ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α
|
|
- Μυρρίνη Ζαΐμης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α Α.1. Ενας δίσκος στρέφεται γύρω από άξονα που διέρχεται από το κέντρο του και είναι κάθετος στο επίπεδό του. Η τιµή της γωνιακής ταχύτητας του δίσκου σε συνάρτηση µε τον χρόνο παριστάνεται στο παρακάτω διάγραµµα. (δ) Το διάνυσµα της γωνιακής επιτάχυνσης τη στιγµή t 1 έχει αντίθετη κατεύθυνση από την κατεύθυνση που έχει η γωνιακή επιτάχυνση τη χρονική στιγµή t 4. Α.2. Ο ϑεµελιώδης νόµος της στροφικής κίνησης (δ) ισχύει ακόµα και όταν η συνολική ϱοπή µεταβάλλεται µε το χρόνο. Α.3. Οταν σε έναν τροχό που περιστρέφεται γύρω από σταθερό άξονα περιστροφής διπλασιάζουµε τη στροφορµή του, τότε η κινητική του ενέργεια (δ) τετραπλασιάζεται Α.4. Εκτοξεύουµε προς τα πάνω και ταυτόχρονα ϑέτουµε σε περιστροφή ένα νόµισµα. Για όσο χρονικό διάστηµα το νόµισµα ϐρίσκεται στον αέρα (η αντίσταση του αέρα ϑεωρείται αµελητέα) διατηρούνται σταθερά τα µεγέθη : (γ) η µηχανική του ενέργεια και η στροφορµή του 1
2 Α.5. (α) Η ϱοπή µιας δύναµης F ως προς άξονα περιστροφής είναι µηδέν,όταν ο ϕορέας της δύναµης είναι παράλληλος στον άξονα περιστροφής. Σωστό (ϐ) Η κίνηση ενός τροχού που κυλίεται είναι αποτέλεσµα της επαλληλίας µιας µεταφορικής και µιας στροφικής κίνησης. Σωστό (γ) Η στροφορµή ενός υλικού σηµείου έχει τη κατεύθυνση της γραµµικής του ταχύτητας. Λάθος (δ) Το συνολικό έργο της στατικής τριβής στην κύλιση χωρίς ολίσθηση ενός στερεού σώµατος είναι ίσο µε µηδέν. Σωστό (ε) Οταν σε ένα αρχικά ακίνητο στερεό ασκηθεί ένα Ϲεύγος δυνάµεων, αυτό ϑα εκτελέσει µόνο στροφική κίνηση. Σωστό Θέµα Β Β.1. Συνδέουµε µε µια αβαρή ϱάβδο τα κέντρα µάζας µιας οµογενούς σφαίρας (1) και ενός οµογενούς κυλίνδρου (2) µε ίσες µάζες M και ακτίνες R. Η σφαίρα και ο κύλινδρος κυλίονται χωρίς να ολισθαίνουν αφού αφεθούν ελεύθερα από την κορυφή κεκλιµένου κλίσης ϕ. Σας δίνεται ότι οι ϱοπές αδράνειας ως προς άξονα που διέρχεται από το κέντρο µάζας είναι 2 5 MR2 για την σφαίρα και 1 2 MR2 για τον κύλινδρο. Ο λόγος των µέτρων των στατικών τριβών T 1 και T 2 που αναπτύσσονται στα δύο σώµατα ϑα είναι : (γ) T 1 = 4 T 2 5 Στα σώµατα ασκούνται το ϐάρος η στατική τριβή, η δύµαµη από την αβα- ϱή ϱάβδο και η κάθετη αντίδραση του δαπέδου. Αφού κινούνται µαζί ϑα έχουν την ίδια επιτάχυνση κέντρου µάζας a cm. Επίσης λόγο της κύλισης χω- ϱίς ολίσθηση a cm a γωνr, άρα ϑα έχουν και την ίδια γωνιακή επιτάχυνση. Εφαρµόζω για κάθε ένα σώµα τον ϑεµελιώδη Νόµο της στροφικής κίνησης. 2
3 T 1 R = Iα γων T 1 R = 2 5 MR2 a γων T 2 R = Iα γων T 2 R = 1 2 MR2 a γων ιαιρώ κατά µέλη και προκύπτει η απάντηση Β.2. Μια οµογενής σφαίρα µάζας m και ακτίνας r αφήνεται ελεύθερη να κινηθεί από το ανώτερο σηµείο Α ενός ηµικυκλικού µεταλλικού οδηγού α- κτίνας R = 8r. Η σφαίρα κυλίεται χωρίς να ολισθαίνει και η ϱοπή αδράνειας ως προς τη κέντρο µάζας της ισούται µε I cm = 2 5 mr2. Οταν η σφαίρα διέρχεται από το κατώτερο σηµείο της τροχιάς της η κάθετη δύναµη που δέχεται από το ηµισφαίριο έχει µέτρο : 3
4 (γ) 17 7 mg Επειδή το κέντρο µάζας της σφαίρας κινείται πάνω στην περιφέρεια κύκλου ακτίνας R r ϑα ισχύει ότι : N mg = F k N = m υ2 cm R r + mg Για την κάθοδο του σώµατος ϑα εφαρµόσω το ΘΜΚΕ ώστε να υπολογίσω την ταχύτητα του κέντρου µάζας στο κατώτερο σηµείο. Λαµβάνω υπόψιν ότι στην κύλιση χωρίς ολίσθηση υ cm = ωr K = ΣW 1 2 I cmω mυ2 cm = mg(r r) υcm 2 = 10gR 8 Από τα παραπάνω προκύπτει ότι N = 17 7 mg Β.3. Ενας αποµονωµένος οµογενής αστέρας σφαιρικού σχήµατος ακτίνας R στρέφεται γύρω από άξονα που διέρχεται από το κέντρο µάζας του µε αρχική κινητική ενέργεια λόγω ιδιοπεριστροφής K o. Ο αστέρας συρρικνώνεται λόγω ϐαρύτητας διατηρώντας το