EUCLID S ELEMENTS IN GREEK
|
|
- Αθανας Ζάρκος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 EUCLID S ELEMENTS IN GREEK The Greek text of J.L. Heiberg ( ) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, Lipsiae, in aedibus B.G. Teubneri, with an accompanying English translation by Richard Fitzpatrick
2 For Faith
3 Preface Euclid s Elements is by far the most famous mathematical work of classical antiquity, and also has the distinction of being the world s oldest continuously used mathematical textbook. Little is known about the author, beyond the fact that he lived in Alexandria around 300 BCE. The main subject of this work is Geometry, which was something of an obsession for the Ancient Greeks. Most of the theorems appearing in Euclid s Elements were not discovered by Euclid himself, but were the work of earlier Greek mathematicians such as Pythagoras (and his school), Hippocrates of Chios, Theaetetus, and Eudoxus of Cnidos. However, Euclid is generally credited with arranging these theorems in a logical manner, so as to demonstrate (admittedly, not always with the rigour demanded by modern mathematics) that they necessarily follow from five simple axioms. Euclid is also credited with devising a number of particularly ingenious proofs of previously discovered theorems: e.g., Theorem 48 in Book 1. It is natural that anyone with a knowledge of Ancient Greek, combined with a general interest in Mathematics, would wish to read the Elements in its original form. It is therefore extremely surprizing that, whilst translations of this work into modern languages are easily available, the Greek text has been completely unobtainable (as a book) for many years. This purpose of this publication is to make the definitive Greek text of Euclid s Elements i.e., that edited by J.L. Heiberg ( ) again available to the general public in book form. The Greek text is accompanied by my own English translation. The aim of my translation is to be as literal as possible, whilst still (approximately) remaining within the bounds of idiomatic English. Text within square parenthesis (in both Greek and English) indicates material identified by Heiberg as being later interpolations to the original text (some particularly obvious or unhelpful interpolations are omitted altogether). Text within round parenthesis (in English) indicates material which is implied, but but not actually present, in the Greek text. My thanks goes to Mariusz Wodzicki for advice regarding the typesetting of this work. Richard Fitzpatrick; Austin, Texas; December, References Euclidus Opera Ominia, J.L. Heiberg & H. Menge (editors), Teubner ( ). Euclid in Greek, Book 1, T.L. Heath (translator), Cambridge (1920). Euclid s Elements, T.L. Heath (translator), Dover (1956). History of Greek Mathematics, T.L. Heath, Dover (1981).
4 ΣΤΟΙΧΕΙΩΝ α
5 ELEMENTS BOOK 1 Fundamentals of plane geometry involving straight-lines
6 ΣΤΟΙΧΕΙΩΝ α Οροι α Σηµε όν στιν, ο µέρος ο θέν. β Γραµµ δ µ κος πλατές. γ Γραµµ ς δ πέρατα σηµε α. δ Ε θε α γραµµή στιν, τις ξ σου το ς φ αυτ ς σηµείοις κε ται. ε Επιφάνεια δέ στιν, µ κος κα πλάτος µόνον χει. Επιφανείας δ πέρατα γραµµαί. ζ Επίπεδος πιφάνειά στιν, τις ξ σου τα ς φ αυτ ς ε θείαις κε ται. η Επίπεδος δ γωνία στ ν ν πιπέδ δύο γραµµ ν πτοµένων λλήλων κα µ π ε θείας κειµένων πρ ς λλήλας τ ν γραµµ ν κλίσις. θ Οταν δ α περιέχουσαι τ ν γωνίαν γραµµα ε θε αι σιν, ε θύγραµµος καλε ται γωνία. ι Οταν δ ε θε α π ε θε αν σταθε σα τ ς φεξ ς γωνίας σας λλήλαις ποι, ρθ κατέρα τ ν σων γωνι ν στι, κα φεστηκυ α ε θε α κάθετος καλε ται, φ ν φέστηκεν. ια Αµβλε α γωνία στ ν µείζων ρθ ς. ιβ Οξε α δ λάσσων ρθ ς. ιγ Ορος στίν, τινός στι πέρας. ιδ Σχ µά στι τ πό τινος τινων ρων περιεχόµενον. ιε Κύκλος στ σχ µα πίπεδον π µι ς