Περί κύλισης και τριβής.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Περί κύλισης και τριβής."

Transcript

1 Περί κύλισης και τριβής. Με αφορμή ένα τεθέν ερώτημα, ας δούμε λίγο αναλυτικά τι σημαίνει κύλιση ενός τροχού και τι συμβαίνει με την ασκούμενη δύναμη τριβής. Ας δούμε αρχικά, τι γράφει το σχολικό βιβλίο: Ας επανέλθουμε στην κύλιση του τροχού (σχ. 4.5). Κατά την κύλιση κάθε σημείο του τροχού έρχεται διαδοχικά σε επαφή με το δρόμο. Έτσι, όταν ο τροχός σε χρόνο dt μετακινηθεί κατά ds, ένα σημείο Α της περιφέρειας του θα έχει στραφεί κατά τόξο μήκους ds, στο οποίο αντιστοιχεί η επίκεντρη γωνία dθ. Η ταχύτητα υ του κέντρου μάζας του τροχού είναι ds υ dt όμως dθ R ds ή ds Rdθ αντικαθιστώντας έχουμε υ τελικά παίρνουμε υ ω R Rdϑ dϑ και, επειδή ω dt dt Για να δούμε, πώς «μεταφράζονται» από μια άλλη οπτική γωνία τα παραπάνω. Η κύλιση του τροχού μπορεί να θεωρηθεί σύνθετη κίνηση, αποτελούμενη από μια μεταφορική με ταχύτητα υ και μια στροφική με γωνιακή ταχύτητα ω. Αλλά τότε αν εστιάσουμε στο σημείο Α, σημείο επαφής του τροχού με το έδαφος, αυτό έχει τις ταχύτητες του διπλανού σχήματος, όπου υ γρ ωr. Αλλά τότε με βάση την παραπάνω σχέση του βιβλίου υ ωr, έχουμε ότι υ γρ υ ωr. Αλλά τότε το σημείο του τροχού Α δεν έχει ταχύτητα ή αν προτιμάτε έχει την ίδια ταχύτητα με το σημείο επαφής Α του εδάφους. Θα μπορούσαμε λοιπόν να ορίσουμε ως κύλιση, την κίνηση εκείνη, όπου δεν υπάρχει σχετική κίνηση μεταξύ των σημείων επαφής Α-Α του τροχού και του εδάφους. r υ r υ Ας δούμε πώς εφαρμόζονται τα παραπάνω σε διάφορες περιπτώσεις, αλλά και πώς και αν η κύλιση συνδέεται με την άσκηση δύναμης τριβής, με τη βοήθεια κάποιων εφαρμογών. Εφαρμογή 1 η : Τρεις τροχοί αυτοκινήτων Α, Β και Γ με ακτίνες R 1 0,3m, R 0,4m και R 3 0,5m αντίστοιχα, κινούνται σε οριζόντιο δρόμο με ταχύτητα υ 6m/s και γωνιακή ταχύτητα ω15rαd/s, όπως στο σχήμα. 1

2 i) Να εξετάσετε αν κάποιος τροχός κυλίεται. Τι κάνουν οι υπόλοιποι; ii) Ένας Δ τροχός ακτίνας 0,4m αφήνεται σε οριζόντιο επίπεδο με ταχύτητα υ 6m/s και γωνιακή ταχύτητα ω15rαd/s, όπως στο σχήμα. Κυλίεται ο τροχός αυτός; i) Εστιάζουμε στο σημείο επαφής κάθε τροχού με το έδαφος. Το σημείο αυτό έχει μια ταχύτητα υ εξαιτίας της μεταφορικής κίνησης και μια γραμμική ταχύτητα λόγω της κυκλικής κίνησης του σημείου, γύρω από το κέντρο Ο του τροχού, όπου υ γρ ωr. B Γ Αλλά τότε το κάθε σημείο έχει ταχύτητα: υ Α υ -υ γρ υ -ωr 1 6m/s-15 0,3m/s1,5m/s υ Β υ -υ γρ υ -ωr 6m/s-15 0,4m/s 0m/s υ Γ υ -υ γρ υ -ωr 3 6m/s-15 0,5m/s -1,5 m/s. Άρα μόνο ο Β τροχός κυλίεται, αφού η ταχύτητα του σημείου επαφής του με το έδαφος είναι μηδενική. Αντίθετα ο τροχός Α ολισθαίνει και ο Γ «σπινάρει» (που σημαίνει ότι έχουμε ξανά ολίσθηση στο σημείο επαφής). ii) Σημειώνουμε ξανά τις ταχύτητες, όπως αναφέρθηκε προηγούμενα του σημείου επαφής Α, του τροχού με το έδαφος, όπως στο διπλανό σχήμα. Αλλά τότε βλέπουμε ότι η ταχύτητα του Α είναι: υ Α υ +ωr συνεπώς διάφορη από το μηδέν και ο τροχός ολισθαίνει. Αξίζει να σημειωθεί ότι υ ωr6m/s αλλά ο τροχός δεν κυλίεται αφού οι δυο ταχύτητες έχουν την ί- δια κατεύθυνση με αποτέλεσμα υ Α 1m/s! Δεν αρκεί να πούμε ότι ισχύει μια εξίσωση όπως υ ωr! γρ υ r Εφαρμογή η : Ο Α τροχός της παραπάνω εφαρμογής ακτίνας R 1 0,3m, κινείται πάνω σε οριζόντια πλατφόρμα με ταχύτητα υ 6m/s και γωνιακή ταχύτητα ω15rαd/s. Η πλατφόρμα κινείται επίσης με ταχύτητα V1,5m/s. Κυλίεται ή ολισθαίνει ο τροχός αυτός; Vr

