 B κέντρο (, - ) και ακτίνα Γ κέντρο (, - ) και ακτίνα 4 Δ κέντρο (, ) και ακτίνα E κέντρο (, ) και ακτίνα 4 7 Θεωρούμε στο μιγαδικό επίπεδο τον κύκλο με κέντρο το Ο (αρχή των αξόνων) και ακτίνα 0 Από τους παρακάτω αριθμούς έχει εικόνα πάνω στον κύκλο ο μιγαδικός αριθμός Α 3 B 3 7 Γ - 8 Δ 8 6 E 8 8 Ο γεωμετρικός τόπος των εικόνων του μιγαδικού αριθμού στο μιγαδικό επίπεδο για τον οποίο ισχύει - - είναι Α ο άξονας y y B η ευθεία y Γ ο άξονας Δ η μεσοκάθετος του ευθυγράμμου τμήματος με άκρα τα σημεία (, 0) και (0, ) E η μεσοκάθετος του ευθυγράμμου τμήματος με άκρα τα σημεία (0, ) και (, 0) 9 Στο μιγαδικό επίπεδο ο κύκλος με κέντρο το σημείο Κ (, ) και ακτίνα 3 είναι ο γεωμετρικός τόπος των εικόνων του μιγαδικού για τον οποίο ισχύει Α - ( - ) 3 B - ( ) 3 Γ - ( ) 9 Δ - ( ) 3 E ( ) 3 0 Οι μιγαδικοί αριθμοί που οι εικόνες τους στο μιγαδικό επίπεδο βρίσκονται στο γραμμοσκιασμένο τμήμα του σχήματος είναι αυτοί για τους οποίους ισχύει Α < και < B < και < Γ > και > Δ < και < Ε < και < Αν η εξίσωση κ επαληθεύεται από τους μιγαδικούς αριθμούς που η εικόνα τους στο μιγαδικό επίπεδο βρίσκεται στην ευθεία y, ο πραγματικός αριθμός κ ισούται με Α B - Γ Δ - E 4 Αν οι εικόνες των μιγαδικών,, 3 στο μιγαδικό επίπεδο δεν βρίσκονται στην ίδια ευθεία, τότε το πλήθος των λύσεων του συστήματος 3 με άγνωστο τον είναι Α B 3 Γ Δ 4 Ε 0

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η ισότητα στο σύνολο C των µιγαδικών αριθµών ορίζεται από την ισοδυναµία: α +βi = γ + δi α = γ και β = δ. Σ Λ. * Αν z = α + βi, α, β

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Θετικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος».

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -

Διαβάστε περισσότερα

Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1.

Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1. .. Ασκήσεις σχ. Βιβλίου σελίδας 94 97 Α ΟΜΑ ΑΣ. Να βρείτε τις τιµές του λ R, ώστε ο z (λ )( ) να είναι : πραγµατικός αριθµός φανταστικός αριθµός z λ λ 6 (λ ) (6 λ) z πραγµατικός 6 λ 0 λ 6 z φανταστικός

Διαβάστε περισσότερα

Ερωτήσεις σωστού-λάθους

Ερωτήσεις σωστού-λάθους ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Α ΜΕΡΟΣ (ΑΛΓΕΒΡΑ) ΚΕΦ ο : Μιγαδικοί Αριθμοί Φυλλάδιο ο Κεφ..: Η Έννοια του Μιγαδικού Αριθμού Κεφ..: Πράξεις στο Σύνολο C των Mιγαδικών Κεφ..: Πράξεις στο Σύνολο

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης - - Γ Λυκείου ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Ορισμός Έστω ο μιγαδικός αριθμός x yi και M(x, y) η εικόνα του στο μιγαδικό επίπεδο Ορίζουμε ως μέτρο του την απόσταση

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις ανάπτυξης. ** Να βρείτε τους πραγµατικούς αριθµούς x και y ώστε να ισχύουν οι ισότητες: α) x - + y = - + - y β) y + = 3 - ( + ) x γ) 4y - 3y - x = - 5x + 9 δ) (x

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύου «Σωστό - Λάθος». * Αν = α + βi, α, β R και = 0, τότε α = 0 και β = 0. Σ Λ. * Αν = α + βi και αβ 0, τότε = α β i. Σ Λ. * Αν = κ + λi κ, λ R, τότε Re () =

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

Ασκήσεις. x ' x οι ευθείες πάνω στις οποίες κινούνται οι εικόνες Μ(z).