γραµµ ς περιεχόµενον [ καλε ται περιφέρεια], πρ ς ν φ ν ς σηµείου τ ν ντ ς το σχήµατος κειµένων π σαι α προσπίπτουσαι ε θε αι [πρ ς τ ν το κύκλου περιφέρειαν] σαι λλήλαις ε σίν. ι Κέντρον δ το κύκλου τ σηµε ον καλε ται. ιζ ιάµετρος δ το κύκλου στ ν ε θε ά τις δι το κέντρου γµένη κα περατουµένη φ κάτερα τ µέρη π τ ς το κύκλου περιφερείας, τις κα δίχα τέµνει τ ν κύκλον. ιη Ηµικύκλιον δέ στι τ περιεχόµενον σχ µα πό τε τ ς διαµέτρου κα τ ς πολαµβανοµένης π α τ ς περιφερείας. κέντρον δ το µικυκλίου τ α τό, κα το κύκλου στίν. ιθ Σχήµατα ε θύγραµµά στι τ π ε θει ν περιεχόµενα, τρίπλευρα µ ν τ π τρι ν, τετράπλευρα δ τ π τεσσάρων, πολύπλευρα δ τ π πλειόνων τεσσάρων ε θει ν περιεχόµενα. 6
7 1 A point is that of which there is no part. 2 And a line is a length without breadth. 3 And the extremities of a line are points. ELEMENTS BOOK 1 Definitions 4 A straight-line is whatever lies evenly with points upon itself. 5 And a surface is that which has length and breadth alone. 6 And the extremities of a surface are lines. 7 A plane surface is whatever lies evenly with straight-lines upon itself. 8 And a plane angle is the inclination of the lines, when two lines in a plane meet one another, and are not laid down straight-on with respect to one another. 9 And when the lines containing the angle are straight then the angle is called rectilinear. 10 And when a straight-line stood upon (another) straight-line makes adjacent angles (which are) equal to one another, each of the equal angles is a right-angle, and the former straightline is called perpendicular to that upon which it stands. 11 An obtuse angle is greater than a right-angle. 12 And an acute angle is less than a right-angle. 13 A boundary is that which is the extremity of something. 14 A figure is that which is contained by some boundary or boundaries. 15 A circle is a plane figure contained by a single line [which is called a circumference], (such that) all of the straight-lines radiating towards [the circumference] from a single point lying inside the figure are equal to one another. 16 And the point is called the center of the circle. 17 And a diameter of the circle is any straight-line, being drawn through the center, which is brought to an end in each direction by the circumference of the circle. And any such (straight-line) cuts the circle in half And a semi-circle is the figure contained by the diameter and the circumference it cuts off. And the center of the semi-circle is the same (point) as (the center of) the circle. 19 Rectilinear figures are those figures contained by straight-lines: trilateral figures being contained by three straight-lines, quadrilateral by four, and multilateral by more than four. 1 This should really be counted as a postulate, rather than as part of a definition. 7
8 ΣΤΟΙΧΕΙΩΝ α κ Τ ν δ τριπλεύρων σχηµάτων σόπλευρον µ ν τρίγωνόν στι τ τ ς τρε ς σας χον πλευράς, σοσκελ ς δ τ τ ς δύο µόνας σας χον πλευράς, σκαλην ν δ τ τ ς τρε ς νίσους χον πλευράς. κα Ετι δ τ ν τριπλεύρων σχηµάτων ρθογώνιον µ ν τρίγωνόν στι τ χον ρθ ν γωνίαν, µβλυγώνιον δ τ χον µβλε αν γωνίαν, ξυγώνιον δ τ τ ς τρε ς ξείας χον γωνίας. κβ Τ ν δ τετραπλεύρων σχηµάτων τετράγωνον µέν στιν, σόπλευρόν τέ στι κα ρθογώνιον, τερόµηκες δέ, ρθογώνιον µέν, ο κ σόπλευρον δέ, όµβος δέ, σόπλευρον µέν, ο κ ρθογώνιον δέ, οµβοειδ ς δ τ τ ς πεναντίον πλευράς τε κα γωνίας σας λλήλαις χον, ο τε σόπλευρόν στιν ο τε ρθογώνιον τ δ παρ τα τα τετράπλευρα τραπέζια καλείσθω. κγ Παράλληλοί ε σιν ε θε αι, α τινες ν τ α τ πιπέδ ο σαι κα κβαλλόµεναι ε ς πειρον φ κάτερα τ µέρη π µηδέτερα συµπίπτουσιν λλήλαις. Α τήµατα α Ηιτήσθω π παντ ς σηµείου π π ν σηµε ον ε θε αν γραµµ ν γαγε ν. β Κα πεπερασµένην ε θε αν κατ τ συνεχ ς π ε θείας κβαλε ν. γ Κα παντ κέντρ κα διαστήµατι κύκλον γράφεσθαι. δ Κα πάσας τ ς ρθ ς γωνίας σας λλήλαις ε ναι. ε Κα ν ε ς δύο ε θείας ε θε α µπίπτουσα τ ς ντ ς κα π τ α τ µέρη γωνίας δύο ρθ ν λάσσονας ποι, κβαλλοµένας τ ς δύο ε θείας π πειρον συµπίπτειν, φ µέρη ε σ ν α τ ν δύο ρθ ν λάσσονες. Κοινα ννοιαι α Τ τ α τ σα κα λλήλοις στ ν σα. β Κα ν σοις σα προστεθ, τ λα στ ν σα. γ Κα ν π σων σα φαιρεθ, τ καταλειπόµενά στιν σα. δ Κα τ φαρµόζοντα π λλήλα σα λλήλοις στίν. ε Κα τ λον το µέρους µε ζόν [ στιν]. 8