3 Στο σχήμα έχουμε σχεδιάσει τις ταχύτητες του σημείου επαφής Α. Και πάλι έ- χουμε: υ Α υ -υ γρ υ -ωr 1 6m/s-15 0,3m/s1,5m/s Αλλά ταχύτητα V1,5m/s έχει και η πλατφόρμα. Συνεπώς αν πάρουμε το σημείο Α του τροχού που έρχεται σε επαφή με το σημείο Α της πλατφόρμας, βλέπουμε ότι τα δύο σημεία έχουν ίσες ταχύτητες και κινούνται μαζί. Δεν υπάρχει με άλλα λόγια σχετική κίνηση μεταξύ τους και ο τροχός κυλίεται, χωρίς να έχουμε κάποια ολίσθηση. Να σημειωθεί ότι οι παραπάνω ταχύτητες, είναι αυτές που μετράει ένας ακίνητος παρατηρητής στο έδαφος. V r r υ V r Εφαρμογή 3 η : Ένας τροχός ακτίνας R0,4m, κινείται πάνω σε μη λείο οριζόντιο επίπεδο Χ και κάποια στιγμή περνά στο λείο οριζόντιο επίπεδο Υ, με ταχύτητα υ 6m/s και γωνιακή ταχύτητα ω15rαd/s. Να εξετάσετε αν ο τροχός κυλίεται σε κάποιο επίπεδο. X Y Στο σχήμα έχουμε σχεδιάσει ξανά τις ταχύτητες του σημείου επαφής Α. Και πάλι έχουμε: Συνεπώς ο τροχός κυλίεται. υ Α υ -υ γρ υ -ωr6m/s-15 0,4m/s0 m/s Αλλά ακριβώς το ίδιο συμβαίνει και όταν ο τροχός περάσει στο λείο οριζόντιο επίπεδο. Δεν πρόκειται να αλλάξει κάτι και ο τροχός θα συνεχίσει να κυλίεται. Με άλλα λόγια η κύλιση δεν συνδέεται με το αν το επίπεδο είναι ή όχι λείο. X r r υ υγρ Y υ r Εφαρμογή 4 η : Ένας τροχός μάζας 10kg ηρεμεί σε οριζόντιο επίπεδο Α με το οποίο εμφανίζει συντελεστές τριβής μμ s 0,5. Σε μια στιγμή ασκείται στον άξονά του μια σταθερή οριζόντια δύναμη F60Ν. Μετά από λίγο ο τροχός εισέρχεται και συνεχίζει την κίνησή του σε δεύτερο λείο οριζόντιο επίπεδο Β. i) Να υπολογίστε την τριβή που ασκείται στον κύλινδρο από το επίπεδο Α. ii) Υπάρχει κάποια περιοχή όπου ο κύλινδρος κυλίεται; B iii) Αν το Β επίπεδο δεν ήταν λείο, αλλά οι συντελεστές τριβής του κυλίνδρου με αυτό ήταν μ 1 μ 1s 0,1, να εξετάσετε αν ο κύλινδρος μπορεί να κυλίεται στη διάρκεια της κίνησής του σε αυτό. Δίνεται για τον τροχό Ι ½ ΜR και g10m/s. 3

4 i) Στο παρακάτω σχήμα έχουν σχεδιαστεί οι δυνάμεις που ασκούνται στον τροχό. Θεωρώντας την κίνησή του σύνθετη, έχουμε με εφαρμογή του ου νόμου του Νεύτωνα: Μεταφορική κίνηση: F-ΤΜ α (1) Στροφική κίνηση: ΣτΙ α γων Τ R ½ ΜR α γων () Το ερώτημα που ανακύπτει είναι, αν ο τροχός κυλίεται ή όχι και αυτό δεν το γνωρίζουμε. Υποθέτουμε λοιπόν ότι κυλίεται (η κύλιση μπορεί να θεωρηθεί η πλέον «συνή- T r θης» κίνηση ενός τροχού). Αλλά τότε θα ισχύει η γνωστή συνθήκη της κύλισης υ ω R ή α α γων R (3) Οι εξισώσεις (1), () και (3) αποτελούν ένα σύστημα εξισώσεων, που επιλύουμε: F-ΤΜ α + 3 F F M Τ ½ Μ α 3M F 3M 60 m / s m / s Αλλά τότε η τριβή έχει μέτρο Τ ½ Μ α ½ 10 4Ν0Ν. Είναι σωστή η υπόθεσή μας περί κύλισης; Υπολογίζουμε την μέγιστη τιμή της στατικής τριβής (την ο- ριακή τριβή): Τ ορ μ s Νμ s Μg0, Ν50Ν Αυτό σημαίνει ότι πριν αρχίσει να ολισθαίνει ο τροχός, μπορεί να ασκηθεί πάνω του στατική τριβή μέτρου, μέχρι και 50Ν, ενώ η απαραίτητη τριβή για την παραπάνω κίνηση είναι 0Ν. Συνεπώς ο τροχός κυλίεται και η ασκούμενη τριβή είναι στατική μέτρου 0Ν. ii) Με βάση το προηγούμενο ερώτημα, ο τροχός κυλίεται στο Α επίπεδο. Τη στιγμή που ο τροχός φτάνει στο Β επίπεδο, κυλίεται, έχοντας μια ταχύτητα κέντρου μάζας υ 1 και μια γωνιακή ταχύτητα ω 1 και ι- σχύει υ 1 ω 1 R. Από εκεί και πέρα συνεχίζει να επιταχύνεται μεταφορικά, αφού ΣFΜα FΜ α συνεπώς η ταχύτητα του κέντρου μάζας αυξάνεται (υ υ 1 +α Δt), ενώ η γωνιακή ταχύτητα παραμένει σταθερή, αφού δεν ασκείται κάποια ροπή στον κύλινδρο, η οποία θα την μετέβαλε. Αλλά τότε αν σχεδιάσουμε τις ταχύτητες του σημείου επαφής Σ με το επίπεδο, θα έχουμε ότι: υ Σ υ -υ γρ υ -ω 1 Rυ -υ 1 α Δt>0 πράγμα που σημαίνει ότι το σημείο Σ έχει ταχύτητα προς τα δεξιά και ο τροχός ολισθαίνει. iii) Με βάση την μελέτη στο i) ερώτημα, για να μπορεί να κυλίεται σε οριζόντιο επίπεδο ο τροχός, είναι απαραίτητο να μπορεί να ασκηθεί πάνω του στατική τριβή, μέτρου 0Ν. Αλλά τώρα η οριακή τριβή μεταξύ του τροχού και του Β επιπέδου είναι:. r υ r γρ υ Σ 4

