EUCLID S ELEMENTS IN GREEK VOLUME II BOOKS 5 9
|
|
- Φθα Δαγκλής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 EUCLID S ELEMENTS IN GREEK VOLUME II BOOKS 5 9 The Greek text of J.L. Heiberg (1884) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, Uol. II, Libros V-IX continens, Lipsiae, in aedibus B.G. Teubneri, 1884 with an accompanying English translation by Richard Fitzpatrick
2 For Faith
3 Preface Euclid s Elements is by far the most famous mathematical work of classical antiquity, and also has the distinction of being the world s oldest continuously used mathematical textbook. Little is known about the author, beyond the fact that he lived in Alexandria around 300 BCE. The main subject of this work is Geometry, which was something of an obsession for the Ancient Greeks. Most of the theorems appearing in Euclid s Elements were not discovered by Euclid himself, but were the work of earlier Greek mathematicians such as Pythagoras (and his school), Hippocrates of Chios, Theaetetus, and Eudoxus of Cnidos. However, Euclid is generally credited with arranging these theorems in a logical manner, so as to demonstrate (admittedly, not always with the rigour demanded by modern mathematics) that they necessarily follow from five simple axioms. Euclid is also credited with devising a number of particularly ingenious proofs of previously discovered theorems: e.g., Theorem 48 in Book 1. It is natural that anyone with a knowledge of Ancient Greek, combined with a general interest in Mathematics, would wish to read Euclid s Elements in its original form. It is therefore extremely surprizing that, whilst translations of this work into modern languages are easily available, the Greek text has been completely unobtainable (as a book) for many years. This purpose of this publication is to make the definitive Greek text of Euclid s Elements i.e., that edited by J.L. Heiberg ( ) again available to the general public in book form. The Greek text is accompanied by my own English translation. The aim of my translation is to be as literal as possible, whilst still (approximately) remaining within the bounds of idiomatic English. Text within square parenthesis (in both Greek and English) indicates material identified by Heiberg as being later interpolations to the original text (some particularly obvious or unhelpful interpolations are omitted altogether). Text within round parenthesis (in English) indicates material which is implied, but not actually present, in the Greek text. My thanks goes to Mariusz Wodzicki for advice regarding the typesetting of this work. Richard Fitzpatrick; Austin, Texas; September, References Euclidus Opera Ominia, J.L. Heiberg & H. Menge (editors), Teubner ( ). Euclid in Greek, Book 1, T.L. Heath (translator), Cambridge (1920). Euclid s Elements, T.L. Heath (translator), Dover (1956). History of Greek Mathematics, T.L. Heath, Dover (1981).
4 ΣΤΟΙΧΕΙΩΝ ε
5 ELEMENTS BOOK 5 Proportion 1 1 The theory of proportion set out in this book is generally attributed to Eudoxus of Cnidus. The novel feature of this theory is its ability to deal with irrational magnitudes, which had hitherto been a major stumbling block for Greek mathematicians. Throughout the footnotes in this book, α, β, γ, etc., denote general (possibly irrational) magnitudes, whereas m, n, l, etc., denote positive integers.
6 ΣΤΟΙΧΕΙΩΝ ε Οροι α Μέρος στ µέγεθος µεγέθους τ λασσον το µείζονος, ταν καταµετρ τ µε ζον. β Πολλαπλάσιον δ τ µε ζον το λάττονος, ταν καταµετρ ται π το λάττονος. γ Λόγος στ δύο µεγεθ ν µογεν ν κατ πηλικότητά ποια σχέσις. δ Λόγον χειν πρ ς λληλα µεγέθη λέγεται, δύναται πολλαπλασιαζόµενα λλήλων περέχειν. ε Εν τ α τ λόγ µεγέθη λέγεται ε ναι πρ τον πρ ς δεύτερον κα τρίτον πρ ς τέταρτον, ταν τ το πρώτου καί τρίτου σάκις πολλαπλάσια τ ν το δευτέρου κα τετάρτου σάκις πολλαπλασίων καθ ποιονο ν πολλαπλασιασµ ν κάτερον κατέρου µα περέχ µα σα µα λλείπ ληφθέντα κατάλληλα. Τ δ τ ν α τ ν χοντα λόγον µεγέθη νάλογον καλείσθω. ζ Οταν δ τ ν σάκις πολλαπλασίων τ µ ν το πρώτου πολλαπλάσιον περέχ το το δευτέρου πολλαπλασίου, τ δ το τρίτου πολλαπλάσιον µ περέχ το το τετάρτου πολλαπλασίου, τότε τ πρ τον πρ ς τ δεύτερον µείζονα λόγον χειν λέγεται, περ τ τρίτον πρ ς τ τέταρτον. η Αναλογία δ ν τρισ ν ροις λαχίστη στίν. θ Οταν δ τρία µεγέθη νάλογον, τ πρ τον πρ ς τ τρίτον διπλασίονα λόγον χειν λέγεται περ πρ ς τ δεύτερον. ι Οταν δ τέσσαρα µεγέθη νάλογον, τ πρ τον πρ ς τ τέταρτον τριπλασίονα λόγον χειν λέγεται περ πρ ς τ δεύτερον, κα ε ξ ς µοίως, ς ν ναλογία πάρχ. 6
7 ELEMENTS BOOK 5 Definitions 1 A magnitude is a part of a(nother) magnitude, the lesser of the greater, when it measures the greater. 2 2 And the greater (magnitude is) a multiple of the lesser when it is measured by the lesser. 3 A ratio is a certain type of condition with respect to size of two magnitudes of the same kind. 3 4 (Those) magnitudes are said to have a ratio with respect to one another which, being multiplied, are capable of exceeding one another. 4 5 Magnitudes are said to be in the same ratio, the first to the second, and the third to the fourth, when equal multiples of the first and the third either both exceed, are both equal to, or are both less than, equal multiples of the second and the fourth, respectively, being taken in corresponding order, according to any kind of multiplication whatever. 5 6 And let magnitudes having the same ratio be called proportional. 6 7 And when for equal multiples (as in Def. 5), the multiple of the first (magnitude) exceeds the multiple of the second, and the multiple of the third (magnitude) does not exceed the multiple of the fourth, then the first (magnitude) is said to have a greater ratio to the second than the third (magnitude has) to the fourth. 8 And a proportion in three terms is the smallest (possible). 7 9 And when three magnitudes are proportional, the first is said to have a squared 8 ratio to the third with respect to the second And when four magnitudes are (continuously) proportional, the first is said to have a cubed 10 ratio to the fourth with respect to the second. 11 And so on, similarly, in successive order, whatever the (continuous) proportion might be. 2 In other words, α is said to be a part of β if β = mα. 3 In modern notation, the ratio of two magnitudes, α and β, is denoted α : β. 4 In other words, α has a ratio with respect to β if mα > β and nβ > α, for some m and n. 5 In other words, α : β :: γ : δ if and only if mα > nβ whenever mγ > nδ, and mα = nβ whenever mγ = nδ, and mα < nβ whenever mγ < nδ, for all m and n. This definition is the kernel of Eudoxus theory of proportion, and is valid even if α, β, etc., are irrational. 6 Thus if α and β have the same ratio as γ and δ then they are proportional. In modern notation, α : β :: γ : δ. 7 In modern notation, a proportion in three terms α, β, and γ is written: α : β :: β : γ. 8 Literally, double. 9 In other words, if α : β :: β : γ then α : γ :: α 2 : β Literally, triple. 11 In other words, if α : β :: β : γ :: γ : δ then α : δ :: α 3 : β 3. 7