9 ELEMENTS BOOK 1 20 And of the trilateral figures: an equilateral triangle is that having three equal sides, an isosceles (triangle) that having only two equal sides, and a scalene (triangle) that having three unequal sides. 21 And further of the trilateral figures: a right-angled triangle is that having a right-angle, an obtuse-angled (triangle) that having an obtuse angle, and an acute-angled (triangle) that having three acute angles. 22 And of the quadrilateral figures: a square is that which is right-angled and equilateral, a rectangle that which is right-angled but not equilateral, a rhombus that which is equilateral but not right-angled, and a rhomboid that having opposite sides and angles equal to one another which is neither right-angled nor equilateral. And let quadrilateral figures besides these be called trapezia. 23 Parallel lines are straight-lines which, being in the same plane, and being produced to infinity in each direction, meet with one another in neither (of these directions). Postulates 1 Let it have been postulated to draw a straight-line from any point to any point. 2 And to produce a finite straight-line continuously in a straight-line. 3 And to draw a circle with any center and radius. 4 And that all right-angles are equal to one another. 5 And that if a straight-line falling across two (other) straight-lines makes internal angles on the same side (of itself) less than two right-angles, being produced to infinity, the two (other) straight-lines meet on that side (of the original straight-line) that the (internal angles) are less than two right-angles (and do not meet on the other side). 2 Common Notions 1 Things equal to the same thing are also equal to one another. 2 And if equal things are added to equal things then the wholes are equal. 3 And if equal things are subtracted from equal things then the remainders are equal. 3 4 And things coinciding with one another are equal to one another. 5 And the whole [is] greater than the part. 2 This postulate effectively specifies that we are dealing with the geometry of flat, rather than curved, space. 3 As an obvious extension of C.N.s 2 & 3 if equal things are added or subtracted from the two sides of an inequality then the inequality remains an inequality of the same type. 9
10 ΣΤΟΙΧΕΙΩΝ α α Γ Α Β Ε Επ τ ς δοθείσης ε θείας πεπερασµένης τρίγωνον σόπλευρον συστήσασθαι. Εστω δοθε σα ε θε α πεπερασµένη ΑΒ. ε δ π τ ς ΑΒ ε θείας τρίγωνον σόπλευρον συστήσασθαι. Κέντρ µ ν τ Α διαστήµατι δ τ ΑΒ κύκλος γεγράφθω ΒΓ, κα πάλιν κέντρ µ ν τ Β διαστήµατι δ τ ΒΑ κύκλος γεγράφθω ΑΓΕ, κα π το Γ σηµείου, καθ τέµνουσιν λλήλους ο κύκλοι, πί τ Α, Β σηµε α πεζεύχθωσαν ε θε αι α ΓΑ, ΓΒ. Κα πε τ Α σηµε ον κέντρον στ το Γ Β κύκλου, ση στ ν ΑΓ τ ΑΒ πάλιν, πε τ Β σηµε ον κέντρον στ το ΓΑΕ κύκλου, ση στ ν ΒΓ τ ΒΑ. δείχθη δ κα ΓΑ τ ΑΒ ση κατέρα ρα τ ν ΓΑ, ΓΒ τ ΑΒ στιν ση. τ δ τ α τ σα κα λλήλοις στ ν σα κα ΓΑ ρα τ ΓΒ στιν ση α τρε ς ρα α ΓΑ, ΑΒ, ΒΓ σαι λλήλαις ε σίν. Ισόπλευρον ρα στ τ ΑΒΓ τρίγωνον. κα συνέσταται π τ ς δοθείσης ε θείας πεπερασµένης τ ς ΑΒ περ δει ποι σαι. 10