σφαιρικό του σχήµα και την αρχική του µάζα. Σε κάποιο στάδιο της συρρίκνωσης του η ακτίνα του υποδιπλασιάζεται. Η νέα κινητική του ενέργεια λόγω ιδιοπεριστροφής είναι ίση µε K. ίνεται η ϱοπή αδράνειας οµογενούς συµπαγούς σφαίρας ακτίνας r ως προς άξονα που διέρχεται το κέντρο µάζας της I cm = 2 5 mr2. Ο λόγος K K o είναι ίσος µε : (γ) 4 Στον αστέρα κατά την συρρίκνωση του ασκούνται µόνο δυνάµεις ϐαρύτητας οι οποίες είναι κεντρικές, άρα η συνολική τους ϱοπή ως προς το κέντρο του αστέρα είναι µηδέν, έτσι η στροφορµή του ϑα παραµένει σταθερή και ίση µε L. Ο Ϲητούµενος λόγος ϑα είναι ίσος µε : 4
5 K = L2 /2I = I o K o L 2 /2I I = 2 5 mr2 2 = 4 5 mr 2 * Βέβαια παραπάνω χρησιµοποιούµε την Κινητική ενέργεια που προκύπτει από : K = 1 2 Iω2 = 1 2 L 2 I Θέµα Γ Ενας λεπτός οµογενής δίσκος µάζας M = 2kg και ακτίνας R = 0, 5m έχει τυλιγµένο στην περιφέρεια του σε πολλές στροφές αβαρές και µη εκτατό νήµα και είναι αρχικά ακίνητος πάνω σε τραχύ επίπεδο µε το οποίο εµφανίζει συντελεστή στατικής τριβής µ s = 2 3. Την t o = 0 ασκούµε στο ελεύθερο άκρο Ζ του νήµατος κατακόρυφη δύναµη σταθερού µέτρου F = 9N όπως στο σχήµα, οπότε ο δίσκος αρχίζει αµέσως να κυλίεται χωρίς να ολισθαίνει κατά µήκος του επιπέδου µε το νήµα να παραµένει συνεχώς κάθετο προς την διεύθυνση του δαπέδου. Την χρονική στιγµή t 1 που το κέντρο µάζας του δίσκου έχει µετατοπιστεί κατά S = 1, 5m, ο δίσκος εισέρχεται σε ένα λείο τµήµα του επιπέδου, όπως ϕαίνεται στο σχήµα. 5
6 Γ.1 Να υπολογίσετε το µέτρο της γωνιακής επιτάχυνσης του δίσκου για t < t 1. Εφαρµόζω τους Νόµους την µεταφορική και την περιστροφική κίνηση : Στ = Ia γων F R T s R = 1 2 MR2 a γων ΣF x = Ma cm T s = Ma cm a cm = a γωνr Αρα προκύπτει ότι a cm = 3m/s 2 a γων = 6rad/s 2 Γ.2 Να υπολογίσετε το µέτρο της στροφορµής του δίσκου ως προς τον άξονα περιστροφής του τη χρονική στιγµή t 1 και το ϱυθµό µεταβολής της στροφορµής του ως προς τον άξονα περιστροφής του για t > t 1 Μέχρι την χρονική στιγµή t 1 έχω : S = 1 2 a cmt 2 1 t 1 = 1s ω 1 = a γων t 1 = 6rad/s L 1 = Iω 1 = 1, 5kgm 2 /s Για t > t 1 η στατική τριβή µηδενίζεται αφού το δάπεδο είναι λείο, οπότε : dl dt = Στ = F R = 4, 5kgm2 /s 2 Γ.3 Να υπολογίσετε την Κινητική ενέργεια του δίσκου λόγο της περιστροφικής κίνησης την χρονική στιγµή t 2 = t 1 + 1s. Την ίδια χρονική στιγµή να υπολογίσετε το µέτρο της ταχύτητας του σηµείου της περιφέρειας του δίσκου που απέχει την µέγιστη απόσταση από το δάπεδο. Εφαρµόζω τους νόµους της µεταφορικής και περιστροφικής κίνησης για t > t 1 Στ = Ia γων F R = 1 2 MR2 a γων a γων = 18rad/s 2 6
7 ΣF x = 0 υ cm = υ 1 = a cm t 1 = 3m/s Αρα την t 2 η γωνιακή ταχύτητα ϑα είναι : ω 2 = ω 1 + a γων t = 24rad/s και η κινητική ενέργεια περιστροφής ϑα είναι : K περ = 1 2 Iω2 = 72J Για το σηµείο της περιφέρειας εφαρµόζω την αρχή της επαλληλίας υ = υ cm + υ γραµ = υ 1 + ω 2 R = 15m/s Γ.4 Να υπολογιστεί η µέγιστη Κινητική ενέργεια που µπορεί να αποκτήσει ο δίσκος µέχρι την χρονική στιγµή που εισέρχεται στο λείο τµήµα ώστε να κυλίεται χωρίς να ολισθαίνει. Για να κυλίεται χωρίς να ολισθαίνει πρέπει η στατική τριβή να είναι µικρότερη από την οριακή της τιµή : T s µ s N 2 3 F µ s(mg F ) F 10N * από τους Νόµους κίνησης του Γ.1 ερώτηµα έχω υπολογίσει την στατική τριβή συναρτήσει της δύναµης F και από το ΣF y = 0 έχω υπολογίσει την Ν. Εφαρµόζω το ΘΜΚΕ για την κίνηση στο τραχύ τµήµα : K = ΣW K = W F = F Rθ = F S 1 Αρα για την µέγιστη τιµή της δύναµης ϑα προκύψει και η µέγιστη κινητική ενέργεια ϑα είναι 15J 7