8 ΣΤΟΙΧΕΙΩΝ ε ιβ Οµόλογα µεγέθη λέγεται τ µ ν γούµενα το ς γουµένοις τ δ πόµενα το ς ποµένοις. ιγ Εναλλ ξ λόγος στ λ ψις το γουµένου πρ ς τ γούµενον κα το ποµένου πρ ς τ πόµενον. ιδ Ανάπαλιν λόγος στ λ ψις το ποµένου ς γουµένου πρ ς τ γούµενον ς πόµενον. ιε Σύνθεσις λόγου στ λ ψις το γουµένου µετ το ποµένου ς ν ς πρ ς α τ τ πόµενον. ι ιαίρεσις λόγου στ λ ψις τ ς περοχ ς, περέχει τ γούµενον το ποµένου, πρ ς α τ τ πόµενον. ιζ Αναστροφ λόγου στ λ ψις το γουµένου πρ ς τ ν περοχήν, περέχει τ γούµενον το ποµένου. ιη ι σου λόγος στ πλειόνων ντων µεγεθ ν κα λλων α το ς σων τ πλ θος σύνδυο λαµβανοµένων κα ν τ α τ λόγ, ταν ς ν το ς πρώτοις µεγέθεσι τ πρ τον πρ ς τ σχατον, ο τως ν το ς δευτέροις µεγέθεσι τ πρ τον πρ ς τ σχατον λλως Λ ψις τ ν κρων καθ πεξαίρεσιν τ ν µέσων. ιθ Τεταραγµένη δ ναλογία στίν, ταν τρι ν ντων µεγεθ ν κα λλων α το ς σων τ πλ θος γίνηται ς µ ν ν το ς πρώτοις µεγέθεσιν γούµενον πρ ς πόµενον, ο τως ν το ς δευτέροις µεγέθεσιν γούµενον πρ ς πόµενον, ς δ ν το ς πρώτοις µεγέθεσιν πόµενον πρ ς λλο τι, ο τως ν το ς δευτέροις λλο τι πρ ς γούµενον. 8
9 ELEMENTS BOOK 5 12 These magnitudes are said to be corresponding (magnitudes): the leading to the leading (of two ratios), and the following to the following. 13 An alternate ratio is a taking of the (ratio of the) leading (magnitude) to the leading (of two equal ratios), and (setting it equal to) the (ratio of the) following (magnitude) to the following An inverse ratio is a taking of the (ratio of the) following (magnitude) as the leading and the leading (magnitude) as the following A composition of a ratio is a taking of the (ratio of the) leading plus the following (magnitudes), as one, to the same following (magnitude) A separation of a ratio is a taking of the (ratio of the) excess by which the leading (magnitude) exceeds the following to the same following (magnitude) A conversion of a ratio is a taking of the (ratio of the) leading (magnitude) to the excess by which the leading (magnitude) exceeds the following There being several magnitudes, and other (magnitudes) of equal number to them, (which are) also in the same ratio taken two by two, a ratio via equality (or ex aequali) occurs when as the first is to the last in the first (set of) magnitudes, so the first (is) to the last in the second (set of) magnitudes. Or alternately, (it is) a taking of the (ratio of the) outer (magnitudes) by the removal of the inner (magnitudes) There being three magnitudes, and other (magnitudes) of equal number to them, a perturbed proportion occurs when as the leading is to the following in the first (set of) magnitudes, so the leading (is) to the following in the second (set of) magnitudes, and as the following (is) to some other (i.e., the remaining magnitude) in the first (set of) magnitudes, so some other (is) to the leading in the second (set of) magnitudes In other words, if α : β :: γ : δ then the alternate ratio corresponds to α : γ :: β : δ. 13 In other words, if α : β then the inverse ratio corresponds to β : α. 14 In other words, if α : β then the composed ratio corresponds to α + β : β. 15 In other words, if α : β then the separated ratio corresponds to α β : β. 16 In other words, if α : β then the converted ratio corresponds to α : α β. 17 In other words, if α,β,γ are the first set of magnitudes, and δ,ɛ,ζ the second set, and α : β : γ :: δ : ɛ : ζ, then the ratio via equality (or ex aequali) corresponds to α : γ :: δ : ζ. 18 In other words, if α,β,γ are the first set of magnitudes, and δ,ɛ,ζ the second set, and α : β :: δ : ɛ and β : γ :: ζ : δ, then the proportion is said to be perturbed. 9
10 ΣΤΟΙΧΕΙΩΝ ε α Ε Α Η Β Γ Θ Ζ Ε ν ποσαο ν µεγέθη ποσωνο ν µεγεθ ν σων τ πλ θος καστον κάστου σάκις πολλαπλάσιον, σαπλάσιόν στιν ν τ ν µεγεθ ν νός, τοσαυταπλάσια σται κα τ πάντα τ ν πάντων. Εστω ποσαο ν µεγέθη τ ΑΒ, Γ ποσωνο ν µεγεθ ν τ ν Ε, Ζ σων τ πλ θος καστον κάστου σάκις πολλαπλάσιον λέγω, τι σαπλάσιόν στι τ ΑΒ το Ε, τοσαυταπλάσια σται κα τ ΑΒ, Γ τ ν Ε, Ζ. Επε γ ρ σάκις στ πολλαπλάσιον τ ΑΒ το Ε κα τ Γ το Ζ, σα ρα στ ν ν τ ΑΒ µεγέθη σα τ Ε, τοσα τα κα ν τ Γ σα τ Ζ. δι ρήσθω τ µ ν ΑΒ ε ς τ τ Ε µεγέθη σα τ ΑΗ, ΗΒ, τ δ Γ ε ς τ τ Ζ σα τ ΓΘ, Θ σται δ σον τ πλ θος τ ν ΑΗ, ΗΒ τ πλήθει τ ν ΓΘ, Θ. κα πε σον στ τ µ ν ΑΗ τ Ε, τ δ ΓΘ τ Ζ, σον ρα τ ΑΗ τ Ε, κα τ ΑΗ, ΓΘ το ς Ε, Ζ. δι τ α τ δ σον στ τ ΗΒ τ Ε, κα τ ΗΒ, Θ το ς Ε, Ζ σα ρα στ ν ν τ ΑΒ σα τ Ε, τοσα τα κα ν το ς ΑΒ, Γ σα το ς Ε, Ζ σαπλάσιον ρα στ τ ΑΒ το Ε, τοσαυταπλάσια σται κα τ ΑΒ, Γ τ ν Ε, Ζ. Ε ν ρα ποσαο ν µεγέθη ποσωνο ν µεγεθ ν σων τ πλ θος καστον κάστου σάκις πολλαπλάσιον, σαπλάσιόν στιν ν τ ν µεγεθ ν νός, τοσαυταπλάσια σται κα τ πάντα τ ν πάντων περ δει δε ξαι. 10
11 ELEMENTS BOOK 5 E Proposition 1 19 A G B C H D F If there are any number of magnitudes whatsoever (which are) equal multiples, respectively, of some (other) magnitudes, of equal number (to them), then as many times as one of the (first) magnitudes is (divisible) by one (of the second), so many times will all (of the first magnitudes) also (be divisible) by all (of the second). Let there be any number of magnitudes whatsoever, AB, CD, (which are) equal multiples, respectively, of some (other) magnitudes, E, F, of equal number (to them). I say that as many times as AB is (divisible) by E, so many times will AB, CD also be (divisible) by E, F. For since AB, CD are equal multiples of E, F, thus as many magnitudes as (there) are in AB equal to E, so many (are there) also in CD equal to F. Let AB have been divided into magnitudes AG, GB, equal to E, and CD into (magnitudes) CH, HD, equal to F. So, the number of (divisions) AG, GB will be equal to the number of (divisions) CH, HD. And since AG is equal to E, and CH to F, AG (is) thus equal to E, and AG, CH to E, F. So, for the same (reasons), GB is equal to E, and GB, HD to E, F. Thus, as many (magnitudes) as (there) are in AB equal to E, so many (are there) also in AB, CD equal to E, F. Thus, as many times as AB is (divisible) by E, so many times will AB, CD also be (divisible) by E, F. Thus, if there are any number of magnitudes whatsoever (which are) equal multiples, respectively, of some (other) magnitudes, of equal number (to them), then as many times as one of the (first) magnitudes is (divisible) by one (of the second), so many times will all (of the first magnitudes) also (be divisible) by all (of the second). (Which is) the very thing it was required to show. 19 In modern notation, this proposition reads mα + mβ + = m(α + β + ). 11