Ασκήσεις. x ' x οι ευθείες πάνω στις οποίες κινούνται οι εικόνες Μ(z). εθοδολογία Παραδείγματα σκήσεις. ν α,β,γ,δ και ο OA, w a βi γ δi OB, των a βi, γ δi. α λυθεί η ανίσωση 0 πιμέλεια.: άτσιος Δημήτρης είναι φανταστικός, να δειχθεί ότι οι διανυσματικές ακτίνες αντίστοιχα,

Διαβάστε περισσότερα

Ισότητα μιγαδικών αριθμών πράξεις στο C Έστω z 1 =α+βi και z 2 =γ+δi δύο μιγαδικοί (α,β,γ,δ R) z 1 =z 2 α=γ και β=δ z 1 =0 α=0 και β=0

Ισότητα μιγαδικών αριθμών πράξεις στο C Έστω z 1 =α+βi και z 2 =γ+δi δύο μιγαδικοί (α,β,γ,δ R) z 1 =z 2 α=γ και β=δ z 1 =0 α=0 και β=0 ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ C Το σύνολο των μιγαδικών αριθμών C, αποτελείται από αριθμούς της μορφής =α+βi,όπου α,βr Το στοιχείο i είναι τέτοιο ώστε : i = - Το σύνολο C είναι υπερσύνολο του R Οι πράξεις

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑ ΙΚΟΥΣ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑ ΙΚΟΥΣ - - ΜΙΓΑ ΙΚΟΙ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑ ΙΚΟΥΣ. Να βρεθούν οι τετραγωνικές ρίζες του µιγαδικού =3+4i. (+i και --i ). Nα αποδείξετε ότι v v+ v+ v+ 3 i + i + i + i = + + + v v+ v+ v+ 3. i i i i 3. Να

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Το Σύνολο C των Μιγαδικών Αριθμών Είναι γνωστό ότι η εξίσωση x δεν έχει λύση στο σύνολο IR των πραγματικών αριθμών, αφού το τετράγωνο κάθε πραγματικού αριθμού είναι μη αρνητικός

Διαβάστε περισσότερα

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις γιατί συχνά, οι ιδέες επαναλαµβάνονται ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ ΑΘΑΝΑΣΙΟΣ Ο ΓΕΝ ΛΥΚΕΙΟ ΥΜΗΤΤΟΥ Σελίδα από 8 Επιµέλεια: Παππάς Αθανάσιος/o ΓΕΛ ΥΜΗΤΤΟΥ 00

Διαβάστε περισσότερα

ΘΕΜΑ (επαναληπτικές) α. Δίνονται Να περιγράψετε οι μιγαδικοί γεωμετρικά αριθμοί το, σύνολο, (Σ) των εικόνων των μιγαδικών αριθμών 3 με 3 3. πο

ΘΕΜΑ (επαναληπτικές) α. Δίνονται Να περιγράψετε οι μιγαδικοί γεωμετρικά αριθμοί το, σύνολο, (Σ) των εικόνων των μιγαδικών αριθμών 3 με 3 3. πο ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΩΝ ΣΤΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (000-03) ΘΕΜΑ 000 α. Αν, είναι οι ρίζες της εξίσωσης + + = 0, να αποδείξετε ότι 0-0 =0. β. Αν είναι ρίζα της εξίσωσης του α. ερωτήματος, με φανταστικό μέρος

Διαβάστε περισσότερα

Θέματα εξετάσεων στους μιγαδικούς

Θέματα εξετάσεων στους μιγαδικούς Θέμα ο α Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών για τους οποίους ισχύει: 6 4 β Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών για τους οποίους ισχύει: i (Ιούλιος 00) Θέμα ο i

Διαβάστε περισσότερα

Μαθηματικά Γ! Λυκείου. Θετική και Τεχνολογική Κατεύθυνση. Μιγαδικοί αριθμοί. Θ ω μ ά ς. Ρ α ϊ κ ό φ τ σ α λ η ς