8 Θέµα Οµογενής και ισοπαχής ϱάβδος µάζας M 1 = 4kg και µήκους L = 2m µπορεί να περιστρέφεται χωρίς τριβές γύρω από οριζόντιο σταθερό άξονα, ο οποίος διέρχεται από το άκρο της Α µέσω µιας άρθρωσης. Στο άλλο άκρο της ϱάβδου είναι στερεωµένο σηµειακό σφαιρίδιο µάζας m = 2kg. Το σύστηµα ϱάβδος σφαιρίδιο ισορροπεί σε κλίση γωνίας φ = 30 o µέσω δύο νηµάτων που είναι δεµένα στο σφαιρίδιο, όπως ϕαίνεται στο σχήµα. Το νήµα 1 είναι στερεωµένο σε οροφή ενώ το νήµα 2 το οποίο έχει µεγάλο µήκος είναι πολλές ϕορές τυλιγµένο στην περιφέρεια ενός αρχικά ακίνητου οµογενούς δακτυλίου µάζας M 2 = 2kg και ακτίνας R = 50cm. Την χρονική στιγµή t o = 0 ο δακτύλιος αφήνεται ελεύθερος και κατέρχεται µε το νήµα να ξετυλίγεται χωρίς να ολισθαίνει στη περιφέρεια του..1 Να ϐρεθεί η γωνιακή ταχύτητα του δακτυλίου τη στιγµή που έχει πραγ- µατοποιήσει 10 π περιστροφές. Για την ϱοπή αδράνειας του δακτυλίου ως προς το κέντρο µάζας του τον χωρίζω σε Ν στοιχειώδεις µάζες και έχω : 8
9 I cm = m 1 R 2 + m 2 R m N R 2 = M 2 R 2 Εφαρµόζω ΘΜΚΕ για την κάθοδο του, λαµβάνοντας υπόψη ότι το νήµα δεν ολισθαίνει στην περιφέρεια του άρα x cm = Rθ και υ cm = ωr. 1 2 M 2υcm I cmω 2 = M 2 gx cm ω = 20rad/s.2 Να ϐρεθεί η δύναµη που ασκεί το νήµα 1 στο σηµείο Ζ καθώς και η δύναµη που ασκείται στην ϱάβδο από την άρθρωση στο σηµείο Ο, κατά την κάθοδο του δακτυλίου. Εφαρµόζω τους Νόµους για την µεταφορική και την περιστροφική κίνηση πάνω στον δακτύλιο σε συνδυασµό µε την συνθήκη για την µη ολίσθηση του νήµατος a cm = a γωνr : ΣF = ma cm M 2 g T = M 2 a cm Στ = I cm a γων T R = M 2 R 2 a γων Από τα παραπάνω προκύπτει η τάση του νήµατος πάνω στον δακτύλιο T = 10N, οπότε και η δύναµη του νήµατος 2 πάνω στην ϱάβδο αφού το νήµα είναι αβαρές και µη εκτατό ϑα είναι T = T = 10N Για να υπολογίσω την τάση T 1 από το νήµα (1) πάνω στην ϱάβδου που ισορροπεί : Στ ( o) = 0 T 1 Lσυνφ T Lσυνφ mglσυνφ Mg L 2 συνφ = 0 T 1 = 50N Για να υπολογίσω την δύναµη από την άρθρωση πάνω στην ϱάβδο : 9
10 ΣF y = 0 F y + T 1 M 1 g mg T = 0 F y = 60N * Η δύναµη από την άρθρωση ϑα είναι κατακόρυφη αφού όλες οι άλλες δυνάµεις είναι κατακόρυφες και η ϱάβδος ισορροπεί..3 Την στιγµή που ο δακτύλιος έχει πραγµατοποιήσει 10 π περιστροφές κόβω το νήµα 2, να ϐρεθεί ο λόγος της Κινητικής ενέργειας λόγο περιστροφής, προς την κινητική ενέργεια λόγο µεταφορικής κίνησης µετά από χρονικό διάστηµα 2s από την στιγµή που κόπηκε το νήµα, ϑεω- ϱώντας ότι ο δακτύλιος δεν έχει ϕτάσει ακόµα στο δάπεδο. Οταν κοπεί το νήµα µηδενίζεται και η τάση του άρα η µόνη ασκούµενη δύναµη πάνω στον δακτύλιο είναι το ϐάρος, άρα Στ = 0 ω = 20rad/s = σταθ. και a cm = g = 10m/s 2. Αρα ο Ϲητούµενος λόγος ϑα είναι : K περ K µετ = 1 2 M 2R 2 ω 2 1 cm 2 M 2υ 2 = R 2 ω 2 (υ cm + g t) = Οταν ο δακτύλιος ϕτάνει στο έδαφος τον αποµακρύνω και κόβω και το νήµα 1..4 Να ϐρεθεί η επιτρόχιος επιτάχυνση του σφαιριδίου, καθώς και η δύνα- µη που δέχεται από την ϱάβδο την στιγµή που κόβεται το νήµα. Υπολογίζω την ϱοπή αδράνειας για το σύστηµα ϱάβδος - σφαιρίδιο ως προς τον άξονα περιστροφής, αφού κάνω Steiner για την ϱάβδο I = 1 12 M 1L 2 + M 1 ( L 2 ) + ml 2 = 40 kg m2 3 Εφαρµόζω τον Θεµελιώδη Νόµο της Στροφικής Κίνησης για το σύστηµα : Στ (o) = Ia γων M 1 g L 2 συνφ + mglσυνφ = Ia γων a γων = 3 3rad/s
11 Αρα η επιτρόχιος επιτάχυνση του σφαιριδίου ϑα είναι : a = a γων L = 6 3m/s Για την δύναµη που ασκείται πάνω στο σφαιρίδιο εφαρµόζω τον 2ο Νόµο του Νεύτωνα την στιγµή που ξεκινά την κίνηση, υποθέτοντας ότι έχει µια ακτινική (N x ) και µια εφαπτοµενική συνιστώσα N y. ΣF ɛ = mgσυνφ N y = ma N y = 2 3 * Η N y αντίθετη από αυτό που υποθέτω στο σχήµα. ΣF κ = mgηµφ N x = ma κ = 0 N x = 10N Αρα η δύναµη ϑα είναι : N = Nx 2 + Ny 2 =....5 Να ϐρεθεί ο ϱυθµός µεταβολής της στροφορµής της ϱάβδου, ως προς τον άξονα περιστροφής της, την χρονική στιγµή που διέρχεται για πρώτη ϕορά από την οριζόντια ϑέση. Οταν η ϱάβδος διέρχεται για πρώτη ϕορά από την οριζόντια ϑέση για το σύστηµα έχω επιτάχυνση : Στ (o) = Ia γων M 1 g L 2 + mgl = Ia γων a γων = 6rad/s 11