12 Γ Ζ ΣΤΟΙΧΕΙΩΝ ε β Α Β Η Ε Θ Ε ν πρ τον δευτέρου σάκις πολλαπλάσιον κα τρίτον τετάρτου, δ κα πέµπτον δευτέρου σάκις πολλαπλάσιον κα κτον τετάρτου, κα συντεθ ν πρ τον κα πέµπτον δευτέρου σάκις σται πολλαπλάσιον κα τρίτον κα κτον τετάρτου. Πρ τον γ ρ τ ΑΒ δευτέρου το Γ σάκις στω πολλαπλάσιον κα τρίτον τ Ε τετάρτου το Ζ, στω δ κα πέµπτον τ ΒΗ δευτέρου το Γ σάκις πολλαπλάσιον κα κτον τ ΕΘ τετάρτου το Ζ λέγω, τι κα συντεθ ν πρ τον κα πέµπτον τ ΑΗ δευτέρου το Γ σάκις σται πολλαπλάσιον κα τρίτον κα κτον τ Θ τετάρτου το Ζ. Επε γ ρ σάκις στ πολλαπλάσιον τ ΑΒ το Γ κα τ Ε το Ζ, σα ρα στ ν ν τ ΑΒ σα τ Γ, τοσα τα κα ν τ Ε σα τ Ζ. δι τ α τ δ κα σα στ ν ν τ ΒΗ σα τ Γ, τοσα τα κα ν τ ΕΘ σα τ Ζ σα ρα στ ν ν λ τ ΑΗ σα τ Γ, τοσα τα κα ν λ τ Θ σα τ Ζ σαπλάσιον ρα στ τ ΑΗ το Γ, τοσαυταπλάσιον σται κα τ Θ το Ζ. κα συντεθ ν ρα πρ τον κα πέµπτον τ ΑΗ δευτέρου το Γ σάκις σται πολλαπλάσιον κα τρίτον κα κτον τ Θ τετάρτου το Ζ. Ε ν ρα πρ τον δευτέρου σάκις πολλαπλάσιον κα τρίτον τετάρτου, δ κα πέµπτον δευτέρου σάκις πολλαπλάσιον κα κτον τετάρτου, κα συντεθ ν πρ τον κα πέµπτον δευτέρου σάκις σται πολλαπλάσιον κα τρίτον κα κτον τετάρτου περ δει δε ξαι. 12
13 ELEMENTS BOOK 5 Proposition 2 20 A B G C F D E H If a first (magnitude) and a third are equal multiples of a second and a fourth (respectively), and a fifth (magnitude) and a sixth (are) also equal multiples of the second and fourth (respectively), then the first (magnitude) and the fifth, being added together, and the third and the sixth, (being added together), will also be equal multiples of the second (magnitude) and the fourth (respectively). For let a first (magnitude) AB and a third DE be equal multiples of a second C and a fourth F (respectively). And let a fifth (magnitude) BG and a sixth EH also be (other) equal multiples of the second C and the fourth F (respectively). I say that the first (magnitude) and the fifth, being added together, (to give) AG, and the third (magnitude) and the sixth, (being added together, to give) DH, will also be equal multiples of the second (magnitude) C and the fourth F (respectively). For since AB and DE are equal multiples of C and F (respectively), thus as many (magnitudes) as (there) are in AB equal to C, so many (are there) also in DE equal to F. And so, for the same (reasons), as many (magnitudes) as (there) are in BG equal to C, so many (are there) also in EH equal to F. Thus, as many (magnitudes) as (there) are in the whole of AG equal to C, so many (are there) also in the whole of DH equal to F. Thus, as many times as AG is (divisible) by C, so many times will DH also be divisible by F. Thus, the first (magnitude) and the fifth, being added together, (to give) AG, and the third (magnitude) and the sixth, (being added together, to give) DH, will also be equal multiples of the second (magnitude) C and the fourth F (respectively). Thus, if a first (magnitude) and a third are equal multiples of a second and a fourth (respectively), and a fifth (magnitude) and a sixth (are) also equal multiples of the second and fourth (respectively), then the first (magnitude) and the fifth, being added together, and the third and sixth, (being added together), will also be equal multiples of the second (magnitude) and the fourth (respectively). (Which is) the very thing it was required to show. 20 In modern notation, this propostion reads mα + nα = (m + n)α. 13
14 ΣΤΟΙΧΕΙΩΝ ε γ Α Β Ε Κ Ζ Γ Η Λ Θ Ε ν πρ τον δευτέρου σάκις πολλαπλάσιον κα τρίτον τετάρτου, ληφθ δ σάκις πολλαπλάσια το τε πρώτου κα τρίτου, κα δι σου τ ν ληφθέντων κάτερον κατέρου σάκις σται πολλαπλάσιον τ µ ν το δευτέρου τ δ το τετάρτου. Πρ τον γ ρ τ Α δευτέρου το Β σάκις στω πολλαπλάσιον κα τρίτον τ Γ τετάρτου το, κα ε λήφθω τ ν Α, Γ σάκις πολλαπλάσια τ ΕΖ, ΗΘ λέγω, τι σάκις στ πολλαπλάσιον τ ΕΖ το Β κα τ ΗΘ το. Επε γ ρ σάκις στ πολλαπλάσιον τ ΕΖ το Α κα τ ΗΘ το Γ, σα ρα στ ν ν τ ΕΖ σα τ Α, τοσα τα κα ν τ ΗΘ σα τ Γ. δι ρήσθω τ µ ν ΕΖ ε ς τ τ Α µεγέθη σα τ ΕΚ, ΚΖ, τ δ ΗΘ ε ς τ τ Γ σα τ ΗΛ, ΛΘ σται δ σον τ πλ θος τ ν ΕΚ, ΚΖ τ πλήθει τ ν ΗΛ, ΛΘ. κα πε σάκις στ πολλαπλάσιον τ Α το Β κα τ Γ το, σον δ τ µ ν ΕΚ τ Α, τ δ ΗΛ τ Γ, σάκις ρα στ πολλαπλάσιον τ ΕΚ το Β κα τ ΗΛ το. δι τ α τ δ σάκις στ πολλαπλάσιον τ ΚΖ το Β κα τ ΛΘ τ. πε ο ν πρ τον τ ΕΚ δευτέρου το Β σάκις στ πολλαπλάσιον κα τρίτον τ ΗΛ τετάρτου το, στι δ κα πέµπτον τ ΚΖ δευτέρου το Β σάκις πολλαπλάσιον κα κτον τ ΛΘ τετάρτου το, κα συντεθ ν ρα πρ τον κα πέµπτον τ ΕΖ δευτέρου το Β σάκις στ πολλαπλάσιον κα τρίτον κα κτον τ ΗΘ τετάρτου το. Ε ν ρα πρ τον δευτέρου σάκις πολλαπλάσιον κα τρίτον τετάρτου, ληφθ δ το πρώτου κα τρίτου σάκις πολλαπλάσια, κα δι σου τ ν ληφθέντων κάτερον κατέρου σάκις σται πολλαπλάσιον τ µ ν το δευτέρου τ δ το τετάρτου περ δει δε ξαι. 14
15 ELEMENTS BOOK 5 Proposition 3 21 A B E K F C D G L H If a first (magnitude) and a third are equal multiples of a second and a fourth (respectively), and equal multiples are taken of the first and the third, then, via equality, the (magnitudes) taken will also be equal multiples of the second (magnitude) and the fourth, respectively. For let a first (magnitude) A and a third C be equal multiples of a second B and a fourth D (respectively), and let the equal multiples EF and GH have been taken of A and C (respectively). I say that EF and GH are equal multiples of B and D (respectively). For since EF and GH are equal multiples of A and C (respectively), thus as many (magnitudes) as (there) are in EF equal to A, so many (are there) also in GH equal to C. Let EF have been divided into magnitudes EK, KF equal to A, and GH into (magnitudes) GL, LH equal to C. So, the number of (magnitudes) EK, KF will be equal to the number of (magnitudes) GL, LH. And since A and C are equal multiples of B and D (respectively), and EK (is) equal to A, and GL to C, EK and GL are thus equal multiples of B and D (respectively). So, for the same (reasons), KF and LH are equal multiples of B and D (respectively). Therefore, since the first (magnitude) EK and the third GL are equal multiples of the second B and the fourth D (respectively), and the fifth (magnitude) KF and the sixth LH are also equal multiples of the second B and the fourth D (respectively), then the first (magnitude) and fifth, being added together, (to give) EF, and the third (magnitude) and sixth, (being added together, to give) GH, are thus also equal multiples of the second (magnitude) B and the fourth D (respectively) [Prop. 5.2]. Thus, if a first (magnitude) and a third are equal multiples of a second and a fourth (respectively), and equal multiples are taken of the first and the third, then, via equality, the (magnitudes) taken will also be equal multiples of the second (magnitude) and the fourth, respectively. (Which is) the very thing it was required to show. 21 In modern notation, this proposition reads m(nα) = (mn)α. 15