11 ELEMENTS BOOK 1 Proposition 1 C D A B E To construct an equilateral triangle on a given finite straight-line. Let AB be the given finite straight-line. So it is required to construct an equilateral triangle on the straight-line AB. Let the circle BCD with center A and radius AB have been drawn [Post. 3], and again let the circle ACE with center B and radius BA have been drawn [Post. 3]. And let the straight-lines CA and CB have been joined from the point C, where the circles cut one another, 4 to the points A and B (respectively) [Post. 1]. And since the point A is the center of the circle CDB, AC is equal to AB [Def. 1.15]. Again, since the point B is the center of the circle CAE, BC is equal to BA [Def. 1.15]. But CA was also shown (to be) equal to AB. Thus, CA and CB are each equal to AB. But things equal to the same thing are also equal to one another [C.N. 1]. Thus, CA is also equal to CB. Thus, the three (straight-lines) CA, AB, and BC are equal to one another. Thus, the triangle ABC is equilateral, and has been constructed on the given finite straight-line AB. (Which is) the very thing it was required to do. 4 The assumption that the circles do indeed cut one another should be counted as an additional postulate. There is also an implicit assumption that two straight-lines cannot share a common segment. 11
12 ΣΤΟΙΧΕΙΩΝ α β Γ Κ Θ Β Α Η Ζ Λ Πρ ς τ δοθέντι σηµεί τ δοθείσ ε θεί σην ε θε αν θέσθαι. Εστω τ µ ν δοθ ν σηµε ον τ Α, δ δοθε σα ε θε α ΒΓ δε δ πρ ς τ Α σηµεί τ δοθείσ ε θεί τ ΒΓ σην ε θε αν θέσθαι. Επεζεύχθω γ ρ π το Α σηµείου πί τ Β σηµε ον ε θε α ΑΒ, κα συνεστάτω π α τ ς τρίγωνον σόπλευρον τ ΑΒ, κα κβεβλήσθωσαν π ε θείας τα ς Α, Β ε θε αι α ΑΕ, ΒΖ, κα κέντρ µ ν τ Β διαστήµατι δ τ ΒΓ κύκλος γεγράφθω ΓΗΘ, κα πάλιν κέντρ τ κα διαστήµατι τ Η κύκλος γεγράφθω ΗΚΛ. Επε ο ν τ Β σηµε ον κέντρον στ το ΓΗΘ, ση στ ν ΒΓ τ ΒΗ. πάλιν, πε τ σηµε ον κέντρον στ το ΗΚΛ κύκλου, ση στ ν Λ τ Η, ν Α τ Β ση στίν. λοιπ ρα ΑΛ λοιπ τ ΒΗ στιν ση. δείχθη δ κα ΒΓ τ ΒΗ ση. κατέρα ρα τ ν ΑΛ, ΒΓ τ ΒΗ στιν ση. τ δ τ α τ σα κα λλήλοις στ ν σα κα ΑΛ ρα τ ΒΓ στιν ση. Πρ ς ρα τ δοθέντι σηµεί τ Α τ δοθείσ ε θεί τ ΒΓ ση ε θε α κε ται ΑΛ περ δει ποι σαι. Ε 12
13 ELEMENTS BOOK 1 Proposition 2 5 C K H D B A G F L To place a straight-line equal to a given straight-line at a given point. Let A be the given point, and BC the given straight-line. So it is required to place a straight-line at point A equal to the given straight-line BC. For let the line AB have been joined from point A to point B [Post. 1], and let the equilateral triangle DAB have been been constructed upon it [Prop. 1.1]. And let the straight-lines AE and BF have been produced in a straight-line with DA and DB (respectively) [Post. 2]. And let the circle CGH with center B and radius BC have been drawn [Post. 3], and again let the circle GKL with center D and radius DG have been drawn [Post. 3]. Therefore, since the point B is the center of (the circle) CGH, BC is equal to BG [Def. 1.15]. Again, since the point D is the center of the circle GKL, DL is equal to DG [Def. 1.15]. And within these, DA is equal to DB. Thus, the remainder AL is equal to the remainder BG [C.N. 3]. But BC was also shown (to be) equal to BG. Thus, AL and BC are each equal to BG. But things equal to the same thing are also equal to one another [C.N. 1]. Thus, AL is also equal to BC. Thus, the straight-line AL, equal to the given straight-line BC, has been placed at the given point A. (Which is) the very thing it was required to do. 5 This proposition admits of a number of different cases, depending on the relative positions of the point A and the line BC. In such situations, Euclid invariably only considers one particular case usually, the most difficult and leaves the remaining cases as exercises for the reader. 13 E
