Hierarchical Routing Protocols
|
|
- Ἠσαῦ Λύκος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Hierarchical Routing Protocols Classical approach to improving scalability of routing for Mobile Ad Hoc Networks Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Outline 1. Hierarchical Routing Techniques 2. Cluster and Cluster Leader Selection Methods Cluster Radius Cluster Affiliation Method Performance Objective Cluster Leader Selection 3. Topology Abstraction Methods Virtual Node Abstraction Virtual Link Abstraction 4. Location Management Methods LM1, LM2, LM3 Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
2 Hierarchical Routing Techniques Characteristics of Hierarchical Routing Techniques 1. Basic idea: organize nodes in groups and assign to nodes different functionalities inside and outside the group [1] 2. Recursive grouping of nodes: nodes are grouped into clusters (level-1), clusters into superclusters (level-2), and so on 3. A cluster-leader (among the cluster nodes) is elected to coordinate the cluster Nodes need to have or exchange only partial knowledge of the network Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Hierarchical Routing Techniques Characteristics of Hierarchical Routing Techniques 4. A formal abstraction method is used to form the virtual network topology 5. Routing information about far away nodes is aggregated Bandwidth requirements are lower Memory requirements for storage are lower Processing requirements at the nodes are lower 6. Mobility is constantly changing the physical network topology. Thus, a location management scheme is essential to handle mobility Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
3 Hierarchical Routing Techniques Components of Hierarchical Routing Schemes Cluster and Cluster Leader Selection Algorithm Topology Abstraction Method Location Management Technique Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Cluster and Cluster Leader Selection Methods Cluster Radius Criterion 1. 1-hop clusters All cluster nodes are 1-hop neighbors of the cluster leader (simple and reliable) Adjacent clusters have cluster leaders at most two hops away (via gateway nodes) 2. More than 1-hop clusters Cluster radius is below a maximum Cluster radius can be adjusted based on conditions and performance objectives (flexibility) Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
4 Cluster and Cluster Leader Selection Methods Cluster Affiliation Method Criterion (refers to the way nodes are assigned to clusters) 1. Cluster nodes decide Allows for distributed algorithm implementation Lack of centralized control Latency in propagating control information unpredictable dynamics 2. Cluster leader decides Grabs nodes sequentially: slow convergence Grabs nodes in large sets: faster, but requires information from outside the cluster Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Cluster and Cluster Leader Selection Methods Performance Objective Criterion 1. Clusters with balanced size Clusters with a minimum or maximum number of nodes E.g. MMWN[6] protocol uses join or split procedures if a cluster population exceeds certain limits Clusters with a fixed number of nodes (almost) [8] 2. Cluster nodes with k-connectivity degree Increased robustness against link failures 3. Minimum level of affiliation Affiliation: Composite bandwidth between a node and all other nodes in the cluster, or Distance to the cluster leader, or Linear combinations of the above Commonalities in interests of locality [9] Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
5 Cluster and Cluster Leader Selection Methods Cluster Leader Selection Criterion 1. In homogeneous networks Nodes with the lowest ids Equivalent to randomized cluster leader election 2. In non-homogeneous networks Election based on extra knowledge about the scenario, e.g. known mobility patterns in LANMAR[4] Other extra knowledge about power, memory, etc. 3. Maximization of some gain function Gain function example: node degree Other gain functions exist, definitions vary accordingly, e.g. SOAP[2, 7] protocol Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Topology Abstraction Methods Objective: To reduce the topology information that needs to be propagated inside the network Some existing techniques: Virtual node abstraction, in HierLS[7] Virtual gateway abstraction, in MMWN[6] Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