16 ΣΤΟΙΧΕΙΩΝ ε δ Α Β Ε Η Κ Μ Γ Ζ Θ Λ Ν Ε ν πρ τον πρ ς δεύτερον τ ν α τ ν χ λόγον κα τρίτον πρ ς τέταρτον, κα τ σάκις πολλαπλάσια το τε πρώτου κα τρίτου πρ ς τ σάκις πολλαπλάσια το δευτέρου κα τετάρτου καθ ποιονο ν πολλαπλασιασµ ν τ ν α τ ν ξει λόγον ληφθέντα κατάλληλα. Πρ τον γ ρ τ Α πρ ς δεύτερον τ Β τ ν α τ ν χέτω λόγον κα τρίτον τ Γ πρ ς τέταρτον τ, κα ε λήφθω τ ν µ ν Α, Γ σάκις πολλαπλάσια τ Ε, Ζ, τ ν δ Β, λλα, τυχεν, σάκις πολλαπλάσια τ Η, Θ λέγω, τι στ ν ς τ Ε πρ ς τ Η, ο τως τ Ζ πρ ς τ Θ. Ε λήφθω γ ρ τ ν µ ν Ε, Ζ σάκις πολλαπλάσια τ Κ, Λ, τ ν δ Η, Θ λλα, τυχεν, σάκις πολλαπλάσια τ Μ, Ν. [Κα ] πε σάκις στ πολλαπλάσιον τ µ ν Ε το Α, τ δ Ζ το Γ, κα ε ληπται τ ν Ε, Ζ σάκις πολλαπλάσια τ Κ, Λ, σάκις ρα στ πολλαπλάσιον τ Κ το Α κα τ Λ το Γ. δι τ α τ δ σάκις στ πολλαπλάσιον τ Μ το Β κα τ Ν το. κα πεί στιν ς τ Α πρ ς τ Β, ο τως τ Γ πρ ς τ, κα ε ληπται τ ν µ ν Α, Γ σάκις πολλαπλάσια τ Κ, Λ, τ ν δ Β, λλα, τυχεν, σάκις πολλαπλάσια τ Μ, Ν, ε ρα περέχει τ Κ το Μ, περέχει κα τ Λ το Ν, κα ε σον, σον, κα ε λαττον, λαττον. καί στι τ µ ν Κ, Λ τ ν Ε, Ζ σάκις πολλαπλάσια, τ δ Μ, Ν τ ν Η, Θ λλα, τυχεν, σάκις πολλαπλάσια στιν ρα ς τ Ε πρ ς τ Η, ο τως τ Ζ πρ ς τ Θ. Ε ν ρα πρ τον πρ ς δεύτερον τ ν α τ ν χ λόγον κα τρίτον πρ ς τέταρτον, κα τ σάκις πολλαπλάσια το τε πρώτου κα τρίτου πρ ς τ σάκις πολλαπλάσια το δευτέρου κα τετάρτου τ ν α τ ν ξει λόγον καθ ποιονο ν πολλαπλασιασµ ν ληφθέντα κατάλληλα περ δει δε ξαι. 16
17 ELEMENTS BOOK 5 Proposition 4 22 A B E G K M C D F H L N If a first (magnitude) has the same ratio to a second that a third (has) to a fourth then equal multiples of the first (magnitude) and the third will also have the same ratio to equal multiples of the second and the fourth, being taken in corresponding order, according to any kind of multiplication whatsoever. For let a first (magnitude) A have the same ratio to a second B that a third C (has) to a fourth D. And let equal multiples E and F have been taken of A and C (respectively), and other random equal multiples G and H of B and D (respectively). I say that as E (is) to G, so F (is) to H. For let equal multiples K and L have been taken of E and F (respectively), and other random equal multiples M and N of G and H (respectively). [And] since E and F are equal multiples of A and C (respectively), and the equal multiples K and L have been taken of E and F (respectively), K and L are thus equal multiples of A and C (respectively) [Prop. 5.3]. So, for the same (reasons), M and N are equal multiples of B and D (respectively). And since as A is to B, so C (is) to D, and the equal multiples K and L have been taken of A and C (respectively), and the other random equal multiples M and N of B and D (respectively), then if K exceeds M then L also exceeds N, and if (K is) equal (to M then L is also) equal (to N), and if (K is) less (than M then L is also) less (than N) [Def. 5.5]. And K and L are equal multiples of E and F (respectively), and M and N other random equal multiples of G and H (respectively). Thus, as E (is) to G, so F (is) to H [Def. 5.5]. Thus, if a first (magnitude) has the same ratio to a second that a third (has) to a fourth then equal multiples of the first (magnitude) and the third will also have the same ratio to equal multiples of the second and the fourth, being taken in corresponding order, according to any kind of multiplication whatsoever. (Which is) the very thing it was required to show. 22 In modern notation, this proposition reads that if α : β :: γ : δ then mα : nβ :: mγ : nδ, for all m and n. 17
18 ΣΤΟΙΧΕΙΩΝ ε Α ε Ε Β Η Γ Ζ Ε ν µέγεθος µεγέθους σάκις πολλαπλάσιον, περ φαιρεθ ν φαιρεθέντος, κα τ λοιπ ν το λοιπο σάκις σται πολλαπλάσιον, σαπλάσιόν στι τ λον το λου. Μέγεθος γ ρ τ ΑΒ µεγέθους το Γ σάκις στω πολλαπλάσιον, περ φαιρεθ ν τ ΑΕ φαιρεθέντος το ΓΖ λέγω, τι κα λοιπ ν τ ΕΒ λοιπο το Ζ σάκις σται πολλαπλάσιον, σαπλάσιόν στιν λον τ ΑΒ λου το Γ. Οσαπλάσιον γάρ στι τ ΑΕ το ΓΖ, τοσαυταπλάσιον γεγονέτω κα τ ΕΒ το ΓΗ. Κα πε σάκις στ πολλαπλάσιον τ ΑΕ το ΓΖ κα τ ΕΒ το ΗΓ, σάκις ρα στ πολλαπλάσιον τ ΑΕ το ΓΖ κα τ ΑΒ το ΗΖ. κε ται δ σάκις πολλαπλάσιον τ ΑΕ το ΓΖ κα τ ΑΒ το Γ. σάκις ρα στ πολλαπλάσιον τ ΑΒ κατέρου τ ν ΗΖ, Γ σον ρα τ ΗΖ τ Γ. κοιν ν φ ρήσθω τ ΓΖ λοιπ ν ρα τ ΗΓ λοιπ τ Ζ σον στίν. κα πε σάκις στ πολλαπλάσιον τ ΑΕ το ΓΖ κα τ ΕΒ το ΗΓ, σον δ τ ΗΓ τ Ζ, σάκις ρα στ πολλαπλάσιον τ ΑΕ το ΓΖ κα τ ΕΒ το Ζ. σάκις δ πόκειται πολλαπλάσιον τ ΑΕ το ΓΖ κα τ ΑΒ το Γ σάκις ρα στ πολλαπλάσιον τ ΕΒ το Ζ κα τ ΑΒ το Γ. κα λοιπ ν ρα τ ΕΒ λοιπο το Ζ σάκις σται πολλαπλάσιον, σαπλάσιόν στιν λον τ ΑΒ λου το Γ. Ε ν ρα µέγεθος µεγέθους σάκις πολλαπλάσιον, περ φαιρεθ ν φαιρεθέντος, κα τ λοιπ ν το λοιπο σάκις σται πολλαπλάσιον, σαπλάσιόν στι κα τ λον το λου περ δει δε ξαι. 18
19 ELEMENTS BOOK 5 A Proposition 5 23 E B G C F D If a magnitude is the same multiple of a magnitude that a (part) taken away (is) of a (part) taken away (respectively) then the remainder will also be the same multiple of the remainder as that which the whole (is) of the whole (respectively). For let the magnitude AB be the same multiple of the magnitude CD that the (part) taken away AE (is) of the (part) taken away CF (respectively). I say that the remainder EB will also be the same multiple of the remainder FD as that which the whole AB (is) of the whole CD (respectively). For as many times as AE is (divisible) by CF, so many times let EB also have been made (divisible) by CG. And since AE and EB are equal multiples of CF and GC (respectively), AE and AB are thus equal multiples of CF and GF (respectively) [Prop. 5.1]. And AE and AB are assumed (to be) equal multiples of CF and CD (respectively). Thus, AB is an equal multiple of each of GF and CD. Thus, GF (is) equal to CD. Let CF have been subtracted from both. Thus, the remainder GC is equal to the remainder FD. And since AE and EB are equal multiples of CF and GC (respectively), and GC (is) equal to DF, AE and EB are thus equal multiples of CF and FD (respectively). And AE and AB are assumed (to be) equal multiples of CF and CD (respectively). Thus, EB and AB are equal multiples of F D and CD (respectively). Thus, the remainder EB will also be the same multiple of the remainder FD as that which the whole AB (is) of the whole CD (respectively). Thus, if a magnitude is the same multiple of a magnitude that a (part) taken away (is) of a (part) taken away (respectively) then the remainder will also be the same multiple of the remainder as that which the whole (is) of the whole (respectively). (Which is) the very thing it was required to show. 23 In modern notation, this proposition reads mα mβ = m(α β). 19