14 ΣΤΟΙΧΕΙΩΝ α γ Γ Α Ε Β ύο δοθεισ ν ε θει ν νίσων π τ ς µείζονος τ λάσσονι σην ε θε αν φελε ν. Ζ Εστωσαν α δοθε σαι δύο ε θε αι νισοι α ΑΒ, Γ, ν µείζων στω ΑΒ δε δ π τ ς µείζονος τ ς ΑΒ τ λάσσονι τ Γ σην ε θε αν φελε ν. Κείσθω πρ ς τ Α σηµεί τ Γ ε θεί ση Α κα κέντρ µ ν τ Α διαστήµατι δ τ Α κύκλος γεγράφθω ΕΖ. Κα πε τ Α σηµε ον κέντρον στ το ΕΖ κύκλου, ση στ ν ΑΕ τ Α λλ κα Γ τ Α στιν ση. κατέρα ρα τ ν ΑΕ, Γ τ Α στιν ση στε κα ΑΕ τ Γ στιν ση. ύο ρα δοθεισ ν ε θει ν νίσων τ ν ΑΒ, Γ π τ ς µείζονος τ ς ΑΒ τ λάσσονι τ Γ ση φ ρηται ΑΕ περ δει ποι σαι. 14
15 ELEMENTS BOOK 1 Proposition 3 C D A E B F For two given unequal straight-lines, to cut off from the greater a straight-line equal to the lesser. Let AB and C be the two given unequal straight-lines, of which let the greater be AB. So it is required to cut off a straight-line equal to the lesser C from the greater AB. Let the line AD, equal to the straight-line C, have been placed at point A [Prop. 1.2]. And let the circle DEF have been drawn with center A and radius AD [Post. 3]. And since point A is the center of circle DEF, AE is equal to AD [Def. 1.15]. But, C is also equal to AD. Thus, AE and C are each equal to AD. So AE is also equal to C [C.N. 1]. Thus, for two given unequal straight-lines, AB and C, the (straight-line) AE, equal to the lesser C, has been cut off from the greater AB. (Which is) the very thing it was required to do. 15
16 ΣΤΟΙΧΕΙΩΝ α δ Α Β Γ Ε Ζ Ε ν δύο τρίγωνα τ ς δύο πλευρ ς [τα ς] δυσ πλευρα ς σας χ κατέραν κατέρ κα τ ν γωνίαν τ γωνί σην χ τ ν π τ ν σων ε θει ν περιεχοµένην, κα τ ν βάσιν τ βάσει σην ξει, κα τ τρίγωνον τ τριγών σον σται, κα α λοιπα γωνίαι τα ς λοιπα ς γωνίαις σαι σονται κατέρα κατέρ, φ ς α σαι πλευρα ποτείνουσιν. Εστω δύο τρίγωνα τ ΑΒΓ, ΕΖ τ ς δύο πλευρ ς τ ς ΑΒ, ΑΓ τα ς δυσ πλευρα ς τα ς Ε, Ζ σας χοντα κατέραν κατέρ τ ν µ ν ΑΒ τ Ε τ ν δ ΑΓ τ Ζ κα γωνίαν τ ν π ΒΑΓ γωνί τ π Ε Ζ σην. λέγω, τι κα βάσις ΒΓ βάσει τ ΕΖ ση στίν, κα τ ΑΒΓ τρίγωνον τ ΕΖ τριγών σον σται, κα α λοιπα γωνίαι τα ς λοιπα ς γωνίαις σαι σονται κατέρα κατέρ, φ ς α σαι πλευρα ποτείνουσιν, µ ν π ΑΒΓ τ π ΕΖ, δ π ΑΓΒ τ π ΖΕ. Εφαρµοζοµένου γ ρ το ΑΒΓ τριγώνου π τ ΕΖ τρίγωνον κα τιθεµένου το µ ν Α σηµείου π τ σηµε ον τ ς δ ΑΒ ε θείας π τ ν Ε, φαρµόσει κα τ Β σηµε ον π τ Ε δι τ σην ε ναι τ ν ΑΒ τ Ε φαρµοσάσης δ τ ς ΑΒ π τ ν Ε φαρµόσει κα ΑΓ ε θε α π τ ν Ζ δι τ σην ε ναι τ ν π ΒΑΓ γωνίαν τ π Ε Ζ στε κα τ Γ σηµε ον π τ Ζ σηµε ον φαρµόσει δι τ σην πάλιν ε ναι τ ν ΑΓ τ Ζ. λλ µ ν κα τ Β π τ Ε φηρµόκει στε βάσις ΒΓ π βάσιν τ ν ΕΖ φαρµόσει. ε γ ρ το µ ν Β π τ Ε φαρµόσαντος το δ Γ π τ Ζ ΒΓ βάσις π τ ν ΕΖ ο κ φαρµόσει, δύο ε θε αι χωρίον περιέξουσιν περ στ ν δύνατον. φαρµόσει ρα ΒΓ βάσις π τ ν ΕΖ κα ση α τ σται στε κα λον τ ΑΒΓ τρίγωνον π λον τ ΕΖ τρίγωνον φαρµόσει κα σον α τ σται, κα α λοιπα γωνίαι π τ ς λοιπ ς γωνίας φαρµόσουσι κα σαι α τα ς σονται, µ ν π ΑΒΓ τ π ΕΖ δ π ΑΓΒ τ π ΖΕ. Ε ν ρα δύο τρίγωνα τ ς δύο πλευρ ς [τα ς] δύο πλευρα ς σας χ κατέραν κατέρ κα τ ν γωνίαν τ γωνί σην χ τ ν π τ ν σων ε θει ν περιεχοµένην, κα τ ν βάσιν τ βάσει σην ξει, κα τ τρίγωνον τ τριγών σον σται, κα α λοιπα γωνίαι τα ς λοιπα ς γωνίαις σαι σονται κατέρα κατέρ, φ ς α σαι πλευρα ποτείνουσιν περ δει δε ξαι. 16
17 ELEMENTS BOOK 1 Proposition 4 A D B C E F If two triangles have two corresponding sides equal, and have the angles enclosed by the equal sides equal, then they will also have equal bases, and the two triangles will be equal, and the remaining angles subtended by the equal sides will be equal to the corresponding remaining angles. Let ABC and DEF be two triangles having the two sides AB and AC equal to the two sides DE and DF, respectively. (That is) AB to DE, and AC to DF. And (let) the angle BAC (be) equal to the angle EDF. I say that the base BC is also equal to the base EF, and triangle ABC will be equal to triangle DEF, and the remaining angles subtended by the equal sides will be equal to the