12 Αρα για την ϱάβδο ισχύει ότι : dl dt = Στ r(o) = I ϱ a γων = 1 3 M 1L 2 a γων = 32kg m 2 /s 2.6 Να ϐρεθεί η στροφορµή του συστήµατος ϱάβδος-σφαιρίδιο, ως προς τον άξονα περιστροφής του, την στιγµή που διέρχονται για πρώτη ϕορά από την ϑέση που η Κινητική Ενέργεια είναι µέγιστη. Η κινητική ενέργεια είναι µέγιστη όταν Στ = 0 άρα πρώτη ϕορά όταν διέρχεται η ϱάβδος από την κάτω κατακόρυφη ϑέση της. Εφαρµόζω ΘΜΚΕ για το σύστηµα : ( 1 L 2 Iω2 = M 1 g 2 + L ) 2 ηµφ + mg (L + Lηµφ) ω = 3 2rad/s Αρα η στροφορµή του συστήµατος ϑα είναι : L = Iω = 40 2kg m 2 /s Επιµέλεια : ρ. Μιχάλης Καραδηµητρίου, Φυσικός 12
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Σάββατο 24 Φλεβάρη 2018 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4
Διαβάστε περισσότεραΔιαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο
Διαγώνισμα Μηχανική Στερεού Σώματος Σάββατο 24 Φεβρουαρίου 2018 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Ένας δίσκος στρέφεται γύρω από άξονα που
Διαβάστε περισσότεραιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή
Διαβάστε περισσότεραιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο
Διαβάστε περισσότεραιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 28 Φλεβάρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1
Διαβάστε περισσότεραιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 24 Γενάρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4
Διαβάστε περισσότεραιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 5 Μάρτη 2017 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να
Διαβάστε περισσότεραΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή
Διαβάστε περισσότερα6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α
6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι Ηµεροµηνία : 10 Μάρτη 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστη απάντηση [4 5 = 20 µονάδες] Α.1. Στερεό
Διαβάστε περισσότεραΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)
ΕΚΦΩΝΗΣΕΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 (Κινητική ενέργεια λόγω περιστροφής Έργο και ισχύς σταθερής ροπής) Ένας κύβος και ένας δίσκος έχουν ίδια μάζα και αφήνονται από το ίδιο ύψος να κινηθούν κατά μήκος δύο κεκλιμένων
Διαβάστε περισσότεραιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 17 Φλεβάρη 2019 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4
Διαβάστε περισσότερα[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από
Διαβάστε περισσότερα7ο ιαγώνισµα - Μηχανική Στερεού Σώµατος ΙΙ
Σχολική Χρονιά 01-013 7ο ιαγώνισµα - Μηχανική Στερεού Σώµατος ΙΙ Ηµεροµηνία : 4 Μάρτη 013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστή απάντηση [4 5 = 0
Διαβάστε περισσότερα6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο:
6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να γράψετε στο
Διαβάστε περισσότεραΜηχανική Στερεού Ασκήσεις Εμπέδωσης
Μηχανική Στερεού Ασκήσεις Εμπέδωσης Όπου χρειάζεται, θεωρείστε δεδομένο ότι g = 10m/s 2. 1. Μία ράβδος ΟΑ, μήκους L = 0,5m, περιστρέφεται γύρω από σταθερό άξονα που περνάει από το ένα άκρο της Ο, με σταθερή
Διαβάστε περισσότεραΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία
Διαβάστε περισσότεραΓ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΟΝΟΜΑ ΤΜΗΜΑ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΤΕΤΑΡΤΗ 8 ΜΑΡΤΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 12. Ένας οριζόντιος ομογενής δίσκος ακτίνας μπορεί να περιστρέφεται χωρίς τριβές, γύρω από κατακόρυφο
Διαβάστε περισσότεραΣυνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός.
Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://perifysikhs.wordpress.com 1 Κίνηση Ράβδου σε κατακόρυφο επίπεδο Εστω µια οµογενής ϱάβδος ΟΑ µάζας Μ
Διαβάστε περισσότεραΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
Διαβάστε περισσότεραΤίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1
Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 3ο: Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1 ιδακτική Ενότητα: Ροπή
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Στις ερωτήσεις -4 να βρείτε τη σωστή πρόταση.. Η ροπή αδράνειας ενός στερεού σώµατος εξαρτάται: α. Από τη ροπή της δύναµης που ασκείται στο στερεό. β. από
Διαβάστε περισσότερα% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου
1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου
Διαβάστε περισσότεραΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2
ΚΕΦΑΛΑΙΟ 4 Ροπή αδράνειας - Θεμελιώδης νόμος της στροφικής κίνησης 4.1 Η ροπή αδράνειας ενός σώματος εξαρτάται: α. μόνο από τη μάζα του σώματος β. μόνο τη θέση του άξονα γύρω από τον οποίο μπορεί να περιστρέφεται
Διαβάστε περισσότεραγ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.
1. Ο ομογενής και ισοπαχής δίσκος του σχήματος έχει ακτίνα και μάζα, είναι οριζόντιος και μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από κατακόρυφο ακλόνητο άξονα που διέρχεται από το κέντρο του. Ο δίσκος
Διαβάστε περισσότεραΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται
Διαβάστε περισσότερα2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 4 εκέµβρη 2016 Φυσική Προσανατολισµού - Μηχανική - ΙΙ. Ενδεικτικές Λύσεις. Θέµα Α
2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 4 εκέµβρη 2016 Φυσική Προσανατολισµού - Μηχανική - ΙΙ Ενδεικτικές Λύσεις Θέµα Α Α.1 Σώµα εκτελεί οριζόντια ϐολή, Η επιτάχυνση που δέχεται το σώµα µέχρι να ϕτάσει
Διαβάστε περισσότεραΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η
Διαβάστε περισσότεραΓια τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ M-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ
ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται
Διαβάστε περισσότεραF r. www.ylikonet.gr 1
3.5. Έργο Ενέργεια. 3.5.1. Έργο δύναµης- ροπής και Κινητική Ενέργεια. Το οµοαξονικό σύστηµα των δύο κυλίνδρων µε ακτίνες R 1 =0,1m και R =0,5m ηρεµεί σε οριζόντιο επίπεδο. Τυλίγουµε γύρω από τον κύλινδρο
Διαβάστε περισσότεραταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 4: ΣΤΡΟΦΟΡΜΗ 26. Δύο σημειακές σφαίρες που η καθεμιά έχει μάζα συνδέονται μεταξύ τους με οριζόντια αβαρή ράβδο. Το σύστημα περιστρέφεται γύρω από κατακόρυφο
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ ΘΕΜΑ Α (μοναδες 25) Α1. Σε στερεό που περιστρέφεται γύρω από σταθερό κατακόρυφο άξονα ενεργεί σταθερή ροπή. Τότε αυξάνεται με σταθερό ρυθμό: α. η ροπή αδράνειας του β. η
Διαβάστε περισσότεραΣχολική Χρονιά Πανελλήνιες Πανελλήνιες Εξετάσεις - 12 Ιουνίου Φυσική Θετικού Προσανατολισµού Ενδεικτικές Λύσεις.