20 ΣΤΟΙΧΕΙΩΝ ε Α Η Β Ε Κ Γ Θ Ζ Ε ν δύο µεγέθη δύο µεγεθ ν σάκις πολλαπλάσια, κα φαιρεθέντα τιν τ ν α τ ν σάκις πολλαπλάσια, κα τ λοιπ το ς α το ς τοι σα στ ν σάκις α τ ν πολλαπλάσια. ύο γ ρ µεγέθη τ ΑΒ, Γ δύο µεγεθ ν τ ν Ε, Ζ σάκις στω πολλαπλάσια, κα φαιρεθέντα τ ΑΗ, ΓΘ τ ν α τ ν τ ν Ε, Ζ σάκις στω πολλαπλάσια λέγω, τι κα λοιπ τ ΗΒ, Θ το ς Ε, Ζ τοι σα στ ν σάκις α τ ν πολλαπλάσια. Εστω γ ρ πρότερον τ ΗΒ τ Ε σον λέγω, τι κα τ Θ τ Ζ σον στίν. Κείσθω γ ρ τ Ζ σον τ ΓΚ. πε σάκις στ πολλαπλάσιον τ ΑΗ το Ε κα τ ΓΘ το Ζ, σον δ τ µ ν ΗΒ τ Ε, τ δ ΚΓ τ Ζ, σάκις ρα στ πολλαπλάσιον τ ΑΒ το Ε κα τ ΚΘ το Ζ. σάκις δ πόκειται πολλαπλάσιον τ ΑΒ το Ε κα τ Γ το Ζ σάκις ρα στ πολλαπλάσιον τ ΚΘ το Ζ κα τ Γ το Ζ. πε ο ν κάτερον τ ν ΚΘ, Γ το Ζ σάκις στ πολλαπλάσιον, σον ρα στ τ ΚΘ τ Γ. κοιν ν φ ρήσθω τ ΓΘ λοιπ ν ρα τ ΚΓ λοιπ τ Θ σον στίν. λλ τ Ζ τ ΚΓ στιν σον κα τ Θ ρα τ Ζ σον στίν. στε ε τ ΗΒ τ Ε σον στίν, κα τ Θ σον σται τ Ζ. Οµοίως δ δείξοµεν, τι, κ ν πολλαπλάσιον τ ΗΒ το Ε, τοσαυταπλάσιον σται κα τ Θ το Ζ. Ε ν ρα δύο µεγέθη δύο µεγεθ ν σάκις πολλαπλάσια, κα φαιρεθέντα τιν τ ν α τ ν σάκις πολλαπλάσια, κα τ λοιπ το ς α το ς τοι σα στ ν σάκις α τ ν πολλαπλάσια περ δει δε ξαι. 20
21 ELEMENTS BOOK 5 Proposition 6 24 A G B E K C H D F If two magnitudes are equal multiples of two (other) magnitudes, and some (parts) taken away (from the former magnitudes) are equal multiples of the latter (magnitudes, respectively), then the remainders are also either equal to the latter (magnitudes), or (are) equal multiples of them (respectively). For let two magnitudes AB and CD be equal multiples of two magnitudes E and F (respectively). And let the (parts) taken away (from the former) AG and CH be equal multiples of E and F (respectively). I say that the remainders GB and HD are also either equal to E and F (respectively), or (are) equal multiples of them. For, let GB be, first of all, equal to E. I say that HD is also equal to F. For let CK be made equal to F. Since AG and CH are equal multiples of E and F (respectively), and GB (is) equal to E, and KC to F, AB and KH are thus equal multiples of E and F (respectively) [Prop. 5.2]. And AB and CD are assumed (to be) equal multiples of E and F (respectively). Thus, KH and CD are equal multiples of F and F (respectively). Therefore, KH and CD are each equal multiples of F. Thus, KH is equal to CD. Let CH have be taken away from both. Thus, the remainder KC is equal to the remainder HD. But, F is equal to KC. Thus, HD is also equal to F. Hence, if GB is equal to E then HD will also be equal to F. So, similarly, we can show that even if GB is a multiple of E then HD will be the same multiple of F. Thus, if two magnitudes are equal multiples of two (other) magnitudes, and some (parts) taken away (from the former magnitudes) are equal multiples of the latter (magnitudes, respectively), then the remainders are also either equal to the latter (magnitudes), or (are) equal multiples of them (respectively). (Which is) the very thing it was required to show. 24 In modern notation, this proposition reads mα nα = (m n)α. 21
22 ΣΤΟΙΧΕΙΩΝ ε ζ Α Β Γ Ε Ζ Τ σα πρ ς τ α τ τ ν α τ ν χει λόγον κα τ α τ πρ ς τ σα. Εστω σα µεγέθη τ Α, Β, λλο δέ τι, τυχεν, µέγεθος τ Γ λέγω, τι κάτερον τ ν Α, Β πρ ς τ Γ τ ν α τ ν χει λόγον, κα τ Γ πρ ς κάτερον τ ν Α, Β. Ε λήφθω γ ρ τ ν µ ν Α, Β σάκις πολλαπλάσια τ, Ε, το δ Γ λλο, τυχεν, πολλαπλάσιον τ Ζ. Επε ο ν σάκις στ πολλαπλάσιον τ το Α κα τ Ε το Β, σον δ τ Α τ Β, σον ρα κα τ τ Ε. λλο δέ, τυχεν, τ Ζ. Ε ρα περέχει τ το Ζ, περέχει κα τ Ε το Ζ, κα ε σον, σον, κα ε λαττον, λαττον. καί στι τ µ ν, Ε τ ν Α, Β σάκις πολλαπλάσια, τ δ Ζ το Γ λλο, τυχεν, πολλαπλάσιον στιν ρα ς τ Α πρ ς τ Γ, ο τως τ Β πρ ς τ Γ. Λέγω [δή], τι κα τ Γ πρ ς κάτερον τ ν Α, Β τ ν α τ ν χει λόγον. Τ ν γ ρ α τ ν κατασκευασθέντων µοίως δείξοµεν, τι σον στ τ τ Ε λλο δέ τι τ Ζ ε ρα περέχει τ Ζ το, περέχει κα το Ε, κα ε σον, σον, κα ε λαττον, λαττον. καί στι τ µ ν Ζ το Γ πολλαπλάσιον, τ δ, Ε τ ν Α, Β λλα, τυχεν, σάκις πολλαπλάσια στιν ρα ς τ Γ πρ ς τ Α, ο τως τ Γ πρ ς τ Β. Τ σα ρα πρ ς τ α τ τ ν α τ ν χει λόγον κα τ α τ πρ ς τ σα. Πόρισµα Εκ δ τούτου φανερόν, τι ν µεγέθη τιν νάλογον, κα νάπαλιν νάλογον σται. περ δει δε ξαι. 22
23 ELEMENTS BOOK 5 Proposition 7 A B C D E F Equal (magnitudes) have the same ratio to the same (magnitude), and the latter (magnitude has the same ratio) to the equal (magnitudes). Let A and B be equal magnitudes, and C some other random magnitude. I say that A and B each have the same ratio to C, and (that) C (has the same ratio) to each of A and B. For let the equal multiples D and E have been taken of A and B (respectively), and the other random multiple F of C. Therefore, since D and E are equal multiples of A and B (respectively), and A (is) equal to B, D (is) thus also equal to E. And F (is) different, at random. Thus, if D exceeds F then E also exceeds F, and if (D is) equal (to F then E is also) equal (to F), and if (D is) less (than F then E is also) less (than F). And D and E are equal multiples of A and B (respectively), and F another random multiple of C. Thus, as A (is) to C, so B (is) to C [Def. 5.5]. [So] I say that C 25 also has the same ratio to each of A and B. For, similarly, we can show, by the same construction, that D is equal to E. And F (has) some other (value). Thus, if F exceeds D then it also exceeds E, and if (F is) equal (to D then it is also) equal (to E), and if (F is) less (than D then it is also) less (than E). And F is a multiple of C, and D and E other random equal multiples of A and B. Thus, as C (is) to A, so C (is) to B [Def. 5.5]. Thus, equal (magnitudes) have the same ratio to the same (magnitude), and the latter (magnitude has the same ratio) to the equal (magnitudes). Corollary 26 So (it is) clear from this that if some magnitudes are proportional then they will also be proportional inversely. (Which is) the very thing it was required to show. 25 The Greek text has E, which is obviously a mistake. 26 In modern notation, this corollary reads that if α : β :: γ : δ then β : α :: δ : γ. 23