corresponding remaining angles. (That is) ABC to DEF, and ACB to DFE. Let the triangle ABC be applied to the triangle DEF, 6 the point A being placed on the point D, and the straight-line AB on DE. The point B will also coincide with E, on account of AB being equal to DE. So (because of) AB coinciding with DE, the straight-line AC will also coincide with DF, on account of the angle BAC being equal to EDF. So the point C will also coincide with the point F, again on account of AC being equal to DF. But, point B certainly also coincided with point E, so that the base BC will coincide with the base EF. For if B coincides with E, and C with F, and the base BC does not coincide with EF, then two straight-lines will encompass a space. The very thing is impossible [Post. 1]. 7 Thus, the base BC will coincide with EF, and will be equal to it [C.N. 4]. So the whole triangle ABC will coincide with the whole triangle DEF, and will be equal to it [C.N. 4]. And the remaining angles will coincide with the remaining angles, and will be equal to them [C.N. 4]. (That is) ABC to DEF, and ACB to DFE [C.N. 4]. Thus, if two triangles have two corresponding sides equal, and have the angles enclosed by the equal sides equal, then they will also have equal bases, and the two triangles will be equal, and the remaining angles subtended by the equal sides will be equal to the corresponding remaining angles. (Which is) the very thing it was required to show. 6 The application of one figure to another should be counted as an additional postulate. 7 Since Post. 1 implicitly assumes that the straight-line joining two given points is unique. 17
18 ΣΤΟΙΧΕΙΩΝ α ε Α Β Γ Ζ Η Ε Τ ν σοσκελ ν τριγώνων α τρ ς τ βάσει γωνίαι σαι λλήλαις ε σίν, κα προσεκβληθεισ ν τ ν σων ε θει ν α π τ ν βάσιν γωνίαι σαι λλήλαις σονται. Εστω τρίγωνον σοσκελ ς τ ΑΒΓ σην χον τ ν ΑΒ πλευρ ν τ ΑΓ πλευρ, κα προσεκβεβλήσθωσαν π ε θείας τα ς ΑΒ, ΑΓ ε θε αι α Β, ΓΕ λέγω, τι µ ν π ΑΒΓ γωνία τ π ΑΓΒ ση στίν, δ π ΓΒ τ π ΒΓΕ. Ε λήφθω γ ρ π τ ς Β τυχ ν σηµε ον τ Ζ, κα φ ρήσθω π τ ς µείζονος τ ς ΑΕ τ λάσσονι τ ΑΖ ση ΑΗ, κα πεζεύχθωσαν α ΖΓ, ΗΒ ε θε αι. Επε ο ν ση στ ν µ ν ΑΖ τ ΑΗ δ ΑΒ τ ΑΓ, δύο δ α ΖΑ, ΑΓ δυσ τα ς ΗΑ, ΑΒ σαι ε σ ν κατέρα κατέρ κα γωνίαν κοιν ν περιέχουσι τ ν π ΖΑΗ βάσις ρα ΖΓ βάσει τ ΗΒ ση στίν, κα τ ΑΖΓ τρίγωνον τ ΑΗΒ τριγών σον σται, κα α λοιπα γωνίαι τα ς λοιπα ς γωνίαις σαι σονται κατέρα κατέρ, φ ς α σαι πλευρα ποτείνουσιν, µ ν π ΑΓΖ τ π ΑΒΗ, δ π ΑΖΓ τ π ΑΗΒ. κα πε λη ΑΖ λ τ ΑΗ στιν ση, ν ΑΒ τ ΑΓ στιν ση, λοιπ ρα ΒΖ λοιπ τ ΓΗ στιν ση. δείχθη δ κα ΖΓ τ ΗΒ ση δύο δ α ΒΖ, ΖΓ δυσ τα ς ΓΗ, ΗΒ σαι ε σ ν κατέρα κατέρ κα γωνία π ΒΖΓ γωνί τ π ΓΗΒ ση, κα βάσις α τ ν κοιν ΒΓ κα τ ΒΖΓ ρα τρίγωνον τ ΓΗΒ τριγών σον σται, κα α λοιπα γωνίαι τα ς λοιπα ς γωνίαις σαι σονται κατέρα κατέρ, φ ς α σαι πλευρα ποτείνουσιν ση ρα στ ν µ ν π ΖΒΓ τ π ΗΓΒ δ π ΒΓΖ τ π ΓΒΗ. πε ο ν λη π ΑΒΗ γωνία λ τ π ΑΓΖ γωνί δείχθη ση, ν π ΓΒΗ τ π ΒΓΖ ση, λοιπ ρα π ΑΒΓ λοιπ τ π ΑΓΒ στιν ση καί ε σι πρ ς τ βάσει το ΑΒΓ τριγώνου. δείχθη δ κα π ΖΒΓ τ π ΗΓΒ ση καί ε σιν π τ ν βάσιν. Τ ν ρα σοσκελ ν τριγώνων α τρ ς τ βάσει γωνίαι σαι λλήλαις ε σίν, κα προσεκβληθεισ ν τ ν σων ε θει ν α π τ ν βάσιν γωνίαι σαι λλήλαις σονται περ δει δε ξαι. 18