Πανελλήνιες Εξετάσεις - 12 Ιουνίου 2019 Α.1 (ϐ) Α.2 (γ) Α.3 (α) Α.4 (γ) Α.5 Λ,Σ, Λ, Σ, Σ Φυσική Θετικού Προσανατολισµού Ενδεικτικές Λύσεις Θέµα Α Θέµα Β Β.1. (ιι). Πριν την κρούση ο παρατηρητής αντιλαµβάνεται
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/04 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα
Διαβάστε περισσότεραΑσκήσεις. Φυσική Γ Λυκείου - Μηχανική στερεού σώματος
- Μηχανική στερεού σώματος Ασκήσεις 1. Στερεό στρέφεται γύρω Ένας δίσκος μπορεί να περιστρέφεται γύρω από σταθερό άξονα ο οποίος διέρχεται από το κέντρο και είναι κάθετος στο επίπεδο του. Ο δίσκος είναι
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5
ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον
Διαβάστε περισσότεραΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης
Διαβάστε περισσότεραΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό
Διαβάστε περισσότεραΠανελλήνιες Εξετάσεις - 10 Ιούνη Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Πρόχειρες Λύσεις. Θέµα Β
Σχολική Χρονιά 03-04 Πανελλήνιες Εξετάσεις - 0 Ιούνη 04 Α. (γ) Α. (ϐ) Α.3 (γ) Α.4 (ϐ) Α.5 Σ,Σ, Λ, Λ, Σ Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Πρόχειρες Λύσεις Θέµα Α Θέµα Β Β.. (iii) Το σώµα ϑα έχει
Διαβάστε περισσότεραΜηχανικό Στερεό. Μια εργασία για την Επανάληψη
Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής
Διαβάστε περισσότεραΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 01: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το
Διαβάστε περισσότεραΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,
Διαβάστε περισσότεραιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Επαναληπτικά Θέµατα Φυσικής Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Επαναληπτικά Θέµατα Φυσικής Ενδεικτικές Λύσεις Θέµα Α Α.1. Το σώµα µάζας m του σχήµατος εκτελεί εξαναγκασµένη ταλάντωση µέσα σε ϱευστό από το οποίο δέχεται δύναµη της
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα
Διαβάστε περισσότεραΔιαγώνισμα: Μηχανική Στερεού Σώματος
Διαγώνισμα: Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά
Διαβάστε περισσότεραΤΕΣΤ 17. η ελάχιστη δυνατή συχνότητα ταλάντωσης των πηγών, ώστε τα κύµατα να συµβάλλουν ενισχυτικά στο σηµείο Σ και f
ΘΕΜΑ aaα 1. ΤΕΣΤ 17 Επάνω σε λείο οριζόντιο επίπεδο βρίσκονται δύο µικρά και όµοια σώµατα ίδιας µάζας, που φέρουν το ένα ποµπό (Π) και το άλλο δέκτη ( ) ηχητικών κυµάτων. Αρχικά το σώµα που φέρει τον ποµπό,
Διαβάστε περισσότεραΑσκήσεις στροφικής κίνησης στερεού σώµατος
Ασκήσεις στροφικής κίνησης στερεού σώµατος. Ένας κύλινδρος, βάρους w=0 και διαµέτρου 80 c, περιστρέφεται γύρω από τον γεωµετρικό του άξονα. Ποια σταθερή ροπή (τ) πρέπει να ασκείται, στον κύλινδρο ώστε
Διαβάστε περισσότεραΔιαγώνισμα Μηχανική Στερεού Σώματος
Διαγώνισμα Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά
Διαβάστε περισσότερατο άκρο Β έχει γραμμική ταχύτητα μέτρου.
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 1. Μια ράβδος ΑΒ περιστρέφεται με σταθερή γωνιακή ταχύτητα γύρω από έναν σταθερό οριζόντιο άξονα που περνάει από ένα σημείο πάνω
Διαβάστε περισσότερα2ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Κυριακή 3 Απρίλη 2016 Βαρύτητα - υναµική Υλικού Σηµείου
2ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Κυριακή Απρίλη 2016 Βαρύτητα - υναµική Υλικού Σηµείου Σύνολο Σελίδων: επτά (7) - ιάρκεια Εξέτασης: 2,5 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις
Διαβάστε περισσότεραγ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.
1. Ο ομογενής και ισοπαχής δίσκος του σχήματος έχει ακτίνα και μάζα, είναι οριζόντιος και μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από κατακόρυφο ακλόνητο άξονα που διέρχεται από το κέντρο του. Ο δίσκος
Διαβάστε περισσότεραΣχολική Χρονιά Πανελλήνιες Πανελλήνιες Εξετάσεις - 13 Ιουνή Φυσική Θετικού Προσανατολισµού Ενδεικτικές Λύσεις.
Πανελλήνιες Εξετάσεις - 13 Ιουνή 018 Α.1 (γ) Α. (δ) Α.3 (α) Α.4 (δ) Α.5 Λ,Σ, Λ, Σ, Λ Φυσική Θετικού Προσανατολισµού Ενδεικτικές Λύσεις Θέµα Α Θέµα Β Β.1. (ι). ϐρίσκω την άγνωστη απόσταση µε πυθαγόρειο
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί
Διαβάστε περισσότεραΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :
ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α1.