24 ΣΤΟΙΧΕΙΩΝ ε η Γ Α Ε Β Α Ε Β Ζ Η Θ Ζ Η Θ Γ Κ Λ Μ Ν Κ Λ Μ Ν Τ ν νίσων µεγεθ ν τ µε ζον πρ ς τ α τ µείζονα λόγον χει περ τ λαττον. κα τ α τ πρ ς τ λαττον µείζονα λόγον χει περ πρ ς τ µε ζον. Εστω νισα µεγέθη τ ΑΒ, Γ, κα στω µε ζον τ ΑΒ, λλο δέ, τυχεν, τ λέγω, τι τ ΑΒ πρ ς τ µείζονα λόγον χει περ τ Γ πρ ς τ, κα τ πρ ς τ Γ µείζονα λόγον χει περ πρ ς τ ΑΒ. Επε γ ρ µε ζόν στι τ ΑΒ το Γ, κείσθω τ Γ σον τ ΒΕ τ δ λασσον τ ν ΑΕ, ΕΒ πολλαπλασιαζόµενον σται ποτ το µε ζον. στω πρότερον τ ΑΕ λαττον το ΕΒ, κα πεπολλαπλασιάσθω τ ΑΕ, κα στω α το πολλαπλάσιον τ ΖΗ µε ζον ν το, κα σαπλάσιόν στι τ ΖΗ το ΑΕ, τοσαυταπλάσιον γεγονέτω κα τ µ ν ΗΘ το ΕΒ τ δ Κ το Γ κα ε λήφθω το διπλάσιον µ ν τ Λ, τριπλάσιον δ τ Μ, κα ξ ς ν πλε ον, ως ν τ λαµβανόµενον πολλαπλάσιον µ ν γένηται το, πρώτως δ µε ζον το Κ. ε λήφθω, κα στω τ Ν τετραπλάσιον µ ν το, πρώτως δ µε ζον το Κ. Επε ο ν τ Κ το Ν πρώτως στ ν λαττον, τ Κ ρα το Μ ο κ στιν λαττον. κα πε σάκις στ πολλαπλάσιον τ ΖΗ το ΑΕ κα τ ΗΘ το ΕΒ, σάκις ρα στ πολλαπλάσιον τ ΖΗ το ΑΕ κα τ ΖΘ το ΑΒ. σάκις δέ στι πολλαπλάσιον τ ΖΗ το ΑΕ κα τ Κ το Γ σάκις ρα στ πολλαπλάσιον τ ΖΘ το ΑΒ κα τ Κ το Γ. τ ΖΘ, Κ ρα τ ν ΑΒ, Γ σάκις στ πολλαπλάσια. πάλιν, πε σάκις στ πολλαπλάσιον τ ΗΘ το ΕΒ κα τ Κ το Γ, σον δ τ ΕΒ τ Γ, σον ρα κα τ ΗΘ τ Κ. τ δ Κ το Μ ο κ στιν λαττον ο δ ρα τ ΗΘ το Μ λαττόν στιν. µε ζον δ τ ΖΗ το λον ρα τ ΖΘ συναµφοτέρων τ ν, Μ µε ζόν στιν. λλ συναµφότερα τ, Μ τ Ν στιν σα, πειδήπερ τ Μ το τριπλάσιόν στιν, συναµφότερα δ τ Μ, το στι τετραπλάσια, στι δ κα τ Ν το τετραπλάσιον συναµφότερα ρα τ Μ, τ Ν σα στίν. λλ τ ΖΘ τ ν Μ, µε ζόν στιν τ ΖΘ ρα το Ν περέχει τ δ Κ το Ν ο χ περέχει. καί στι τ µ νζθ,κ τ ν ΑΒ, Γ σάκις πολλα- 24
25 ELEMENTS BOOK 5 Proposition 8 A E B A E B C F G H C F G H K K D D L L M M N N For unequal magnitudes, the greater (magnitude) has a greater ratio than the lesser to the same (magnitude). And the latter (magnitude) has a greater ratio to the lesser (magnitude) than to the greater. Let AB and C be unequal magnitudes, and let AB be the greater (of the two), and D another random magnitude. I say that AB has a greater ratio to D than C (has) to D, and (that) D has a greater ratio to C than (it has) to AB. For since AB is greater than C, let BE be made equal to C. So, the lesser of AE and EB, being multiplied, will sometimes be greater than D [Def. 5.4]. First of all, let AE be less than EB, and let AE have been multiplied, and let FG be a multiple of it which (is) greater than D. And as many times as FG is (divisible) by AE, so many times let GH also have become (divisible) by EB, and K by C. And let the double multiple L of D have been taken, and the triple multiple M, and several more, (each increasing) in order by one, until the (multiple) taken becomes the first multiple of D (which is) greater than K. Let it have been taken, and let it also be the quadruple multiple N of D the first (multiple) greater than K. Therefore, since K is less than N first, K is thus not less than M. And since FG and GH are equal multiples of AE and EB (respectively), FG and FH are thus equal multiples of AE and AB (respectively) [Prop. 5.1]. And FG and K are equal multiples of AE and C (respectively). Thus, FH and K are equal multiples of AB and C (respectively). Thus, FH, K are equal multiples of AB, C. Again, since GH and K are equal multiples of EB and C, and EB (is) equal to C, GH (is) thus also equal to K. And K is not less than M. Thus, GH not less than M either. And FG (is) greater than D. Thus, the whole of FH is greater than D and M (added) together. But, D and M (added) together is equal to N, inasmuch as M is three times D, and M and D (added) together is four times D, and N is also four times D.Thus, M and D (added) together is equal to 25
26 ΣΤΟΙΧΕΙΩΝ ε η πλάσια, τ δ Ν το λλο, τυχεν, πολλαπλάσιον τ ΑΒ ρα πρ ς τ µείζονα λόγον χει περ τ Γ πρ ς τ. Λέγω δή, τι κα τ πρ ς τ Γ µείζονα λόγον χει περ τ πρ ς τ ΑΒ. Τ ν γ ρ α τ ν κατασκευασθέντων µοίως δείξοµεν, τι τ µ ν Ν το Κ περέχει, τ δ Ν το ΖΘ ο χ περέχει. καί στι τ µ ν Ν το πολλαπλάσιον, τ δ ΖΘ, Κ τ ν ΑΒ, Γ λλα, τυχεν, σάκις πολλαπλάσια τ ρα πρ ς τ Γ µείζονα λόγον χει περ τ πρ ς τ ΑΒ. Αλλ δ τ ΑΕ το ΕΒ µε ζον στω. τ δ λαττον τ ΕΒ πολλαπλασιαζόµενον σται ποτ το µε ζον. πεπολλαπλασιάσθω, κα στω τ ΗΘ πολλαπλάσιον µ ν το ΕΒ, µε ζον δ το κα σαπλασιόν στι τ ΗΘ το ΕΒ, τοσαυταπλάσιον γεγονέτω κα τ µ ν ΖΗ το ΑΕ, τ δ Κ το Γ. µοίως δ δείξοµεν, τι τ ΖΘ, Κ τ ν ΑΒ, Γ σάκις στ πολλαπλάσια κα ε λήφθω µοίως τ Ν πολλαπλάσιον µ ν το, πρώτως δ µε ζον το ΖΗ στε πάλιν τ ΖΗ το Μ ο κ στιν λασσον. µε ζον δ τ ΗΘ το λον ρα τ ΖΘ τ ν, Μ, τουτέστι το Ν, περέχει. τ δ Κ το Ν ο χ περέχει, πειδήπερ κα τ ΖΗ µε ζον ν το ΗΘ, τουτέστι το Κ, το Ν ο χ περέχει. κα σαύτως κατακολουθο ντες το ς πάνω περαίνοµεν τ ν πόδειξιν. Τ ν ρα νίσων µεγεθ ν τ µε ζον πρ ς τ α τ µείζονα λόγον χει περ τ λαττον κα τ α τ πρ ς τ λαττον µείζονα λόγον χει περ πρ ς τ µε ζον περ δει δε ξαι. 26
27 ELEMENTS BOOK 5 Proposition 8 N. But, FH is greater than M and D. Thus, FH exceeds N. And K does not exceed N. And FH, K are equal multiples of AB, C, and N another random multiple of D. Thus, AB has a greater ratio to D than C (has) to D [Def. 5.7]. So, I say that D also has a greater ratio to C than D (has) to AB. For, similarly, by the same construction, we can show that N exceeds K, and N does not exceed FH. And N is a multiple of D, and FH and K other random equal multiples of AB and C (respectively). Thus, D has a greater ratio to C than D (has) to AB [Def. 5.5]. And so let AE be greater than EB. So, the lesser EB, being multiplied, will sometimes be greater than D. Let it have been multiplied, and let GH be a multiple of EB (which is) greater than D. And as many times as GH is (divisible) by EB, so many times let FG also have become (divisible) by AE, and K by C. So, similarly (to the above), we can show that FH and K are equal multiples of AB and C (respectively). And, similarly (to the above), let the multiple N of D, (which is) the first (multiple) greater than FG, have been taken. So, FG is again not less than M. And GH (is) greater than D. Thus, the whole of FH exceeds D and M, that is to say N. And K does not exceed N, inasmuch as FG, which (is) greater than GH that is to say, K also does not exceed N. And, following the above (arguments), we (can) complete the proof in the same manner. Thus, for unequal magnitudes, the greater (magnitude) has a greater ratio than the lesser to the same (magnitude). And the latter (magnitude) has a greater ratio to the lesser (magnitude) than to the greater. (Which is) the very thing it was required to show. 27
28 ΣΤΟΙΧΕΙΩΝ ε Α Γ θ Β Τ πρ ς τ α τ τ ν α τ ν χοντα λ γον σα λλήλοις στίν κα πρ ς τ α τ τ ν α τ ν χει λόγον, κε να σα στίν. Εχέτω γ ρ κάτερον τ ν Α, Β πρ ς τ Γ τ ν α τ ν λόγον λέγω, τι σον στ τ Α τ Β. Ε γ ρ µή, ο κ ν κάτερον τ ν Α, Β πρ ς τ Γ τ ν α τ ν ε χε λόγον χει δέ σον ρα στ τ Α τ Β. Εχέτω δ πάλιν τ Γ πρ ς κάτερον τ ν Α, Β τ ν α τ ν λόγον λέγω, τι σον στ τ Α τ Β. Ε γ ρ µή, ο κ ν τ Γ πρ ς κάτερον τ ν Α, Β τ ν α τ ν ε χε λόγον χει δέ σον ρα στ τ Α τ Β. Τ ρα πρ ς τ α τ τ ν α τ ν χοντα λόγον σα λλήλοις στίν κα πρ ς τ α τ τ ν α τ ν χει λόγον, κε να σα στίν περ δει δε ξαι. 28