Μαθηματικά Γ! Λυκείου. Θετική και Τεχνολογική Κατεύθυνση. Μιγαδικοί αριθμοί. Θ ω μ ά ς. Ρ α ϊ κ ό φ τ σ α λ η ς Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θ ω μ ά ς Μιγαδικοί αριθμοί Ρ α ϊ κ ό φ τ σ α λ η ς Προαπαιτούμενες γνώσεις Θ ω μ ά ς Ρ α ϊ κ ό φ τ σ α λ η ς Προαπαιτούμενες γνώσεις Βασικές TAYTOΤΗΤΕΣ

Διαβάστε περισσότερα

Κεφάλαιο 1ο. Μιγαδικοί Αριθμοί

Κεφάλαιο 1ο. Μιγαδικοί Αριθμοί Κεφάλαιο 1ο. Μιγαδικοί Αριθμοί 1η. Άσκηση Να αποδείξετε ότι Α) όπου Β) Αν με τότε Γ) όπου ν Δ) Αν με τότε Ε) αν για τους μιγαδικούς z, w ισχύει τότε 2η. Άσκηση Α) Εφαρμογή 1 σελίδα 93. Β) Να βρείτε τους

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-09 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για το

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση.

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ..3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να βρείτε το μέτρο των μιγαδικών

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Επίσης. Ολες οι ασκήσεις ανα κεφάλαιο του Μαίου. Κλείνει με τις λύσεις όλων των θεμάτων του Μαίου

ΠΡΟΛΟΓΟΣ. Επίσης. Ολες οι ασκήσεις ανα κεφάλαιο του Μαίου. Κλείνει με τις λύσεις όλων των θεμάτων του Μαίου ΠΡΟΛΟΓΟΣ Το παρόν τεύχος δημιουργήθηκε για να διευκολύνει τους μαθητές στην ΆΜΕΣΗ κατανόηση των απαιτήσεων των πανελληνίων εξετάσεων δίνοντας τους τα θέματα των 4 χρόνων των κανονικών εξετάσεων του Μαίου

Διαβάστε περισσότερα

Θωμάς Ραϊκόφτσαλης 01

Θωμάς Ραϊκόφτσαλης 01 0 Α. ΕΙΑΓΩΓΗ ΘΕΜΑ Α Γ_Μ_Μ_ΑΘΡ_ΕΙ_Β_ΕΚ_9 Έστω ο μιγαδικός αριθμός i,,. Τι καλούμε:. Πραγματικό μέρος του.. Φανταστικό μέρος του.. υζυγή του. 4. Εικόνα του μιγαδικού στο μιγαδικό επίπεδο. 5. Διανυσματική

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

1 x και y = - λx είναι κάθετες

1 x και y = - λx είναι κάθετες Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

x R, να δείξετε ότι: i)

x R, να δείξετε ότι: i) ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Έστω μια συνάρτηση f παραγωγίσιμη στο R για την οποία ισχύουν: f ( ), f ( ) για κάθε R και f ( ) f ( ) α) Να βρείτε τον τύπο της f για κάθε R g( ) β) Αν g είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04-05 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς C για τους οποίους ισχύει: - = + Im() και τη συνάρτηση f : w f ( w), όπου w C, w - και f (w) = w ) Να

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.) ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ TEXΝΟΛΟΓ. 5... ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ ΚΑΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ ΚΑΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΓΕΩΜΕΤΡΙΚΙ ΤΠΙ ΚΑΙ ΜΙΓΑΔΙΚΙ ΑΡΙΘΜΙ ΒΑΣΙΚΕΣ ΕΝΝΙΕΣ ΣΥΝΤΜΗ ΕΠΑΝΑΛΗΨΗ ΑΠΣΤΑΣΗ ΣΗΜΕΙΥ Α( 1, y 1 ΑΠ ΤΗΝ ΑΡΧΗ (0, 0 των αξόνων: (A = + y 1 1 Αν έχουμε τον μιγαδικό αριθμό 1 = 1 + i y 1 με εικόνα στο μιγαδικό

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο Μιγαδικοί Αριθμοί (Νο 1) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΚΕΦΑΛΑΙΟ 2ο Μιγαδικοί Αριθμοί (Νο 1) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΚΕΦΑΛΑΙΟ ο Μιγαδικοί Αριθμοί (Νο ) ΛΥΚΕΙΟ Α Λ Γ Ε Β Ρ Α Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) ΕΝΝΟΙΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΔΙΑΝΥΣΜΑΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΙΑΝΥΣΜΑΤΟΣ Αρχή και Πέρας Φορέας Διεύθυνση (Συγγραμμικά διανύσματα) Μέτρο Κατεύθυνση (Ομόρροπα Αντίρροπα διανύσματα)