19 ELEMENTS BOOK 1 Proposition 5 A B C F G D E For isosceles triangles, the angles at the base are equal to one another, and if the equal sides are produced then the angles under the base will be equal to one another. Let ABC be an isosceles triangle having the side AB equal to the side AC, and let the straightlines BD and CE have been produced in a straight-line with AB and AC (respectively) [Post. 2]. I say that the angle ABC is equal to ACB, and (angle) CBD to BCE. For let the point F have been taken somewhere on BD, and let AG have been cut off from the greater AE, equal to the lesser AF [Prop. 1.3]. Also, let the straight-lines FC and GB have been joined [Post. 1]. In fact, since AF is equal to AG and AB to AC, the two (straight-lines) FA, AC are equal to the two (straight-lines) GA, AB, respectively. They also encompass a common angle F AG. Thus, the base FC is equal to the base GB, and the triangle AFC will be equal to the triangle AGB, and the remaining angles subtendend by the equal sides will be equal to the corresponding remaining angles [Prop. 1.4]. (That is) ACF to ABG, and AFC to AGB. And since the whole of AF is equal to the whole of AG, within which AB is equal to AC, the remainder BF is thus equal to the remainder CG [C.N. 3]. But FC was also shown (to be) equal to GB. So the two (straightlines) BF, FC are equal to the two (straight-lines) CG, GB, respectively, and the angle BFC (is) equal to the angle CGB, and the base BC is common to them. Thus, the triangle BFC will be equal to the triangle CGB, and the remaining angles subtended by the equal sides will be equal to the corresponding remaining angles [Prop. 1.4]. Thus, F BC is equal to GCB, and BCF to CBG. Therefore, since the whole angle ABG was shown (to be) equal to the whole angle ACF, within which CBG is equal to BCF, the remainder ABC is thus equal to the remainder ACB [C.N. 3]. And they are at the base of triangle ABC. And FBC was also shown (to be) equal to GCB. And they are under the base. Thus, for isosceles triangles, the angles at the base are equal to one another, and if the equal sides are produced then the angles under the base will be equal to one another. (Which is) the very thing it was required to show. 19
20 ΣΤΟΙΧΕΙΩΝ α Α Β Γ Ε ν τριγώνου α δ ο γωνίαι σαι λλήλαις σιν, κα α π τ ς σας γωνίας ποτείνουσαι πλευρα σαι λλήλαις σονται. Εστω τρίγωνον τ ΑΒΓ σην χον τ ν π ΑΒΓ γωνίαν τ π ΑΓΒ γωνί λέγω, τι κα πλευρ ΑΒ πλευρ τ ΑΓ στιν ση. Ε γ ρ νισός στιν ΑΒ τ ΑΓ, τέρα α τ ν µείζων στίν. στω µείζων ΑΒ, κα φ ρήσθω π τ ς µείζονος τ ς ΑΒ τ λάττονι τ ΑΓ ση Β, κα πεζεύχθω Γ. Επε ο ν ση στ ν Β τ ΑΓ κοιν δ ΒΓ, δύο δ α Β, ΒΓ δύο τα ς ΑΓ, ΓΒ σαι ε σ ν κατέρα κατέρ, κα γωνία π ΒΓ γωνι τ π ΑΓΒ στιν ση βάσις ρα Γ βάσει τ ΑΒ ση στίν, κα τ ΒΓ τρίγωνον τ ΑΓΒ τριγών σον σται, τ λασσον τ µείζονι περ τοπον ο κ ρα νισός στιν ΑΒ τ ΑΓ ση ρα. Ε ν ρα τριγώνου α δ ο γωνίαι σαι λλήλαις σιν, κα α π τ ς σας γωνίας ποτείνουσαι πλευρα σαι λλήλαις σονται περ δει δε ξαι. 20
Οροι. ζ Επίπεδος πιφάνειά στιν, τις ξ σου τα ς φ αυτ ς ε θείαις κε ται.
ΣΤΟΙΧΕΙΩΝ α Οροι α Σηµε όν στιν, ο µέρος ο θέν. β Γραµµ δ µ κος πλατές. γ Γραµµ ς δ πέρατα σηµε α. δ Ε θε α γραµµή στιν, τις ξ σου το ς φ αυτ ς σηµείοις κε ται. ε Επιφάνεια δέ στιν, µ κος κα πλάτος µόνον
EUCLID S ELEMENTS OF GEOMETRY
EUCLID S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883 1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883 1885 edited, and provided
EUCLID S ELEMENTS OF GEOMETRY
ULI S LMNTS OF GOMTRY The Greek text of J.L. Heiberg (1883 1885) from uclidis lementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus.g. Teubneri, 1883 1885 edited, and provided with a modern
EUCLID S ELEMENTS OF GEOMETRY
ULI S LMNTS OF GOMTRY The Greek text of J.L. Heiberg (1883 1885) from uclidis lementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus.g. Teubneri, 1883 1885 edited, and provided with a modern
ΠPOΛEΓOMENA. Thank you. ;) Nov. 15. 2004. Myungsunn Ryu.
ΣTOIXEIA EΥKΛEIOΥ ΠPOΛEOMENA This document is compiled from Greek texts borrowed from Perseus Digital Library 1 and drawings that I created with a geometrical drawing language named, fittingly to the
If you want to learn Greek solely for reading Euclid s Elements, I recommend you to visit the Dr. Elizabeth R. Tuttle s web site, Reading Euclid 4.