29 A C ELEMENTS BOOK 5 Proposition 9 (Magnitudes) having the same ratio to the same (magnitude) are equal to one another. And those (magnitudes) to which the same (magnitude) has the same ratio are equal. For let A and B each have the same ratio to C. I say that A is equal to B. For if not, A and B would not each have the same ratio to C [Prop. 5.8]. But they do. Thus, A is equal to B. So, again, let C have the same ratio to each of A and B. I say that A is equal to B. For if not, C would not have the same ratio to each of A and B [Prop. 5.8]. But it does. Thus, A is equal to B. Thus, (magnitudes) having the same ratio to the same (magnitude) are equal to one another. And those (magnitudes) to which the same (magnitude) has the same ratio are equal. (Which is) the very thing it was required to show. B 29
30 ΣΤΟΙΧΕΙΩΝ ε ι Α Γ Β Τ ν πρ ς τ α τ λόγον χόντων τ µείζονα λόγον χον κε νο µε ζόν στιν πρ ς δ τ α τ µείζονα λόγον χει, κε νο λαττόν στιν. Εχέτω γ ρ τ Α πρ ς τ Γ µείζονα λόγον περ τ Β πρ ς τ Γ λέγω, τι µε ζόν στι τ Α το Β. Ε γ ρ µή, τοι σον στ τ Α τ Β λασσον. σον µ ν ο ν ο κ στ τ Α τ Β κάτερον γ ρ ν τ ν Α, Β πρ ς τ Γ τ ν α τ ν ε χε λόγον. ο κ χει δέ ο κ ρα σον στ τ Α τ Β. ο δ µ ν λασσόν στι τ Α το Β τ Α γ ρ ν πρ ς τ Γ λάσσονα λόγον ε χεν περ τ Β πρ ς τ Γ. ο κ χει δέ ο κ ρα λασσόν στι τ Α το Β. δείχθη δ ο δ σον µε ζον ρα στ τ Α το Β. Εχέτω δ πάλιν τ Γ πρ ς τ Β µείζονα λόγον περ τ Γ πρ ς τ Α λέγω, τι λασσόν στι τ Β το Α. Ε γ ρ µή, τοι σον στ ν µε ζον. σον µ ν ο ν ο κ στι τ Β τ Α τ Γ γ ρ ν πρ ς κάτερον τ ν Α, Β τ ν α τ ν ε χε λόγον. ο κ χει δέ ο κ ρα σον στ τ Α τ Β. ο δ µ ν µε ζόν στι τ Β το Α τ Γ γ ρ ν πρ ς τ Β λάσσονα λόγον ε χεν περ πρ ς τ Α. ο κ χει δέ ο κ ρα µε ζον στι τ Β το Α. δείχθη δέ, τι ο δ σον λαττον ρα στ τ Β το Α. Τ ν ρα πρ ς τ α τ λόγον χόντων τ µείζονα λόγον χον µε ζόν στιν κα πρ ς τ α τ µείζονα λόγον χει, κε νο λαττόν στιν περ δει δε ξαι. 30
31 A ELEMENTS BOOK 5 C Proposition 10 For (magnitudes) having a ratio to the same (magnitude), that (magnitude which) has the greater ratio is (the) greater. And that (magnitude) to which the latter (magnitude) has a greater ratio is (the) lesser. For let A have a greater ratio to C than B (has) to C. I say that A is greater than B. For if not, A is surely either equal to or less than B. In fact, A is not equal to B. For (then) A and B would each have the same ratio to C [Prop. 5.7]. But they do not. Thus, A is not equal to B. Neither, indeed, is A less than B. For (then) A would have a lesser ratio to C than B (has) to C [Prop. 5.8]. But it does not. Thus, A is not less than B. And it was shown not (to be) equal either. Thus, A is greater than B. So, again, let C have a greater ratio to B than C (has) to A. I say that B is less than A. For if not, (it is) surely either equal or greater. In fact, B is not equal to A. For (then) C would have the same ratio to each of A and B [Prop. 5.7]. But it does not. Thus, A is not equal to B. Neither, indeed, is B greater than A. For (then) C would have a lesser ratio to B than (it has) to A [Prop. 5.8]. But it does not. Thus, B is not greater than A. And it was shown that (it is) not equal (to A) either. Thus, B is less than A. Thus, for (magnitudes) having a ratio to the same (magnitude), that (magnitude which) has the greater ratio is (the) greater. And that (magnitude) to which the latter (magnitude) has a greater ratio is (the) lesser. (Which is) the very thing it was required to show. B 31
32 ΣΤΟΙΧΕΙΩΝ ε ια Α Β Η Λ Γ Θ Μ Ε Ζ Κ Ν Ο τ α τ λόγ ο α το κα λλήλοις ε σ ν ο α τοί. Εστωσαν γ ρ ς µ ν τ Α πρ ς τ Β, ο τως τ Γ πρ ς τ, ς δ τ Γ πρ ς τ, ο τως τ Ε πρ ς τ Ζ λέγω, τι στ ν ς τ Α πρ ς τ Β, ο τως τ Ε πρ ς τ Ζ. Ε λήφθω γ ρ τ ν Α, Γ, Ε σάκις πολλαπλάσια τ Η, Θ, Κ, τ ν δ Β,, Ζ λλα, τυχεν, σάκις πολλαπλάσια τ Λ, Μ, Ν. Κα πεί στιν ς τ Α πρ ς τ Β, ο τως τ Γ πρ ς τ, κα ε ληπται τ ν µ ν Α, Γ σάκις πολλαπλάσια τ Η, Θ, τ ν δ Β, λλα, τυχεν, σάκις πολλαπλάσια τ Λ, Μ, ε ρα περέχει τ Η το Λ, περέχει κα τ Θ το Μ, κα ε σον στίν, σον, κα ε λλείπει, λλείπει. πάλιν, πεί στιν ς τ Γ πρ ς τ, ο τως τ Ε πρ ς τ Ζ, κα ε ληπται τ ν Γ, Ε σάκις πολλαπλάσια τ Θ, Κ, τ ν δ, Ζ λλα, τυχεν, σάκις πολλαπλάσια τ Μ, Ν, ε ρα περέχει τ Θ το Μ, περέχει κα τ Κ το Ν, κα ε σον, σον, κα ε λλατον, λαττον. λλ ε περε χε τ Θ το Μ, περε χε κα τ Η το Λ, κα ε σον, σον, κα ε λαττον, λαττον στε κα ε περέχει τ Η το Λ, περέχει κα τ Κ το Ν, κα ε σον, σον, κα ε λαττον, λαττον. καί στι τ µ ν Η, Κ τ ν Α, Ε σάκις πολλαπλάσια, τ δ Λ, Ν τ ν Β, Ζ λλα, τυχεν, σάκις πολλαπλάσια στιν ρα ς τ Α πρ ς τ Β, ο τως τ Ε πρ ς τ Ζ. Ο ρα τ α τ λόγ ο α το κα λλήλοις ε σ ν ο α τοί περ δει δε ξαι. 32
33 ELEMENTS BOOK 5 Proposition A B G L C D H M E F K N (Ratios which are) the same with the same ratio are also the same with one another. For let it be that as A (is) to B, so C (is) to D, and as C (is) to D, so E (is) to F. I say that as A is to B, so E (is) to F. For let the equal multiples G, H, K have been taken of A, C, E (respectively), and the other random equal multiples L, M, N of B, D, F (respectively). And since as A is to B, so C (is) to D, and the equal multiples G and H have been taken of A and C (respectively), and the other random equal multiples L and M of B and D (respectively), thus if G exceeds L then H also exceeds M, and if (G is) equal (to L then H is also) equal (to M), and if (G is) less (than L then H is also) less (than M) [Def. 5.5]. Again, since as C is to D, so E (is) to F, and the equal multiples H and K have been taken of C and E (respectively), and the other random equal multiples M and N of D and F (respectively), thus if H exceeds M then K also exceeds N, and if (H is) equal (to M then K is also) equal (to N), and if (H is) less (than M then K is also) less (than N) [Def. 5.5]. But if H was exceeding M then G was also exceeding L, and if (H was) equal (to M then G was also) equal (to L), and if (H was) less (than M then G was also) less (than L). And, hence, if G exceeds L then K also exceeds N, and if (G is) equal (to L then K is also) equal (to N), and if (G is) less (than L then K is also) less (than N). And G and K are equal multiples of A and E (respectively), and L and N other random equal multiples of B and F (respectively). Thus, as A is to B, so E (is) to F [Def. 5.5]. Thus, (ratios which are) the same with the same ratio are also the same with one another. (Which is) the very thing it was required to show. 27 In modern notation, this proposition reads that if α : β :: γ : δ and γ : δ :: ɛ : ζ then α : β :: ɛ : ζ. 33