Διαβάστε περισσότεραΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :
ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να
Διαβάστε περισσότερα6ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 22 Μάρτη 2015 Μηχανική Στερεού Σώµατος
6ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 22 Μάρτη 2015 Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου]
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
Διαβάστε περισσότεραΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό
Διαβάστε περισσότεραιαγώνισµα Γ Τάξης Ενιαίου Λυκείου 1ο Επαναληπτικό (24 Μαρτίου 2019) Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου 1ο Επαναληπτικό (24 Μαρτίου 2019) Ενδεικτικές Λύσεις Θέµα Α Α.1. Σε µία ϕθίνουσα ταλάντωση στην οποία το πλάτος µειώνεται εκθετικά µε το χρόνο (ϐ) όταν η σταθερά απόσβεσης
Διαβάστε περισσότεραΒ. Συµπληρώστε τα κενά των παρακάτω προτάσεων
ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την
Διαβάστε περισσότεραΔιαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Τετάρτη 12 Απριλίου Θέμα 1ο
Διαγώνισμα Μηχανική Στερεού Σώματος Τετάρτη 12 Απριλίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Η γωνιακή επιτάχυνση ενός ομογενούς δίσκου που
Διαβάστε περισσότεραΓια τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ-A ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ M-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς
Διαβάστε περισσότεραΕρωτήσεις. 2. Η ροπή αδράνειας μιας σφαίρας μάζας Μ και ακτίνας R ως προς άξονα που διέρχεται
- Μηχανική στερεού σώματος Ερωτήσεις 1. Στερεό στρέφεται γύρω από σταθερό άξονα. Η γωνιακή ταχύτητα του στερεού μεταβάλλεται με το χρόνο όπως στο διπλανό διάγραμμα ω -. Να χαρακτηρίσετε τις παρακάτω προτάσεις
Διαβάστε περισσότερα1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 9 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική
1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 9 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις
Διαβάστε περισσότεραΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ
Ονοµατεπώνυµο: Διάρκεια: (3 45)+5=50 min Τµήµα: ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Ζήτηµα ο Ένα στερεό µπορεί να στρέφεται γύρω από σταθερό άξονα και αρχικά ηρεµεί. Σε µια στιγµή δέχεται (ολική) ροπή
Διαβάστε περισσότεραΕρωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως
Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα ο: (Ιούνιος 009 Ηµερήσιο) Ο δίσκος του σχήµατος κυλίεται χωρίς
Διαβάστε περισσότεραΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό
Διαβάστε περισσότεραΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ. Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται.
ο ΓΕΛ ΓΑΛΑΤΣΙΟΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ Διερεύνηση της σχέσης L=ω Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται. Η ροπή αδράνειας Ι
Διαβάστε περισσότεραΠανελλήνιες Εξετάσεις - 29 Μάη Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Πρόχειρες Λύσεις. Θέµα Β
Πανελλήνιες Εξετάσεις - 29 Μάη 2015 Α.1 (α) Α.2 (ϐ) Α.3 (α) Α.4 (δ) Α.5 Λ,Σ, Σ, Λ, Σ Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Πρόχειρες Λύσεις Θέµα Α Θέµα Β Β.1. (iii) Ο Ϲητούµενος ϱυθµός µεταβολής είναι
Διαβάστε περισσότεραιαγώνισµα Γ Τάξης Ενιαίου Λυκείου 2ο Επαναληπτικό (Απρίλης 2019) Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου 2ο Επαναληπτικό (Απρίλης 2019) Ενδεικτικές Λύσεις Θέµα Α Α.1. Οταν µια µικρή σφαίρα προσπίπτει πλάγια σε λείο κατακόρυφο τοίχο και συγκρούεται µε αυτόν ελαστικά, τότε
Διαβάστε περισσότεραΘΕΜΑ Γ, Δ. γ. 0,3 m δ. 112,5 rad] 3. Η ράβδος του σχήματος περιστρέφεται με σταθερή γωνιακή
ΘΕΜΑ Γ, Δ 1. Μια ευθύγραμμη ράβδος ΑΒ αρχίζει από την ηρεμία να περιστρέφεται με σταθερή γωνιακή επιτάχυνση 4 rad/s. Η ράβδος έχει μήκος l 1 m. 0 άξονας περιστροφής της ράβδου είναι κάθετος στη ράβδο και
Διαβάστε περισσότερα1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).
Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.
Διαβάστε περισσότερα1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Οκτώβρη 2016 Φυσική Προσανατολισµού - Μηχανική - Ι. Ενδεικτικές Λύσεις. Θέµα Α
1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Οκτώβρη 2016 Φυσική Προσανατολισµού - Μηχανική - Ι Ενδεικτικές Λύσεις Θέµα Α Α.1 Η εκτόξευση ενός σώµατος µικρών διαστάσεων από ένα ύψος h µε ορι- Ϲόντια
Διαβάστε περισσότεραΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ
ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Αντικείμενο: Κεφάλαιο 4 Θέμα 1ο Α. Να επιλέξετε τη σωστή απάντηση που ακολουθεί κάθε μια από τις πιο κάτω προτάσεις α. Ένα σώμα ηρεμεί εκτός πεδίου βαρύτητας. Ασκούμε
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
1. Ο κύλινδρος και ο δίσκος του σχήματος, έχουν την ίδια μάζα και περιστρέφονται με την ίδια γωνιακή ταχύτητα ω. Ποιό σώμα θα σταματήσει πιο δύσκολα; α) Το Α. β) Το Β. γ) Και τα δύο το ίδιο. 2. Ένας ομογενής
Διαβάστε περισσότεραΕπαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα
Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό
Διαβάστε περισσότερα2) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο
- 1 - Επώνυμο.. Όνομα.. Αγρίνιο 22/3/2015 Ζήτημα 1 0 Να επιλεγεί η σωστή πρόταση 1) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο. Ο δίσκος στρέφεται γύρω
Διαβάστε περισσότεραΜηχανική Στερεού Σώματος
Και αν κόβαμε το νήμα Δ; Θέμα Δ 017 μια παραλλαγή Μία ομογενής άκαμπτη ράβδος Α μήκους L=m σταθερής διατομής έχει μάζα Μ=4Kg. Η ράβδος ισορροπεί σε οριζόντια θέση και το άκρο της Α συνδέεται με άρθρωση
Διαβάστε περισσότεραιονύσης Μητρόπουλος Ζ Ο
Πρισµατικό σώµα και κύλινδρος (ΙΙ) Κίνηση σε οριζόντιο επίπεδο (Σ 2 ) (Σ 1 ) A F εξ Ζ Ο Πρισµατικό σώµα (Σ 2 ) µάζας m = 4kg και κύλινδρος (Σ 1 ) ίσης µάζας m και ακτίνας R = 0,2m βρίσκονται πάνω σε οριζόντιο
Διαβάστε περισσότεραΠροτεινόμενο διαγώνισμα Φυσικής Α Λυκείου
Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 12 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 1 ΙΟΥΝΙΟΥ 017 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει σωστά την
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ Ον/μο:.. Ύλη:Στερεό Είμαστε τυχεροί που είμαστε δάσκαλοι Γ Λυκείου Θετ-Τεχν Κατ. 09-0-14 Θέμα 1 ο : 1) Σε ένα μολύβι που ισορροπεί σε οριζόντια επιφάνεια ασκούμε τις δυνάμεις F 1
Διαβάστε περισσότεραΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή Αδράνειας) Γ ΛΥΚΕΙΟΥ. Α)Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση.
ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή δράνειας) Γ ΛΥΚΕΙΟΥ ΘΕΜ 1 Ο : )Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση. 1. Για ένα ζεύγος δυνάμεων Η ροπή του, εξαρτάται
Διαβάστε περισσότεραΣχολική Χρονιά Πανελλήνιες Πανελλήνιες Εξετάσεις - 23 Μάη Φυσική Θετικού Προσανατολισµού Ενδεικτικές Λύσεις.
Πανελλήνιες Εξετάσεις - 23 Μάη 2016 Α.1 (ϐ) Α.2 (γ) Α.3 (ϐ) Α.4 (δ) Α.5 Σ,Λ, Σ, Λ, Λ Φυσική Θετικού Προσανατολισµού Ενδεικτικές Λύσεις Θέµα Α Θέµα Β Β.1. (iii). ο Παρατηρητής αντιλαµβάνεται απευθείας από
Διαβάστε περισσότεραΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
Διαβάστε περισσότεραΟΡΟΣΗΜΟ. Ισχύει: α. L 1. και Κ 1 β. 2L 1 =2L 2 =L 2. και 2Κ 1 γ. L 1
61 Η κινητική ενέργεια ενός δίσκου μάζας m και ακτίνας R που εκτελεί στροφική κίνηση, εξαρτάται: α Μόνο από την γωνιακή του ταχύτητα β Μόνο από την μάζα και την ακτίνα του γ Μόνο από την γωνιακή του ταχύτητα,
Διαβάστε περισσότερα3.3. Δυναμική στερεού.
3.3.. 3.3.1. Ροπή και γωνιακή επιτάχυνση Μια οριζόντια τετράγωνη πλάκα ΑΒΓΔ, πλευράς 1m και μάζας 20kg μπορεί να στρέφεται γύρω από σταθερό άξονα z που περνά από το κέντρο της. Η πλάκα αποκτά γωνιακή ταχύτητα
Διαβάστε περισσότεραΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,
Διαβάστε περισσότεραΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1. ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση
ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση Α.1 Το στερεό του σχήματος δέχεται αντίρροπες δυνάμεις F 1 kαι F 2 που έχουν ίσα μέτρα. Το μέτρο
Διαβάστε περισσότεραΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 03 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. c Α. d Α3. c Α4. c Α5. Σ, Λ, Σ, Σ, Λ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (γ). Γνωρίζουμε (σχολικό βιβλίο, σελ. 3) ότι ένα
Διαβάστε περισσότεραmu R mu = = =. R Γενική περίπτωση ανακύκλωσης
Γενική περίπτωση ανακύκλωσης Με τον όρο ανακύκλωση εννοούμε την κίνηση ενός σώματος σε κατακόρυφο επίπεδο σε κυκλική τροχιά. Χαρακτηριστικό παράδειγμα τέτοιας κίνησης είναι η κίνηση στο roller coaster,
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 7 ΣΕΛΙΔΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 206-207 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/03/207 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό
Διαβάστε περισσότεραΌταν υπάρχει ΑΚΙΝΗΤΟ σηµείο
Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο ) Οµογενής κύλινδρος µάζας m, ακτίνας R φέρει λεπτή εγκοπή βάθους είναι τυλιγµένο νήµα αµελητέου πάχους. R r=, στην οποία Το άλλο άκρο του νήµατος έχει δεθεί σε οροφή όπως στο
Διαβάστε περισσότεραΔιαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου
Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου Ζήτημα 1 ον 1.. Ένα σημειακό αντικείμενο εκτελεί απλή αρμονική ταλάντωση. Τις χρονικές στιγμές που το μέτρο της ταχύτητας του αντικειμένου είναι μέγιστο, το μέτρο
Διαβάστε περισσότερα. α. περιστροφή σώματος με σταθερή γωνιακή ταχύτητα. και 0
Επανάληψη: Περιστροφή στερεού σώματος (Φ25) 1. Να αποδείξετε ότι, για τροχό ακτίνας R που κυλίεται χωρίς να ολισθαίνει, ισχύει α cm =Rα γων. 2. Τροχός ακτίνας R έχει α cm =0 και α γων =0. Τι είδους κίνηση
Διαβάστε περισσότερα