5 Τ ορ/β μ s1 Νμ s1 Μg0, Ν10Ν Συνεπώς και πάλι, παρότι το επίπεδο δεν είναι λείο, ο τροχός θα ολισθαίνει. Εφαρμογή 5 η : Ο τροχός της προηγούμενης εφαρμογής μάζας 10kg ηρεμεί σε οριζόντιο επίπεδο με το οποίο εμφανίζει συντελεστές τριβής μμ s 0,. Σε μια στιγμή ασκείται στον άξονά του μια σταθερή οριζόντια δύναμη F15Ν. Μετά από s η δύναμη καταργείται. Στη συνέχει ο τροχός συναντά ένα κεκλιμένο επίπεδο με το οποίο παρουσιάζει τον ίδιο συντελεστή τριβής. Να εξετάσετε αν ο τροχός κυλίεται, καθώς και αν ασκείται δύναμη τριβής στον τροχό: i) Στη διάρκεια της άσκησης της δύναμης F. ii) Μετά την κατάργηση της δύναμης F. iii) Κατά τη διάρκεια της ανόδου στο κεκλιμένο επίπεδο. Δίνεται για τον τροχό Ι ½ ΜR και g10m/s, ενώ για την κλίση του επιπέδου ημθ0,6 και συνθ0,8. i) Δουλεύοντας όπως στο i) ερώτημα της προηγούμενης εφαρμογής έχουμε: F 3M 15 m / s m / s Αλλά τότε η τριβή έχει μέτρο Τ ½ Μ α ½ 10 1Ν5Ν.. Είναι σωστή η υπόθεσή μας περί κύλισης; Υπολογίζουμε την μέγιστη τιμή της στατικής τριβής (την ο- ριακή τριβή): Τ ορ μ s Νμ s Μg0, 10 10Ν0Ν Συνεπώς ο τροχός κυλίεται κατά τη διάρκεια της άσκησης της δύναμης F. ii) Μόλις πάψει να ασκείται η δύναμη F, το σημείο επαφής του τροχού με το έδαφος έχει μηδενική ταχύτητα και αυτό δεν υπάρχει λόγος να αλλάξει. Συνεπώς ο τροχός θα συνεχίσει να κυλίεται, χωρίς να ασκείται πάνω του δύναμη τριβής. iii) Μόλις ο τροχός αρχίσει να ανεβαίνει στο κεκλιμένο επίπεδο, εξαιτίας της συνιστώσας w x θα αρχίσει να επιβραδύνεται συνεπώς θα μειώνεται η υ. Αλλά τότε αν ε- στιάσουμε στο σημείο επαφής του με το επίπεδο υ γρ ωr>υ, δηλαδή το σημείο αυτό τείνει να αποκτήσει ταχύτητα αντίθετη της υ. Αυτό όμως συνεπάγεται ότι θα ασκηθεί πάνω του τριβή, με φορά προς τα πάνω, όπως στο διπλανό σχήμα. Θεωρώντας ξανά την κίνησή του σύνθετη, έχουμε με εφαρμογή του ου νόμου του Νεύτωνα (δουλεύουμε με τα μέτρα των μεγεθών): Μεταφορική κίνηση: w x -Τ 1 Μ α (1) T r υ r γρ 1 x ϑ ϑ T r 1 y 5

6 Στροφική κίνηση: ΣτΙ α γων Τ 1 R ½ ΜR α γων () Υποθέτοντας ξανά ότι ο τροχός κυλίεται θα ισχύει ότι υ ω R ή α α γων R (3) Οι εξισώσεις (1), () και (3) αποτελούν ένα σύστημα εξισώσεων, που επιλύουμε: Μgημθ-ΤΜ α + 3 gηµϑ Mgηµϑ M Τ ½ Μ α ,6 3 4m / s Αλλά τότε η τριβή έχει μέτρο Τ ½ Μ α ½ 10 4Ν0Ν. Είναι σωστή η υπόθεσή μας περί κύλισης; Υπολογίζουμε την μέγιστη τιμή της στατικής τριβής (την ο- ριακή τριβή): Τ ορ μ s Νμ s Μg συνθ0, ,8Ν16Ν Συνεπώς δεν μπορεί να ασκηθεί στατική τριβή μέτρου 0Ν στον τροχό και ο τροχός ολισθαίνει κατά την κίνησή του στο κεκλιμένο επίπεδο, ενώ δέχεται τριβή ολίσθησης παράλληλη με την ταχύτητα μέτρου 16Ν.. Εφαρμογή 6 η : Ο κύλινδρος του σχήματος έχει ακτίνα R και μάζα 5kg και ηρεμεί σε οριζόντιο επίπεδο με το οποίο παρουσιάζει συντελεστές τριβής μμ s 0,. Ο κύλινδρος έχει εγκοπή βάθους ½ R στην οποία έχει τυλιχθεί ένα αβαρές νήμα, στο άκρο Α του οποίου, κάποια στιγμή ασκούμε οριζόντια δύναμη F. Δίνεται η ροπή αδράνειας του κυλίνδρου ως προς τον άξονα περιστροφής του, ο οποίος συνδέει τα κέντρα των δύο βάσεων Ι ½ mr. Να εξετάσετε αν ο κύλινδρος θα κυλίεται και αν πάνω του ασκηθεί δύναμη τριβής. Ας δούμε τι ακριβώς θα συμβεί, μόλις ασκηθεί στον κύλινδρο, μέσω του νήματος δύναμη F F, όπως στο διπλανό σχήμα. r F Θεωρώντας την κίνησή του σύνθετη, έχουμε με εφαρμογή του ου νόμου του Νεύτωνα: Μεταφορική κίνηση: F F Μ α Στροφική κίνηση: ΣτΙ α γων F ½ R ½ ΜR α γων F M γων F MR R Αλλά τότε το σημείο επαφής Α, του κυλίνδρου με το έδαφος έχει μηδενική επιτάχυνση. Πράγματι: r επ r F r 6

7 α Α α -α επ α -α γων R 0 Οπότε δεν πρόκειται να κινηθεί ως προς το έδαφος και να αποκτήσει κάποια ταχύτητα ολίσθησης. Αλλά τότε ο κύλινδρος αρχίζει να κυλίεται, χωρίς να ασκηθεί δύναμη τριβής πάνω του. Συμπέρασμα: Δεν πρέπει να συνδέεται η κύλιση με την ύπαρξη ή όχι δύναμης τριβής. Κύλιση σημαίνει ότι το σημείο επαφής ενός τροχού με την επιφάνεια, πάνω στην οποία πραγματοποιείται η κίνηση, δεν έχει σχετική ταχύτητα ως προς το αντίστοιχο σημείο επαφής της επιφάνειας. Από την άλλη, η Τριβή είναι μια δύναμη, που πάντα «καιροφυλακτεί» να κάνει την εμφάνισή της. Αν θα εμφανιστεί ή όχι εξαρτάται αν υπάρχει σχετική κίνηση ή αν τουλάχιστον τείνει να υπάρξει κίνηση, μεταξύ των σημείων επαφής των δύο επιφανειών. Υλικό Φυσικής-Χημείας Γιατί το να µοιράζεσαι ράγµατα, είναι καλό για όλους Επιμέλεια: Διονύσης Μάργαρης 7

Μην χάσουμε τον σύνδεσμο ή τον κινηματικό περιορισμό!!!

Μην χάσουμε τον σύνδεσμο ή τον κινηματικό περιορισμό!!! Μην χάσουμε τον σύνδεσμο ή τον κινηματικό περιορισμό!!! Σε πάρα πολλές περιπτώσεις κατά τη μελέτη του στερεού, το πρόβλημα επιλύεται με εφαρμογή του ου νόμου του Νεύτωνα, τόσο για την περιστροφική κίνηση

Διαβάστε περισσότερα

Άξονες περιστροφής στερεού

Άξονες περιστροφής στερεού Άξονες περιστροφής στερεού Πραγματικοί και νοητοί. Μιλάμε συνεχώς για περιστροφή ενός στερεού γύρω από άξονα, αλλά συνήθως ξεχνάμε να πούμε αν αυτός ο άξονας είναι πραγματικός ή νοητός. Δεν είναι το ίδιο

Διαβάστε περισσότερα

Ισορροπία στερεού. 3.2.8. Ποιες είναι οι δυνάμεις που ασκούνται; 3.2.9. Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας

Ισορροπία στερεού. 3.2.8. Ποιες είναι οι δυνάμεις που ασκούνται; 3.2.9. Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας 3.2.. 3.2.1. Ροπές και ισορροπία. Πάνω σε λείο οριζόντιο επίπεδο βρίσκεται μια ράβδος μήκους l=4m, η οποία μπορεί να στρέφεται γύρω από κατακόρυφο άξονα, ο οποίος διέρχεται από το μέσον της Ο. Ασκούμε

Διαβάστε περισσότερα

3.2. Ισορροπία στερεού.