6 Virtual Node Abstraction Algorithm 1. Network nodes are level-1 nodes 2. Level-i nodes are grouped into level-i clusters 3. Level-i clusters become level-(i+1) nodes Example i=1: level-1 clusters level-2 nodes i=2: level-2 clusters level-3 nodes i=m-1: level-(m-1) clusters level-m nodes [ stands for become] Link state information inside a level i cluster is aggregated and transmitted only to other level i nodes belonging in the same level i cluster. Thus a node link change may not be sent outside the level 1 cluster thus reducing the proactive overhead. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Virtual Node Abstraction Example: Routing with the Virtual Node Abstraction Routing relies on Location Management service (providing to source S the highest level cluster containing D and not S) Node S will only build a high-level el route towards D: [ S n2 n4 X.1.2 X.2 Y Z D] in the 4-level net hierarchy below S X.1.1 n3 n2 n4 n1 n5 X.1.3 X12 X.1.2 X.1 X X.3 X.2 Y V Z D Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
7 Virtual Node Abstraction Example: Routing with the Virtual Node Abstraction Intermediate nodes will produce the same high-level route Intermediate nodes will expand the high-level links that traverse their cluster using lower level information (more detailed links) This expansion can be seen graphically in the last segment of the route, Z D Z D Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Virtual Node Abstraction Conclusions on the Virtual node abstraction method Intuitive method Easy to analyze, implement, debug Clusters aren't able to properly estimate the virtual link cost Note on the Virtual gateway abstraction method Provides better aggregation of link information Produces routes of better quality Extra complexity in maintaining the virtual gateway structure Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
8 Location Management (LM) Methods Core job of hierarchical routing: to efficiently ientl aggregate routing information by using the network hierarchy Source nodes need to know the identity of a cluster associated with the destination node LM provides this information LM is needed only in mobile networks, not wireline, static networks Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Location Management Methods LM implementation methodologies Proactive (using Location Update Messages) Reactive (using Paging Techniques) a combination of both Some basic/typical LM techniques 1. LM1 (pure proactive) 2. LM2 (local paging) 3. LM3 (global paging) Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
9 Location Management Method LM1 Proactive method using Location Update Messages (LUMs) S X.1 X.1.1 n3 n2 X12 X.1.2 n4 n1 n5 X.1.3 Algorithm When a node changes its level-i clustering membership, but not its level-(i+1) membership, it sends an LUM to all the nodes inside its level-(i+1) cluster. Example Node n2 moves from cluster X.1.1 to X.1.3 Node n2 sends updates to all nodes in cluster X.1 Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Location Management Method LM2 Each level-i cluster elects one level-i LM server among its participating nodes, up to the level-m cluster LM servers form a hierarchical tree of servers Location Update Messages are propagated only between LM servers Nodes needing location information i about other nodes in the network, page their local level-1 LM server (local paging) X.1.1 X.1 X.1.2 X.1.3 O Level-1 LM server O Level-1 LM server AND level-2 LM server Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
10 Location Management Method LM2 X X.2 X.1 X.2.1 X.2.2 X.1.1 X.1.2 X.2.3 X.1.3 BLUE move: X.1.3 receiving, informs X.1 X.1 informs X.1.1, X.1.3 RED move: X22 X.2.2 receiving, i informs X.2 X2 X.2 informs X.2.1, X.2.3 X.2 informs X X informs all X.x except X.2 (here, X.1) X.1 informs all X.1.1, X.1.2, X.1.3 O Level-1 LM server O Level-1 LM server AND level-2 LM server Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Location Management Method LM2 LM2 Algorithm The level-i LM server in the new cluster of a moving node will send an LUM to its level-(i+1) LM server The level-(i+1) server will check if the moving node is new in the level-(i+1) cluster and inform the level-(i+2) LM server accordingly The level-(i+1) server will forward the LUM to all level-i LM servers inside this level (i+1) cluster Each such level-i LM server will forward LUMs to all of its level-(i-1) LM servers The previous step repeats all the way until all such level-1 LU servers are updated Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