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A [Επιλογή Ιαν.. Εμβαδόν Τριγώνου ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να είναι ικανός να υϖολογίζει την αϖόσταση σηµείου αϖό ευθεία να είναι ικανός να υϖολογίζει το εµβαδό ενός τριγώνου αϖό τις συντεταγµένες των κορυφών

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ. Ασκήσεις. Επιµέλεια.: Κάτσιος ηµήτρης. Μεθοδολογία Παραδείγµατα Ασκ ΜΕΘΟ ΟΛΟΓΙΑ 1

ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ. Ασκήσεις. Επιµέλεια.: Κάτσιος ηµήτρης. Μεθοδολογία Παραδείγµατα Ασκ ΜΕΘΟ ΟΛΟΓΙΑ 1 εθοδολογία Παραδείγµατα σκ σκήσεις πιµέλεια.: άτσιος ηµήτρης Ρ ια να προσθέσουµε (ή να αφαιρέσουµε) δύο µιγαδικούς, προσθέτουµε (ή αφαιρούµε) τα πραγµατικά και τα φανταστικά τους µέρη, δηλαδή: ± = [Re

Διαβάστε περισσότερα

v a v av a, τότε να αποδείξετε ότι ν <4.

v a v av a, τότε να αποδείξετε ότι ν <4. ΘΕΜΑ ο ΑΣΚΗΣΕΙΣ-ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς αριθμούς για τους οποίους ισχύει η σχέση: Α. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών είναι ο κύκλος με Κ(,0) και

Διαβάστε περισσότερα

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ Λυμένα θέματα στους Μιγαδικούς αριθμούς. Δίνονται οι μιγαδικοί z, w και u z w. α) Να αποδείξετε ότι ο μιγαδικός z είναι φανταστικός αν και μόνο αν ισχύει z z. β) Αν για τους z και w ισχύει: z + w z w,

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και

ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και 7 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

Ον/μο: Θετ-Τεχν. ΘΕΜΑ 1 0

Ον/μο: Θετ-Τεχν. ΘΕΜΑ 1 0 ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 5 Υλη: Μιγαδικοί Γ Λυκείου Ον/μο:.. 9-0-3 Θετ-Τεχν. ΘΕΜΑ 0 Α. Να αποδείξετε ότι : «Η διανυσματική ακτίνα της διαφοράς των μιγαδικών i και i είναι η διαφορά των διανυσματικών ακτινών

Διαβάστε περισσότερα

Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μ Ι Γ Α Δ Ι Κ Ο Ι Α Ρ Ι Θ Μ Ο Ι ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΡΟΣ ο Ερωτήσεις του τύπου σωστό λάθος. Αν = α + βi, α, β R και = 0, τότε α = 0 και β = 0. Σ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1.

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. 1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. Διανύσματα Ισότητα διανυσμάτων Πρόσθεση διανυσμάτων Ερωτήσεις 1. Τ ι ονομάζουμε διάνυσμα;. Τι λέμε μέτρο ενός διανύσματος ;. Τι λέμε μηδενικό διάνυσμα; 4. Τι λέμε φορέα διανύσματος;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΓΑ ΙΚΟΙ. iz+α. (z 1)(z + 1) f ( ) = f (z). (1993-2ο- 1) (1994-2ο) (1999-2ο) ΑΘΑΝΑΣΙΑΔΗΣ ΚΩΣΤΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΓΑ ΙΚΟΙ. iz+α. (z 1)(z + 1) f ( ) = f (z). (1993-2ο- 1) (1994-2ο) (1999-2ο) ΑΘΑΝΑΣΙΑΔΗΣ ΚΩΣΤΑΣ ΜΙΓΑ ΙΚΟΙ.. Αν +α w =, α R και α να αποδειχθεί ότι: +α α) Ο w είναι φανταστικός αριθµός, αν και µόνο αν, ο είναι φανταστικός αριθµός. β) Ισχύει: w =, αν και µόνο αν, ο είναι πραγµατικός αριθµός. (99-ο)..