3.2. Ισορροπία στερεού. 3.2.. 3.2.1. Ροπές και ισορροπία. Πάνω σε λείο οριζόντιο επίπεδο βρίσκεται μια ράβδος μήκους l=4m, η οποία μπορεί να στρέφεται γύρω από κατακόρυφο άξονα, ο οποίος διέρχεται από το μέσον της Ο. Ασκούμε

Διαβάστε περισσότερα

3.3. Δυναμική στερεού.

3.3. Δυναμική στερεού. 3.3.. 3.3.1. Ροπή και γωνιακή επιτάχυνση Μια οριζόντια τετράγωνη πλάκα ΑΒΓΔ, πλευράς 1m και μάζας 20kg μπορεί να στρέφεται γύρω από σταθερό άξονα z που περνά από το κέντρο της. Η πλάκα αποκτά γωνιακή ταχύτητα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Θ.Μ.Κ.Ε. ΚΑΙ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ

Θ.Μ.Κ.Ε. ΚΑΙ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ Ερώτημα 1 ο : ΘΜΚΕ ΚΑΙ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ Όταν μιλάμε για έργο, τι διαφορά έχει το έργο μιας δύναμης και το έργο μιας ροπής;στην πραγματικότητα έργο παράγει μια δύναμη, όταν μετατοπίζει το σημείο εφαρμογής

Διαβάστε περισσότερα

Μια κινούμενη τροχαλία.

Μια κινούμενη τροχαλία. Μια κινούμενη τροχαλία. Γύρω από μια τροχαλία μάζας Μ=0,8kg έχουμε τυλίξει ένα αβαρές νήμα, στο άκρο του ο- ποίου έχουμε δέσει ένα σώμα Σ μάζας m=0,kg. Συγκρατούμε τα δυο σώματα με τα χέρια μας, ώστε το

Διαβάστε περισσότερα

Μηχανική Στερεού Ασκήσεις Εμπέδωσης

Μηχανική Στερεού Ασκήσεις Εμπέδωσης Μηχανική Στερεού Ασκήσεις Εμπέδωσης Όπου χρειάζεται, θεωρείστε δεδομένο ότι g = 10m/s 2. 1. Μία ράβδος ΟΑ, μήκους L = 0,5m, περιστρέφεται γύρω από σταθερό άξονα που περνάει από το ένα άκρο της Ο, με σταθερή

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής) ΕΚΦΩΝΗΣΕΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 (Κινητική ενέργεια λόγω περιστροφής Έργο και ισχύς σταθερής ροπής) Ένας κύβος και ένας δίσκος έχουν ίδια μάζα και αφήνονται από το ίδιο ύψος να κινηθούν κατά μήκος δύο κεκλιμένων

Διαβάστε περισσότερα

Ισορροπία - Γ Νόμος Newton. 1) Να συμπληρώσετε τον πίνακα για κάθε αλληλεπίδραση. Τριβές αμελητέες. Σ1 Σ2 N S Ν S

Ισορροπία - Γ Νόμος Newton. 1) Να συμπληρώσετε τον πίνακα για κάθε αλληλεπίδραση. Τριβές αμελητέες. Σ1 Σ2 N S Ν S Ισορροπία - Γ Νόμος Newton 1) Να συμπληρώσετε τον πίνακα για κάθε αλληλεπίδραση. Τριβές αμελητέες. Σ1 Σ2 N S Ν S Ζεύγος σωμάτων που αλληλεπιδρούν Δράση - Αντίδραση 2) Να βρεθούν οι δυνάμεις που εξασκούνται

Διαβάστε περισσότερα

Αποκλειστικά μόνο για Καθηγητές.

Αποκλειστικά μόνο για Καθηγητές. Παίζοντας με το ο νόμο για την περιστροφική κίνηση Αποκλειστικά μόνο για Καθηγητές Κάθε χρόνο επανέρχεται στο προσκήνιο το θέμα εφαρμογής του ου νόμου για την στροφική κίνηση και η αποφυγή χρήσης του,

Διαβάστε περισσότερα

F r. www.ylikonet.gr 1

F r. www.ylikonet.gr 1 3.5. Έργο Ενέργεια. 3.5.1. Έργο δύναµης- ροπής και Κινητική Ενέργεια. Το οµοαξονικό σύστηµα των δύο κυλίνδρων µε ακτίνες R 1 =0,1m και R =0,5m ηρεµεί σε οριζόντιο επίπεδο. Τυλίγουµε γύρω από τον κύλινδρο

Διαβάστε περισσότερα

Άξονες περιστροφής στερεού

Άξονες περιστροφής στερεού Άξονες περιστροφής στερεού Πραγματικοί και νοητοί. Μιλάµε συνεχώς για περιστροφή ενός στερεού γύρω από άξονα, αλλά συνήθως ξεχνάµε να πούµε αν αυτός ο άξονας είναι πραγµατικός ή νοητός. εν είναι το ίδιο

Διαβάστε περισσότερα

Για να μην χάσουμε τα συμπεράσματα.

Για να μην χάσουμε τα συμπεράσματα. Για να μην χάσουμε τα συμπεράσματα. Η τομή ενός ομογενούς στερεού s είναι ορθογώνιο ΑΒΓΔ με πλευρές (ΑΒ)=2α και (ΑΔ)=6α. Αφήνουμε το στερεό σε κεκλιμένο επίπεδο κλίσεως θ, όπου ημθ=0,6 και συνθ=0,8. Να

Διαβάστε περισσότερα

Μην ξεχνάμε τον άξονα περιστροφής.

Μην ξεχνάμε τον άξονα περιστροφής. Μην ξεχνάμε τον άξονα περιστροφής. Έχουμε πάρα πολλά προβλήματα, όπου ένα στερεό, όπως μια ράβδος, στρέφεται γύρω από έναν σταθερό άξονα. Συνήθως στις περιπτώσεις αυτές επιλύουμε το πρόβλημα, «αφήνοντας

Διαβάστε περισσότερα

Άλλη μια ράβδος στρέφεται

Άλλη μια ράβδος στρέφεται Άλλη μια ράβδος στρέφεται B υ Η ομογενής ράβδος του σχήματος μάζας Μkg και μήκους m, είναι αρθρωμένη στο άκρο της Ο, γύρω από το οποίο μπορεί να στρέφεται χωρίς τριβές. Η ράβδος ισορροπεί, κρεμασμένη στο

Διαβάστε περισσότερα

3.6. Σύνθετα θέματα στερεού. Ομάδα Δ.