ΣTOIXEIA EΥKΛEIOΥ Note This book is compiled to provide a printer-friendly e-book for you who want to read Euclid s Elements in the original Greek language. The Greek text is borrowed from Perseus Digital
EUCLID S ELEMENTS OF GEOMETRY
ULI S LMNTS O GOMTRY The Greek text of J.L. Heiberg (1883 1885) from uclidis lementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus.g. Teubneri, 1883 1885 edited, and provided with a modern
Definitions. . Proposition 1
ÎÇÖÓ. efinitions αʹ. Ισοι κύκλοι εἰσίν, ὧν αἱ διάμετροι ἴσαι εἰσίν, ἢ ὧν αἱ 1. qual circles are (circles) whose diameters are ἐκ τῶν κέντρων ἴσαι εἰσίν. equal, or whose (distances) from the centers (to
ELEMENTS BOOK 3. Fundamentals of Plane Geometry Involving Circles
LMNTS OOK 3 undamentals of Plane eometry Involving ircles 69 ÎÇÖÓ. efinitions αʹ. Ισοι κύκλοι εἰσίν, ὧν αἱ διάμετροι ἴσαι εἰσίν, ἢ ὧν αἱ 1. qual circles are (circles) whose diameters are ἐκ τῶν κέντρων
EUCLID S ELEMENTS OF GEOMETRY
ULI S LMNTS O GOMTRY The Greek text of J.L. Heiberg (1883 1885) from uclidis lementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus.g. Teubneri, 1883 1885 edited, and provided with a modern
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
ELEMENTS BOOK 2. Fundamentals of Geometric Algebra
ELEMENTS BOOK 2 Fundamentals of Geometric Algebra 49 ÎÇÖÓ. Definitions αʹ. Πᾶν παραλληλόγραμμον ὀρθογώνιον περιέχεσθαι 1. Any rectangular parallelogram is said to be conλέγεται ὑπὸ δύο τῶν τὴν ὀρθὴν γωνίαν
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα
[ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
ELEMENTS BOOK 4. Construction of Rectilinear Figures In and Around Circles
LMNTS OOK 4 onstruction of Rectilinear igures In and round ircles 109 ÎÇÖÓ. efinitions αʹ. Σχῆμα εὐθύγραμμον εἰς σχῆμα εὐθύγραμμον ἐγγράφ- 1. rectilinear figure is said to be inscribed in εσθαι λέγεται,
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
EUCLID S ELEMENTS IN GREEK VOLUME II BOOKS 5 9
EUCLID S ELEMENTS IN GREEK VOLUME II BOOKS 5 9 The Greek text of J.L. Heiberg (1884) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, Uol. II, Libros V-IX continens, Lipsiae, in
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Lecture 15 - Root System Axiomatics
Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;
ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΤΙΡΙ ΠΡΧΙΚΟΣ ΙΩΝΙΣΜΟΣ 7//2009 ΩΡ 0:00-2:00 ΟΗΙΣ. Να λύσετε όλα τα θέματα. Κάθε θέμα βαθμολογείται με 0 μονάδες. 2. Να γράφετε με μπλε ή μαύρο μελάνι (επιτρέπεται η χρήση μολυβιού για τα
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ
ELEMENTS BOOK 11. Elementary Stereometry
LMNTS OOK 11 lementary Stereometry 423 ËÌÇÁÉÁÏÆ º LMNTS OOK 11 ÎÇÖÓ. efinitions αʹ.στερεόνἐστιτὸμῆκοςκαὶπλάτοςκαὶβάθοςἔχον. 1. solid is a (figure) having length and breadth and βʹ. Στερεοῦ δὲ πέρας ἐπιφάνεια.
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS
ΟΜΗΡΟΥ ΙΛΙΑΔΑ ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS www.scooltime.gr [- 2 -] The Project Gutenberg EBook of Iliad, by Homer This ebook is for the use of anyone anywhere at no cost and with almost no restrictions
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
ELEMENTS BOOK 13. The Platonic Solids
LMNTS BOOK 13 The Platonic Solids The five regular solids the cube, tetrahedron (i.e., pyramid), octahedron, icosahedron, and dodecahedron were problably discovered by the school of Pythagoras. They are
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
2007 Classical Greek. Intermediate 2 Translation. Finalised Marking Instructions
2007 Classical Greek Intermediate 2 Translation Finalised Marking Instructions Scottish Qualifications Authority 2007 The information in this publication may be reproduced to support SQA qualifications
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is
Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Example 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
ELEMENTS BOOK 10. Incommensurable Magnitudes
ELEMENTS OOK 10 Incommensurable Magnitudes The theory of incommensurable magntidues set out in this book is generally attributed to Theaetetus of Athens. In the footnotes throughout this book, k, k, etc.
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,
CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Lecture 13 - Root Space Decomposition II
Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Code Breaker. TEACHER s NOTES
TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com
Adda47 No. APP for Banking & SSC Preparation Website:store.adda47.com Email:ebooks@adda47.com S. Ans.(d) Given, x + x = 5 3x x + 5x = 3x x [(x + x ) 5] 3 (x + ) 5 = 3 0 5 = 3 5 x S. Ans.(c) (a + a ) =
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values