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 0/04/018 ΕΩΣ 14/04/018 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 1 Απριλίου 018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη ε του κύκλου

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :

ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις : ΕΞΙΣΩΣΕΙΣ - ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ). Να λυθούν οι εξισώσεις: α). + ( 3 ) 6 = 0 β). 4 ( 3 ) + 3 = 0 γ). + ( ) = 0 δ). 5 + 5 = 0 ε). 4( 3) + 5 + 6 6 = 0 στ).( + 3 ) ( 3 + ) ( 3 ) = 0 η). + (3 ) + (4 3 ) = 0

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Μιγαδικοί Αριθμοί ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ ΓΕΩΡΓΙΟΣ ΚΑΡΙΠΙΔΗΣ Μιγαδικοί Αριθμοί ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Α. Πράξεις Συζυγής - Μέτρο Α. Να δείξετε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 3 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµα ο Α. α) Έστω η συνάρτηση ( ) στο R και ισχύει: f '( ) ηµ f = συν. Να αποδείξετε ότι η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R ΟΕΦΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Α Να αποδείξετε ότι η συνάρτηση ν ν και ισχύει f ν f, νν-{,} είναι παραγωγίσιμη στο R

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

2.2 ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.2 ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ Σύμφωα με το ορισμό του R, η πρόσθεση και ο πολλαπλασιασμός δύο μιγαδικώ αριθμώ γίοται όπως ακριβώς και οι ατίστοιχες πράξεις με διώυμα α + βx στο, όπου βέβαια ατί για

Διαβάστε περισσότερα

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί ΚΕΦΑΛΑΙΟ ο :Μιγαδικοί Αριθµοί. Ποιο σύνολο ονοµάζεται σύνολο των µιγαδικών αριθµών ;. Tι ονοµάζεται µιγαδικός αριθµός; Ποιο είναι το πραγµατικό και ποιο το φανταστικό του µέρος ; 3. Tι ονοµάζεται εικόνα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων 9 Θεολόγης Καρκαλέτσης Μαθηματικός teomail@schgr Πρόλογος Στο βιβλίο αυτό περιέχονται όλα τα

Διαβάστε περισσότερα

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0)

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0) . Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν γνωρίζουμε το κέντρο του, και την ακτίνα του ρ. Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο, τότε έχει εξίσωση της μορφής : και αντίστροφα. Ειδικότερα

Διαβάστε περισσότερα

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού 117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μαθηματικού Περιεχόμενα 1. Διανύσματα (47) ελ. - 9. Ευθεία (18) ελ. 10-1 3. Κύκλος (13).ελ. 13-15 4. Παραβολή (14) ελ. 16-18 5. Έλλειψη (18)..

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και Α ΟΜΑΔΑ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Να εξετάσετε αν είναι ίσες οι συναρτήσεις, όταν: () με R και (). Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Το πεδίο ορισμού της είναι A R. Επομένως A A R Α Θα εξετάσουμε αν για κάθε R ισχύει.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο

Διαβάστε περισσότερα

= u u I, ως διαφορά συζυγών. z + 2. i) R. Λύση: α τρόπος. + z z = . Άρα. x 2 +y 2 +x-2=0. , ως. i) Re(z 2 )= -4, ii) Im(z 2 )=2, iii) Re(1+z 2 )=0.

= u u I, ως διαφορά συζυγών. z + 2. i) R. Λύση: α τρόπος. + z z = . Άρα. x 2 +y 2 +x-2=0. , ως. i) Re(z 2 )= -4, ii) Im(z 2 )=2, iii) Re(1+z 2 )=0. ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ) Υπολογίστε τους µιγαδικούς, των οποίων το τετράγωνο ισούται µε: α) 6 β) - γ) -7 δ) - ε) α) 6 ± 6 β) - ± ± γ) -7() -7-7 7 0-7 ± ± ±± δ) -() - - - ± m ± m ±m 0 ε) () - ±± 0 0 ) Εάν, µιγαδικοί,

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Νρεθεί η εξίσωση του κύκλου σε καθεμιά από τις παρακάτω περιπτώσεις: α) έχει κέντρο την αρχή των αξόνων και ακτίνα β) έχει κέντρο το σημείο (3, - ) και ακτίνα 5 γ) έχει κέντρο το σημείο

Διαβάστε περισσότερα

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας . Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ

ΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΣΥΝΟΛΑ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ «ΣΩΣΤΟ ΛΑΘΟΣ». {,3,5,7,... } { / = ν +, ν Ν} =. = {} 0 3. Αν Α Β τότε Α Β = Α 4. 5 {,3,5,7 } 5. Αν Α= {, 3,7} και Β= {,3} 7, τότε Α=Β 6.