3.6. Σύνθετα θέματα στερεού. Ομάδα Δ. 3.5.61. Μια κινούμενη τροχαλία. 3.6. Σύνθετα θέματα στερεού. Ομάδα Δ. Γύρω από μια τροχαλία μάζας Μ=0,8kg έχουμε τυλίξει ένα αβαρές νήμα, στο άκρο του οποίου έχουμε δέσει ένα σώμα Σ μάζας m=0,1kg. Συγκρατούμε

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Αντικείμενο: Κεφάλαιο 4 Θέμα 1ο Α. Να επιλέξετε τη σωστή απάντηση που ακολουθεί κάθε μια από τις πιο κάτω προτάσεις α. Ένα σώμα ηρεμεί εκτός πεδίου βαρύτητας. Ασκούμε

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Α Λυκείου

Διαγώνισμα Φυσικής Α Λυκείου Διαγώνισμα Φυσικής Α Λυκείου Δυναμιική.. Θέμα 1 ο 1. Συμπληρώστε την παρακάτω πρόταση. H αρχή της αδράνειας λέει ότι όλα ανεξαιρέτως τα σώματα εκδηλώνουν μια τάση να διατηρούν την... 2. Ένα αυτοκίνητο

Διαβάστε περισσότερα

Μην χάσουμε τον σύνδεσμο ή τον κινηματικό περιορισμό!!!

Μην χάσουμε τον σύνδεσμο ή τον κινηματικό περιορισμό!!! Μην χάσομε τον σύνδεσμο ή τον κινηματικό περιορισμό!!! Σε πάρα πολλές περιπτώσεις κατά τη µελέτη το στερεού, το πρόβληµα επιλύεται µε εφαρµογή το ο νό- µο το Νεύτωνα, τόσο για την περιστροφική κίνηση κάποιο

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2 ΚΕΦΑΛΑΙΟ 4 Ροπή αδράνειας - Θεμελιώδης νόμος της στροφικής κίνησης 4.1 Η ροπή αδράνειας ενός σώματος εξαρτάται: α. μόνο από τη μάζα του σώματος β. μόνο τη θέση του άξονα γύρω από τον οποίο μπορεί να περιστρέφεται

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

Το Θ.Μ.Κ.Ε. και η σύνθετη κίνηση

Το Θ.Μ.Κ.Ε. και η σύνθετη κίνηση Το Θ.Μ.Κ.Ε. και η σύνθετη κίνηση Με αφορµή µια συζήτηση στο βαθµολογικό Ερώτηµα 1 ο : Όταν µιλάµε για έργο, τι διαφορά έχει το έργο µιας δύναµης και το έργο µιας ροπής; Στην πραγµατικότητα έργο παράγει

Διαβάστε περισσότερα

9 o Γ.Λ. ΠΕΙΡΑΙΑ Test ΦΥΣΙΚΗΣ. (2) υ 2. υ 1. Καλή Επιτυχία. Ονοµατεπώνυµο:... Πειραιάς 19/2 / 2008

9 o Γ.Λ. ΠΕΙΡΑΙΑ Test ΦΥΣΙΚΗΣ. (2) υ 2. υ 1. Καλή Επιτυχία. Ονοµατεπώνυµο:... Πειραιάς 19/2 / 2008 Ονοµατεπώνυµο:... Πειραιάς 19/2 / 2008 1) Ένα σώµα κινείται σε οριζόντιο δρόµο και µετά αρχίζει (3) να ανεβαίνει σε κεκλιµένο επίπεδο, όπου και σταµατά (2) υ 2 στη θέση (3), χωρίς να κινηθεί ξανά προς

Διαβάστε περισσότερα

Στροφορμή. Μερικές όψεις

Στροφορμή. Μερικές όψεις Στροφορμή. Μερικές όψεις Ένα φυλλάδιο θεωρίας και μερικών εφαρμογών. Με βάση το σχολικό μας βιβλίο, ορίζουμε τη στροφορμή ενός υλικού σημείου το οποίο εκτελεί κυκλική κίνηση κέντρου Ο, το διάνυσμα το οποίο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: Κινήσεις στερεών, ροπή αδράνειας, ισορροπία στερεού

ΔΙΑΓΩΝΙΣΜΑ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: Κινήσεις στερεών, ροπή αδράνειας, ισορροπία στερεού ΛΥΣΕΙΣ ΘΕΜΑ Α ΔΙΑΩΝΙΣΜΑ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: Κινήσεις στερεών, ροπή αδράνειας, ισορροπία στερεού Α..β, Α..β, Α..β, Α.4.β, Α.5. Λ, Σ, Λ, Σ, Λ ΘΕΜΑ Β Β.. Στο διπλανό σχήμα βλέπουμε μία

Διαβάστε περισσότερα

Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση.

Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Τις προηγούµενες µέρες έγινε στο δίκτυο µια συζήτηση µε θέµα «Πόση είναι η κεντροµόλος επιτάχυνση;» Θεωρώ αναγκαίο να διατυπώσω µε απλό τρόπο κάποια

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΤΡΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤO ΣΤΕΡΕΟ

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΤΡΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤO ΣΤΕΡΕΟ ΠΡΤΥΠ ΠΕΙΡΑΜΑΤΙΚ ΛΥΚΕΙ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΤΡΙΩΡ ΕΠΑΝΑΛΗΠΤΙΚ ΔΙΑΓΩΝΙΣΜΑ ΣΤO ΣΤΕΡΕ Μαθητής/Μαθήτρια -----------------------------------------------

Διαβάστε περισσότερα

2.1. Κυκλική κίνηση Κυκλική κίνηση. Ομάδα Β.

2.1. Κυκλική κίνηση Κυκλική κίνηση. Ομάδα Β. 2.1.. 2.1.. Ομάδα Β. 2.1.Σχέσεις μεταξύ γραμμικών και γωνιακών μεγεθών στην ΟΚΚ. Κινητό κινείται σε περιφέρεια κύκλου ακτίνας 40m με ταχύτητα μέτρου 4m/s. i) Ποια είναι η περίοδος και ποια η συχνότητά

Διαβάστε περισσότερα

Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα.

Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΕΡΕΟΎ ΣΏΜΑΤΟΣ Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα. Ένα υλικό σημείο μπορεί να κάνει μόνο μεταφορική

Διαβάστε περισσότερα

Β) Μέχρι τη στιγµή t 1 που ξετυλίγεται όλο το νήµα, Β-1) Κατά πόσο διάστηµα x έχει µετατοπιστεί ο κύλινδρος, πόση ενέργεια

Β) Μέχρι τη στιγµή t 1 που ξετυλίγεται όλο το νήµα, Β-1) Κατά πόσο διάστηµα x έχει µετατοπιστεί ο κύλινδρος, πόση ενέργεια Ένας κύλινδρος που σπινάρει Νήµα τυλίγεται σε λεπτό αυλάκι κατά µήκος της περιφέρειας κυλίνδρου, που έχει µάζα M=2kg και ακτίνα R = 0,2m. Ο κύλινδρος συγκρατείται αρχικά στη θέση που φαίνεται στο σχήµα,

Διαβάστε περισσότερα

A) Να βρεθεί η γωνιακή επιτάχυνση του τροχού, καθώς και ο αριθµός των στροφών

A) Να βρεθεί η γωνιακή επιτάχυνση του τροχού, καθώς και ο αριθµός των στροφών Άσκηση ολίσθηση-κύλιση µε ολίσθηση-κύλιση χωρίς ολίσθηση Ο τροχός του σχήµατος έχει ακτίνα R0,m και αφήνεται τη χρονική στιγµή t0 µε αρχική γωνιακή ταχύτητα ω ο 300 rad/sec σε επαφή µε τα δύο κάθετα τοιχώµατα,

Διαβάστε περισσότερα

Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο

Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο ) Οµογενής κύλινδρος µάζας m, ακτίνας R φέρει λεπτή εγκοπή βάθους είναι τυλιγµένο νήµα αµελητέου πάχους. R r=, στην οποία Το άλλο άκρο του νήµατος έχει δεθεί σε οροφή όπως στο

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε.

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε. .. Μηχανικές. Ομάδα Ε...8. Δυο ΑΑΤ και μία Ταλάντωση. Ένα σώμα μάζας kg ηρεμεί σε λείο κεκλιμένο επίπεδο κλίσεως θ=30, δεμένο στο άκρο ελατηρίου σταθεράς k =40Ν/m, ενώ εφάπτεται στο ε- λεύθερο άκρο ενός

Διαβάστε περισσότερα

ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1. ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση

ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1. ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση Α.1 Το στερεό του σχήματος δέχεται αντίρροπες δυνάμεις F 1 kαι F 2 που έχουν ίσα μέτρα. Το μέτρο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 1. Ο κύλινδρος και ο δίσκος του σχήματος, έχουν την ίδια μάζα και περιστρέφονται με την ίδια γωνιακή ταχύτητα ω. Ποιό σώμα θα σταματήσει πιο δύσκολα; α) Το Α. β) Το Β. γ) Και τα δύο το ίδιο. 2. Ένας ομογενής

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

Κύλιση με ολίσθηση δακτυλίου-σφαίρας

Κύλιση με ολίσθηση δακτυλίου-σφαίρας Κύλιση με ολίσθηση δακτυλίου-σφαίρας Ο δακτύλιος του σχήματος ακτίνας r=0,1m έχει όλη τη μάζα του συγκεντρμένη στην περιφέρεια του και κυλίεται χρίς να ολισθαίνει πάν στο τραχύ οριζόντιο επίπεδο του σχήματος.

Διαβάστε περισσότερα

Διαγώνισμα: Μηχανική Στερεού Σώματος

Διαγώνισμα: Μηχανική Στερεού Σώματος Διαγώνισμα: Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25) ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ ΘΕΜΑ Α (μοναδες 25) Α1. Σε στερεό που περιστρέφεται γύρω από σταθερό κατακόρυφο άξονα ενεργεί σταθερή ροπή. Τότε αυξάνεται με σταθερό ρυθμό: α. η ροπή αδράνειας του β. η

Διαβάστε περισσότερα

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s] ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

Δυναμική. Ομάδα Γ. Δυναμική Κατακόρυφη βολή και γραφικές παραστάσεις Κατακόρυφη βολή και κάποια συμπεράσματα.

Δυναμική. Ομάδα Γ. Δυναμική Κατακόρυφη βολή και γραφικές παραστάσεις Κατακόρυφη βολή και κάποια συμπεράσματα. . Ομάδα Γ. 1.2.21. Κατακόρυφη βολή και γραφικές παραστάσεις Από ένα σημείο Ο σε ύψος Η=25m από το έδαφος εκτοξεύεται κατακόρυφα προς τα πάνω ένα σώμα με αρχική ταχύτητα υ 0 =20m/s. Αν g=10m/s 2, ενώ η

Διαβάστε περισσότερα

Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση

Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση α) Το μέτρο της δύναμης που δέχεται η ράβδος από την άρθρωση λίγο πριν και αμέσως μετά το κόψιμο του νήματος, Η ομογενής και ισοπαχής ράβδος

Διαβάστε περισσότερα

3.4. Στροφορμή. Ομάδα Β.

3.4. Στροφορμή. Ομάδα Β. 3.4. Στροφορμή. Ομάδα Β. 1. Στροφορμή και άξονας περιστροφής Έστω ένας οριζόντιος δίσκος μάζας m και ακτίνας R, ο οποίος στρέφεται με γωνιακή ταχύτητα ω. Να υπολογίσετε την στροφορμή του δίσκου ως προς

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε.

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε. 1.1. Μηχανικές. Ομάδα Ε. 1.1.81. Δυο ΑΑΤ και μία Ταλάντωση. Ένα σώμα μάζας 1kg ηρεμεί σε λείο κεκλιμένο επίπεδο κλίσεως θ=30, δεμένο στο άκρο ελατηρίου σταθεράς k 1 =40Ν/m, ενώ εφάπτεται στο ε- λεύθερο

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. (Θέμα Δ) Άσκηση 2. (Κύλιση χωρίς ολίσθηση, σχέση υ cm και ω, σχέση α cm και a γων )

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. (Θέμα Δ) Άσκηση 2. (Κύλιση χωρίς ολίσθηση, σχέση υ cm και ω, σχέση α cm και a γων ) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Γωνιακή ταχύτητα, γωνιακή επιτάχυνση, σύνθετη κίνηση, κέντρο μάζας) Δύο δίσκοι οριζόντιοι Δ 1 και Δ εκτελούν περιστροφική κίνηση γύρω από κατακόρυφο άξονα που περνά από το

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ 1. Ένα σώμα μάζας 2kg ηρεμεί σε λείο οριζόντιο επίπεδο. Σε μια στιγμή ασκούνται πάνω του οι οριζόντιες δυνάμεις που εμφανίζονται στο σχήμα. Δίνονται F 1 =8 3N, F 2 =14N, F 3

Διαβάστε περισσότερα

3.2. Διατήρηση της Ορμής. Ομάδα Γ.