11 Location Management Method LM3 Same as LM2, with LM servers exchanging LMUs, with one exception: Level-i LM servers receiving LUMs from higher level servers do not forward this information to the lower level servers A mechanism for removing outdated location information about nodes that left a level-i cluster is needed Nodes needing location information about other nodes in the network page their local level-1 LM server If it is not updated, then the level-2 2LMserveris paged, then the level-3 server, and so on (global paging) Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης Comparison of LM1, LM2, and LM3 LM1 is the simplest of the three Consumes significant bandwidth for propagating the LUMs LM2 reduces the bandwidth consumption in the network Induces increased complexity and latency in route building LM1 and LM2 techniques do not alter the asymptotic characteristics of the hierarchical routing protocol used Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
12 Comparison of LM1, LM2, and LM3 LM3 is the most complex to implement and analyze It can significantly reduce the amount of overhead induced by mobility Latency is increased High paging cost under high traffic load More susceptible to single points of failure Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης References Some references are at: 1. Xiaoyan Hong, Kaixin Xu, and Mario Gerla, Scalable Routing Protocols for Mobile Ad Hoc Networks, IEEE Network Magazine, July/August C. Santivanez, A.B. McDonald, I. Stavrakakis, S. Ramanathan, On the Scalability of Ad Hoc Routing Protocols, in Proceedings of IEEE Infocom 2002, New York, USA, June B.A. Iwata, C.C. Chiang, G. Pei, M. Gerla, and T.W. Chen, Scalable Routing Strategies t for Ad Hoc Wireless Network, IEEE JSAC on Communications, vol. 17, no. 8, pp. 1369, Aug G. Pei, M. Gerla and X. Hong, LANMAR: Landmark Routing for Large Scale Wireless Networks with Group Mobility, in Proceed. Of ACM Workshop on Mobile and Ad Hoc Networking and Computing, MobiHoc 00, Boston, MA, Aug A.B. McDonald and T.F. Znati. A Mobility Based Framework for Adaptive Clustering in Wireless Ad Hoc Networks, IEEE JSAC on Communications, col. 17,no. 8, pp. 1466, Aug R. Ramanathan and M. Steenstrup, Hierarchically-organized, multihop mobile wireless network for quality-of-service suppor, BBN Technologies 7. C. Santivanez, S. Ramanathan and I. Stavrakakis, ki Making Link State t Routing Scale for Ad Hoc Networks, in Proceed. Of MobiHOC 2001, Long Beach, CA, Oct Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
13 References 8. Leonidas Tzevelekas and Ioannis Stavrakakis, Directed Budget-Based Based Clustering for Wireless Sensor Networks, 2nd International Workshop on Localized Communication and Topology Protocols for Ad-hoc Networks (LOCAN2006) held in conjunction with IEEE MASS 2006, October 9-12, 2006, Vancouver, Canada 9. E. Jaho, I. Stavrakakis, "Joint Interest- and Locality-Aware Content Dissemination in Social Networks", Sixth Annual Conference on Wireless On demand Network Systems and Services, IFIP/IEEE WONS 2009, Feb. 2-4, 2009, Snowbird, Utah, USA. Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης
Προηγμένες ικτυακές Τεχνολογίες
Προηγμένες ικτυακές Τεχνολογίες εαρινό εξάμηνο 016 Καθ. Ιωάννης Σταυρακάκης Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 016 1 Υλικό μαθήματος Διαλέξεις.ppt διαφάνειες,
Δίκτυα Επικοινωνιών ΙΙ: OSPF Configuration
Δίκτυα Επικοινωνιών ΙΙ: OSPF Configuration Δρ. Απόστολος Γκάμας Διδάσκων 407/80 gkamas@uop.gr Δίκτυα Επικοινωνιών ΙΙ Διαφάνεια 1 1 Dynamic Routing Configuration Router (config) # router protocol [ keyword
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Επίκαιρα Θέματα Ηλεκτρονικής Διακυβέρνησης Ονοματεπώνυμο Φοιτητή Σταμάτιος
Μειέηε θαη αλάιπζε επίδνζεο πξσηνθόιισλ δξνκνιόγεζεο ζε θηλεηά ad hoc δίθηπα κε βάζε ελεξγεηαθά θξηηήξηα ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ
ΔΘΝΗΚΟ ΜΔΣΟΒΗΟ ΠΟΛΤΣΔΥΝΔΗΟ ΥΟΛΖ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΜΖΥΑΝΗΚΩΝ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΜΔΣΑΓΟΖ ΠΛΖΡΟΦΟΡΗΑ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΛΗΚΩΝ Μειέηε θαη αλάιπζε επίδνζεο πξσηνθόιισλ δξνκνιόγεζεο ζε θηλεηά ad
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks
P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Block Ciphers Modes. Ramki Thurimella
Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.