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β) ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 04 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04 ΘΕΜΑ ο : * Θεωρούμε τους μιγαδικούς αριθμούς της μορφής xxi,

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΙΣΟΤΗΤΑ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. α+βi =γ+δi α=γ και β=δ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΙΣΟΤΗΤΑ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. α+βi =γ+δi α=γ και β=δ Το σύνολο C των μιγαδικών αριθμών είναι ένα υπερσύνολο του R, του συνόλου των πραγματικών αριθμών, στο οποίο ισχύουν: Επεκτείνονται οι πράξεις της πρόσθεσης του πολλαπλασιασμού έτσι ώστε, να έχουν τις

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x ΘΕΜΑ A ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. Δίνεται η συνάρτηση f με τύπο: f ( ) ln,,. Να δείξετε ότι η f είναι αντιστρέψιμη και να βρείτε το πεδίο ορισμού της αντίστροφής της.. Να δικαιολογήσετε ότι η εξίσωση f ( ) a, a,

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Στοιχεία Θεωρίας Μεθοδολογίες Λυμένα Παραδείγματα. Κωνσταντίνος Παπασταματίου

Μιγαδικοί Αριθμοί. Στοιχεία Θεωρίας Μεθοδολογίες Λυμένα Παραδείγματα. Κωνσταντίνος Παπασταματίου Κωνσταντίνος Παπασταματίου Μιγαδικοί Αριθμοί Στοιχεία Θεωρίας Μεθοδολογίες Λυμένα Παραδείγματα Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με Δημητριάδος) Βόλος Τηλ. 40598 Κεφ. ο ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ. Η έννοια

Διαβάστε περισσότερα

ΚΥΚΛΟΣ. Μ(x,y) Ο C ΘΕΩΡΙΑ ΕΠΙΜΕΛΕΙΑ: ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΧΡΑΣ ΓΙΑΝΝΗΣ ΑΣΚΗΣΕΙΣ. 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ

ΚΥΚΛΟΣ. Μ(x,y) Ο C ΘΕΩΡΙΑ ΕΠΙΜΕΛΕΙΑ: ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΧΡΑΣ ΓΙΑΝΝΗΣ ΑΣΚΗΣΕΙΣ. 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ Φ3 ΚΥΚΛΟΣ y Μ(x,y) A(x,y) ε Ο C x ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ ΚΕΝΤΡΙΚΟ 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ Ν. ΣΜΥΡΝΗΣ 0-0 ΘΕΩΡΙΑ. Τι ονομάζεται κύκλος με κέντρο το σημείο K( x0,

Διαβάστε περισσότερα

α έχει μοναδική λύση την x α

α έχει μοναδική λύση την x α ΚΕΦΑΛΑΙΟ 3 ο ΕΞΙΣΩΣΕΙΣ Να εξετάσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες είναι λάθος.. H εξίσωση ( α)( β) ( β)( γ) έχει τις ίδιες λύσεις με την εξίσωση α γ για οποιεσδήποτε τιμές των

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ . ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ Η εξίσωση με και 0 ή 0 λέγεται γραμμική εξίσωση. Οι μεταβλητές είναι οι άγνωστοι της εξίσωσης αυτής. Οι αριθμοί λέγονται συντελεστές των αγνώστων

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

Επαναληπτικά ϑέµατα στους Μιγαδικούς Αριθµούς

Επαναληπτικά ϑέµατα στους Μιγαδικούς Αριθµούς Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Επαναληπτικά ϑέµατα στους Μιγαδικούς Αριθµούς ιδάσκων : Αντώνης Λουτράρης Μαθηµατικός M.S.c Αύγουστος, 2012 Σελίδα 1 Ο συντοµότερος δρόµος ανάµεσα

Διαβάστε περισσότερα