3.2. Διατήρηση της Ορμής. Ομάδα Γ. 3.2. Διατήρηση της Ορμής. Ομάδα Γ. 3.21. Η ορμή και ένα σύστημα σωμάτων. Δυο σώματα Α και Β με μάζες m 1 =2kg και m 2 =1kg αντίστοιχα, ηρεμούν σε λείο οριζόντιο επίπεδο, έχοντας συμπιέσει ένα ιδανικό ελατήριο

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ 1. Από σημείο Α κεκλιμένου επιπέδου γωνίας κλίσης ρίχνεται προς τα πάνω, στη διεύθυνση του επιπέδου σώμα μάζας m = 2kgr με αρχική ταχύτητα u o = 20 m/sec. Αν δεν υπάρχουν τριβές να βρείτε: α)την αντίδραση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ Ον/μο:.. Ύλη:Στερεό Είμαστε τυχεροί που είμαστε δάσκαλοι Γ Λυκείου Θετ-Τεχν Κατ. 09-0-14 Θέμα 1 ο : 1) Σε ένα μολύβι που ισορροπεί σε οριζόντια επιφάνεια ασκούμε τις δυνάμεις F 1

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 12. Ένας οριζόντιος ομογενής δίσκος ακτίνας μπορεί να περιστρέφεται χωρίς τριβές, γύρω από κατακόρυφο

Διαβάστε περισσότερα

Δυναμική στο επίπεδο. Ομάδα Γ.

Δυναμική στο επίπεδο. Ομάδα Γ. 1.3.21. Η τριβή και η κίνηση. στο επίπεδο. Ομάδα Γ. Ένα σώμα μάζας 2kg ηρεμεί σε οριζόντιο επίπεδο με το οποίο παρουσιάζει συντελεστές τριβής μ=μ s =0,2. Σε μια στιγμή t 0 =0 στο σώμα ασκείται μεταβλητή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

το άκρο Β έχει γραμμική ταχύτητα μέτρου.

το άκρο Β έχει γραμμική ταχύτητα μέτρου. ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 1. Μια ράβδος ΑΒ περιστρέφεται με σταθερή γωνιακή ταχύτητα γύρω από έναν σταθερό οριζόντιο άξονα που περνάει από ένα σημείο πάνω

Διαβάστε περισσότερα

ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ A. Όταν ένα σώμα ισορροπεί η συνισταμένη των δυνάμεων είναι ίση με μηδέν. Πρέπει

ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ A. Όταν ένα σώμα ισορροπεί η συνισταμένη των δυνάμεων είναι ίση με μηδέν. Πρέπει ΙΣΟΡΡΟΠΙΑ - ΤΡΙΒΗ ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ A. Όταν ένα σώμα ισορροπεί η συνισταμένη των δυνάμεων είναι ίση με μηδέν. Πρέπει ΣF=0 ή ΣF x=0 και ΣF y=0 B. Όταν ένα σώμα ολισθαίνει πάνω σε μια μη λεία οριζόντια

Διαβάστε περισσότερα

Διαγώνισμα Μηχανική Στερεού Σώματος

Διαγώνισμα Μηχανική Στερεού Σώματος Διαγώνισμα Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

Έργο-Ενέργεια Ασκήσεις Έργου-Ενέργειας Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ Μεταβλητή δύναµη και κίνηση

Έργο-Ενέργεια Ασκήσεις Έργου-Ενέργειας Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ Μεταβλητή δύναµη και κίνηση 2.2. Ασκήσεις Έργου-Ενέργειας. 2.2.1. Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ. Ένα σώµα µάζας m=2kg ηρεµεί σε οριζόντιο επίπεδο. Σε µια στιγµή δέχεται την επίδραση οριζόντιας δύνα- µης, το µέτρο

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου

Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου Ζήτημα 1 ον 1.. Ένα σημειακό αντικείμενο εκτελεί απλή αρμονική ταλάντωση. Τις χρονικές στιγμές που το μέτρο της ταχύτητας του αντικειμένου είναι μέγιστο, το μέτρο

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 01: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή

Διαβάστε περισσότερα

ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ. Α. Όταν ένα σώμα ολισθαίνει πάνω σε μια μη λεία οριζόντια επιφάνεια,

ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ. Α. Όταν ένα σώμα ολισθαίνει πάνω σε μια μη λεία οριζόντια επιφάνεια, 1 ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Όταν ένα σώμα ολισθαίνει πάνω σε μια μη λεία οριζόντια επιάνεια, 1. Θα σχεδιάζουμε τις δυνάμεις που ασκούνται πάνω του και θα τις αναλύουμε σε άξονες χ και y. 2. Αού στον κατακόρυο

Διαβάστε περισσότερα

υναµική στερεού. Οµάδα Γ

υναµική στερεού. Οµάδα Γ 3.3.21. Μια περίεργη κύλιση Κύλινδρος υναµική στερεού. Οµάδα Γ µάζας Μ=10Κg και ακτίνας R=0,5m αρχίζει την στιγµή t=0 να ανέρχεται κυλιόµενος (αριστερόστροφα) χωρίς να ολισθαίνει κατά µήκος αρχικά λείου

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Επώνυμο: Όνομα: Τμήμα: Αγρίνιο 10-11-013 ΘΕΜΑ 1 ο Α) Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Στις ερωτήσεις -4 να βρείτε τη σωστή πρόταση.. Η ροπή αδράνειας ενός στερεού σώµατος εξαρτάται: α. Από τη ροπή της δύναµης που ασκείται στο στερεό. β. από

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

2) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο

2) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο - 1 - Επώνυμο.. Όνομα.. Αγρίνιο 22/3/2015 Ζήτημα 1 0 Να επιλεγεί η σωστή πρόταση 1) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο. Ο δίσκος στρέφεται γύρω

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου]

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου] ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Ασκήσεις. Φυσική Γ Λυκείου - Μηχανική στερεού σώματος

Ασκήσεις. Φυσική Γ Λυκείου - Μηχανική στερεού σώματος - Μηχανική στερεού σώματος Ασκήσεις 1. Στερεό στρέφεται γύρω Ένας δίσκος μπορεί να περιστρέφεται γύρω από σταθερό άξονα ο οποίος διέρχεται από το κέντρο και είναι κάθετος στο επίπεδο του. Ο δίσκος είναι

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Ονοµατεπώνυµο: Διάρκεια: (3 45)+5=50 min Τµήµα: ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Ζήτηµα ο Ένα στερεό µπορεί να στρέφεται γύρω από σταθερό άξονα και αρχικά ηρεµεί. Σε µια στιγµή δέχεται (ολική) ροπή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις Α1α-Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ A. Όταν ένα σώμα ισορροπεί η συνισταμένη των δυνάμεων είναι ίση με μηδέν. Πρέπει

ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ A. Όταν ένα σώμα ισορροπεί η συνισταμένη των δυνάμεων είναι ίση με μηδέν. Πρέπει 1 ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ A. Όταν ένα σώμα ισορροπεί η συνισταμένη των δυνάμεων είναι ίση με μηδέν. Πρέπει Σ=0 ή Σ x =0 και Σ y =0 B. Όταν ένα σώμα ολισθαίνει πάνω σε μια μη λεία οριζόντια επιάνεια, 1. Θα

Διαβάστε περισσότερα

Ζεύγος δυνάµεων Κύλιση - Κρούση

Ζεύγος δυνάµεων Κύλιση - Κρούση Ζεύγος δυνάµεων Κύλιση - Κρούση Οµογενής σφαίρα µάζας Μ=2kg και ακτίνας R=0,5m ηρεµεί πάνω σε λείο οριζόντιο δάπεδο, µε την κατακόρυφη διάµετρό της να απέχει απόσταση s=60,5m από λείο κατακόρυφο τοίχωµα.