34 ΣΤΟΙΧΕΙΩΝ ε ιβ Α Γ Ε Β Ζ Η Θ Κ Λ Μ Ν Ε ν ποσαο ν µεγέθη νάλογον, σται ς ν τ ν γουµένων πρ ς ν τ ν ποµένων, ο τως παντα τ γούµενα πρ ς παντα τ πόµενα. Εστωσαν ποσαο ν µεγέθη νάλογον τ Α, Β, Γ,, Ε, Ζ, ς τ Α πρ ς τ Β, ο τως τ Γ πρ ς τ, κα τ Ε πρ ς το Ζ λέγω, τι στ ν ς τ Α πρ ς τ Β, ο τως τ Α, Γ, Ε πρ ς τ Β,, Ζ. Ε λήφθω γ ρ τ ν µ ν Α, Γ, Ε σάκις πολλαπλάσια τ Η, Θ, Κ, τ ν δ Β,, Ζ λλα, τυχεν, σάκις πολλαπλάσια τ Λ, Μ, Ν. Κα πεί στιν ς τ Α πρ ς τ Β, ο τως τ Γ πρ ς τ, κα τ Ε πρ ς τ Ζ, κα ε ληπται τ ν µ ν Α, Γ, Ε σάκις πολλαπλάσια τ Η, Θ, Κ τ ν δ Β,, Ζ λλα, τυχεν, σάκις πολλαπλάσια τ Λ, Μ, Ν, ε ρα περέχει τ Η το Λ, περέχει κα τ Θ το Μ, κα τ Κ το Ν, κα ε σον, σον, κα ε λαττον, λαττον. στε κα ε περέχει τ Η το Λ, περέχει κα τ Η, Θ, Κ τ ν Λ, Μ, Ν, κα ε σον, σα, κα ε λαττον, λαττονα. καί στι τ µ ν Η κα τ Η, Θ, Κ το Α κα τ ν Α, Γ, Ε σάκις πολλαπλάσια, πειδήπερ ν ποσαο ν µεγέθη ποσωνο ν µεγεθ ν σων τ πλ θος καστον κάστου σάκις πολλαπλάσιον, σαπλάσιόν στιν ν τ ν µεγεθ ν νός, τοσαυταπλάσια σται κα τ πάντα τ ν πάντων. δι τ α τ δ κα τ Λ κα τ Λ, Μ, Ν το Β κα τ ν Β,, Ζ σάκις στ πολλαπλάσια στιν ρα ς τ Α πρ ς τ Β, ο τως τ Α, Γ, Ε πρ ς τ Β,, Ζ. Ε ν ρα ποσαο ν µεγέθη νάλογον, σται ς ν τ ν γουµένων πρ ς ν τ ν ποµένων, ο τως παντα τ γούµενα πρ ς παντα τ πόµενα περ δει δε ξαι. 34
35 ELEMENTS BOOK 5 Proposition A C E B D F G H K If there are any number of magnitudes whatsoever (which are) proportional then as one of the leading (magnitudes is) to one of the following, so will all of the leading (magnitudes) be to all of the following. Let there be any number of magnitudes whatsoever, A, B, C, D, E, F, (which are) proportional, (so that) as A (is) to B, so C (is) to D, and E to F. I say that as A is to B, so A, C, E (are) to B, D, F. For let the equal multiples G, H, K have been taken of A, C, E (respectively), and the other random equal multiples L, M, N of B, D, F (respectively). And since as A is to B, so C (is) to D, and E to F, and the equal multiples G, H, K have been taken of A, C, E (respectively), and the other random equal multiples L, M, N of B, D, F (respectively), thus if G exceeds L then H also exceeds M, and K (exceeds) N, and if (G is) equal (to L then H is also) equal (to M, and K to N), and if (G is) less (than L then H is also) less (than M, and K than N) [Def. 5.5]. And, hence, if G exceeds L then G, H, K also exceed L, M, N, and if (G is) equal (to L then G, H, K are also) equal (to L, M, N) and if (G is) less (than L then G, H, K are also) less (than L, M, N). And G and G, H, K are equal multiples of A and A, C, E (respectively), inasmuch as if there are any number of magnitudes whatsoever (which are) equal multiples, respectively, of some (other) magnitudes, of equal number (to them), then as many times as one of the (first) magnitudes is (divisible) by one (of the second), so many times will all (of the first magnitudes) also (be divisible) by all (of the second) [Prop. 5.1]. So, for the same (reasons), L and L, M, N are also equal multiples of B and B, D, F (respectively). Thus, as A is to B, so A, C, E (are) to B, D, F (respectively). Thus, if there are any number of magnitudes whatsoever (which are) proportional then as one of the leading (magnitudes is) to one of the following, so will all of the leading (magnitudes) be to all of the following. (Which is) the very thing it was required to show. 28 In modern notation, this proposition reads that if α : α :: β : β :: γ : γ etc. then α : α :: (α + β + γ + ) : (α + β + γ + ). 35 L M N
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
ELEMENTS BOOK 7. Elementary Number Theory. The propositions contained in Books 7 9 are generally attributed to the school of Pythagoras.
LMNTS OOK 7 lementary Number Theory The propositions contained in ooks 7 9 are generally attributed to the school of Pythagoras. 193 ÎÇÖÓ. efinitions αʹ.μονάςἐστιν,καθ ἣνἕκαστοντῶνὄντωνἓνλέγεται. 1. unit
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS
ΟΜΗΡΟΥ ΙΛΙΑΔΑ ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS www.scooltime.gr [- 2 -] The Project Gutenberg EBook of Iliad, by Homer This ebook is for the use of anyone anywhere at no cost and with almost no restrictions
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα
[ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη
Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.
Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author. 2012, Γεράσιμος Χρ. Σιάσος / Gerasimos Siasos, All rights reserved. Στοιχεία επικοινωνίας συγγραφέα / Author
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
SOME PROPERTIES OF FUZZY REAL NUMBERS
Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
14 Lesson 2: The Omega Verb - Present Tense
Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
ELEMENTS BOOK 10. Incommensurable Magnitudes
ELEMENTS OOK 10 Incommensurable Magnitudes The theory of incommensurable magntidues set out in this book is generally attributed to Theaetetus of Athens. In the footnotes throughout this book, k, k, etc.
2007 Classical Greek. Intermediate 2 Translation. Finalised Marking Instructions
2007 Classical Greek Intermediate 2 Translation Finalised Marking Instructions Scottish Qualifications Authority 2007 The information in this publication may be reproduced to support SQA qualifications
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Galatia SIL Keyboard Information
Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS
GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016
Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple
A/ Ονόματα και ένα παράδειγμα 1 Present Simple 7 Present PERFECT Simple 2 Present Continuous 8 Present PERFECT Continuous 3 Past Simple (+ used to) 9 Past PERFECT Simple she eats she is eating she ate
Lecture 15 - Root System Axiomatics
Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
1. Introduction and Preliminaries.
Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 11: The Unreal Past Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
Risk! " #$%&'() *!'+,'''## -. / # $
Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Chapter 2 * * * * * * * Introduction to Verbs * * * * * * *
Chapter 2 * * * * * * * Introduction to Verbs * * * * * * * In the first chapter, we practiced the skill of reading Greek words. Now we want to try to understand some parts of what we read. There are a
Θέμα διπλωματικής εργασίας: «Από το «φρενοκομείο» στη Λέρο και την Ψυχιατρική Μεταρρύθμιση: νομικό πλαίσιο και ηθικοκοινωνικές διαστάσεις»
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΕΣ ΙΑΤΡΙΚΗΣ & ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΤΜΗΜΑΤΑ ΝΟΜΙΚΗΣ & ΘΕΟΛΟΓΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΥΓΧΡΟΝΕΣ ΙΑΤΡΙΚΕΣ ΠΡΑΞΕΙΣ: ΔΙΚΑΙΙΚΗ ΡΥΘΜΙΣΗ ΚΑΙ ΒΙΟΗΘΙΚΗ
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Συστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030
Συντακτικές λειτουργίες
2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
Chapter 3: Ordinal Numbers
Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Démographie spatiale/spatial Demography
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
EUCLID S ELEMENTS IN GREEK
EUCLID S ELEMENTS IN GREEK The Greek text of J.L. Heiberg (1883 1884) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, Lipsiae, in aedibus B.G. Teubneri, 1883 1884 with an accompanying