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την

Διαβάστε περισσότερα

Δυναμική στο επίπεδο. Ομάδα Γ.

Δυναμική στο επίπεδο. Ομάδα Γ. 1.3.21. Η τριβή και η κίνηση. στο επίπεδο. Ομάδα Γ. Ένα σώμα μάζας 2kg ηρεμεί σε οριζόντιο επίπεδο με το οποίο παρουσιάζει συντελεστές τριβής μ=μ s =0,2. Σε μια στιγμή t 0 =0 στο σώμα ασκείται μεταβλητή

Διαβάστε περισσότερα

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ F 2 F 3 F 1 F 4

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ F 2 F 3 F 1 F 4 1. F 2 F 3 F 1 F 4 Στο σώμα του παραπάνω σχήματος βάρους Β = 20Ν ασκούνται οι δυνάμεις F 1 = 5Ν, F 2 = 10Ν, F 3 = 15Ν και F 4 = 10Ν. Αν το σώμα μετακινηθεί οριζόντια προς τα δεξιά κατά 2m να υπολογισθεί

Διαβάστε περισσότερα

ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ

ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ 1 Οι δυνάμεις μπορούν να χωριστούν σε δυο κατηγορίες: Σε δυνάμεις επαφής, που ασκούνται μόνο ανάμεσα σε σώματα που βρίσκονται σε επαφή, και σε δυνάμεις

Διαβάστε περισσότερα

Δυνάμεις Σύνθεση Ανάλυση Δυνάμεων

Δυνάμεις Σύνθεση Ανάλυση Δυνάμεων Φυσική 1ης Λυκείου Κινήσεις Δυνάμεις Σύνεση Ανάλυση Δυνάμεων 1. Στις παρακάτω περιπτώσεις, υπολογίστε τις συνιστώσες των δυνάμεων = 10N και F = 18N στους άξονες x x και y y, καώς και την συνισταμένη στον

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. Ισχύει: α. L 1. και Κ 1 β. 2L 1 =2L 2 =L 2. και 2Κ 1 γ. L 1

ΟΡΟΣΗΜΟ. Ισχύει: α. L 1. και Κ 1 β. 2L 1 =2L 2 =L 2. και 2Κ 1 γ. L 1 61 Η κινητική ενέργεια ενός δίσκου μάζας m και ακτίνας R που εκτελεί στροφική κίνηση, εξαρτάται: α Μόνο από την γωνιακή του ταχύτητα β Μόνο από την μάζα και την ακτίνα του γ Μόνο από την γωνιακή του ταχύτητα,

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα.

Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. Δίσκος Σύνθετη Τρίτη 01 Μαϊου 2012 ΑΣΚΗΣΗ 5 Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. ΠΕΙΡΑΜΑ Α Θα εκτοξευθεί με ταχύτητα από τη βάση του κεκλιμένου

Διαβάστε περισσότερα

Σχέση μεταξύ της τριβής ( οποιασδήποτε μορφής ) και της δύναμης F

Σχέση μεταξύ της τριβής ( οποιασδήποτε μορφής ) και της δύναμης F Αναλύστε τις έννοιες (α) στατική τριβή, (β) οριακή τριβή, (γ) τριβή ολισθήσεως, (δ) συντελεστής οριακής τριβής η ορ και (ε) συντελεστής τριβής ολισθήσεως. Απάντηση Πειραματική διάταξη για την επίδειξη

Διαβάστε περισσότερα

0. Ασκήσεις επανάληψης.

0. Ασκήσεις επανάληψης. 0. Ασκήσεις επανάληψης. 1. Κίνηση με μεταβλητή κατακόρυφη δύναμη Ένα σώμα μάζας 2kg βρίσκεται ακίνητο στο έδαφος. Σε μια στιγμή δέχεται την επίδραση μιας μεταβλητής κατακόρυφης δύναμης F, το μέτρο της

Διαβάστε περισσότερα

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 21-Νοεµβρίου-2009

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 21-Νοεµβρίου-2009 1 η ΟΜΑΔΑ Σειρά Θέση ΦΥΣ. 131 η Πρόοδος: 1-Νοεµβρίου-009 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά σας.

Διαβάστε περισσότερα

ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ

ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ 1. Στο σώμα του σχήματος έχει βάρος Β = 20Ν είναι ακίνητο και του ασκούνται οι δυνάμεις F 1 = 5Ν, F 2 = 10Ν, F 3 = 15Ν και F 4 = 10Ν. Αν το σώμα μετακινηθεί οριζόντια προς

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου 1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο

Διαβάστε περισσότερα

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ.

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ. 2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ. 2.2.21. Έργο και µέγιστη Κινητική Ενέργεια. Ένα σώµα µάζας 2kg κινείται σε οριζόντιο επίπεδο και σε µια στιγµή περνά από την θέση x=0 έχοντας ταχύτητα υ 0 =8m/s,

Διαβάστε περισσότερα

β) Από τον νόμο του Νεύτωνα για την μεταφορική κίνηση του κέντρου μάζας έχουμε: Επομένως το κέντρο μάζας αποκτάει αρνητική επιτάχυνση σταθερού μέτρου

β) Από τον νόμο του Νεύτωνα για την μεταφορική κίνηση του κέντρου μάζας έχουμε: Επομένως το κέντρο μάζας αποκτάει αρνητική επιτάχυνση σταθερού μέτρου ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ 1) Συμπαγής κύλινδρος μάζας m και ακτίνας R δέχεται μια αρχική μεγάλη και στιγμιαία ώθηση προς τα πάνω σε κεκλιμένο επίπεδο γωνίας θ και μετά αφήνεται ελεύθερος. Κατά την παύση της ώθησης,

Διαβάστε περισσότερα

β. Υπολογίστε την γραμμική ταχύτητα περιστροφής της πέτρας γ. Υπολογίστε την γωνιακή ταχύτητα περιστροφής της πέτρας.

β. Υπολογίστε την γραμμική ταχύτητα περιστροφής της πέτρας γ. Υπολογίστε την γωνιακή ταχύτητα περιστροφής της πέτρας. Μεγέθη Κίνησης 1. Μια ομαλή κυκλική κίνηση γίνεται έτσι ώστε το αντικείμενο να περιστρέφεται σε κυκλική τροχιά ακτίνας R = 20cm με ταχύτητα μέτρου υ = 0,5m/s. α. Πόση είναι η περιφέρεια της τροχιάς του

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 23/9/2015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 23/9/2015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ /9/015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα κινείται σε ευθύγραμμη οριζόντια τροχιά με την ταχύτητά του σε συνάρτηση

Διαβάστε περισσότερα