B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
Démographie spatiale/spatial Demography
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Υλοποίηση Δικτυακών Υποδομών και Υπηρεσιών: OSPF Cost
Υλοποίηση Δικτυακών Υποδομών και Υπηρεσιών: OSPF Cost Πανεπιστήμιο Πελοποννήσου Τμήμα Επιστήμης & Τεχνολογίας Τηλεπικοινωνιών Ευάγγελος Α. Κοσμάτος Basic OSPF Configuration Υλοποίηση Δικτυακών Υποδομών
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
Ad-hoc Networks. Επίκ. Καθηγητής Συμεών Παπαβασιλείου
Ad-hoc Networks Επίκ. Καθηγητής Συμεών Παπαβασιλείου Εθνικό Μετσόβιο Πολυτεχνείο Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής (papavass@mail.ntua.gr
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Web 論 文. Performance Evaluation and Renewal of Department s Official Web Site. Akira TAKAHASHI and Kenji KAMIMURA
長 岡 工 業 高 等 専 門 学 校 研 究 紀 要 第 49 巻 (2013) 論 文 Web Department of Electronic Control Engineering, Nagaoka National College of Technology Performance Evaluation and Renewal of Department s Official Web Site
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
HY335Α Δίκτυα Υπολογιστών Xειμερινό Εξάμηνο Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών. Routing Algorithms. Network Layer.
HY335Α Δίκτυα Υπολογιστών Xειμερινό Εξάμηνο 2016-2017 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Routing Algorithms Network Layer Nena Basina Υποδίκτυα (subnets) 200.23.18.0/23 11001000 00010111
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
σχεδιαστικές προκλήσεις, θεωρία γράφων
Δομή παρουσίασης 1. Εισαγωγή στις κατανεμημένες εφαρμογές: σχεδιαστικές προκλήσεις, θεωρία γράφων 2. Χαρακτηριστικά και πεδία εφαρμογών: ιδιαιτερότητες και χαρακτηριστικά που απαιτούν τη χρήση αλγορίθμων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools Firms - Basics of Industrial
(C) 2010 Pearson Education, Inc. All rights reserved.
Connectionless transmission with datagrams. Connection-oriented transmission is like the telephone system You dial and are given a connection to the telephone of fthe person with whom you wish to communicate.
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)
EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ιπλωµατική Εργασία του φοιτητή του τµήµατος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
Αναερόβια Φυσική Κατάσταση
Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
CYTA Cloud Server Set Up Instructions
CYTA Cloud Server Set Up Instructions ΕΛΛΗΝΙΚΑ ENGLISH Initial Set-up Cloud Server To proceed with the initial setup of your Cloud Server first login to the Cyta CloudMarketPlace on https://cloudmarketplace.cyta.com.cy
Προσομοίωση BP με το Bizagi Modeler
Προσομοίωση BP με το Bizagi Modeler Α. Τσαλγατίδου - Γ.-Δ. Κάπος Πρόγραμμα Μεταπτυχιακών Σπουδών Τεχνολογία Διοίκησης Επιχειρησιακών Διαδικασιών 2017-2018 BPMN Simulation with Bizagi Modeler: 4 Levels
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
Προηγμένες ικτυακές Τεχνολογίες
Προηγμένες ικτυακές Τεχνολογίες εαρινό εξάμηνο 015 Καθ. Ιωάννης Σταυρακάκης Τμήμα Πληρ. & Τηλεπ. ΕΚΠΑ : Προηγμένες ικτυακές Τεχνολογίες ίκτυα Ευρείας Ζώνης 015 1 Υλικό μαθήματος Διαλέξεις.ppt διαφάνειες,
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
Classification and Comparison of Energy-Efficient Routing Algorithms in Wireless Networks
University of Macedonia Master in Information Systems Computer Networks Professor: A. A. Economides Classification and Comparison of Energy-Efficient Routing Algorithms in Wireless Networks Zinovia I.
Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Ι Ο Ν Ι Ω Ν Ν Η Σ Ω Ν ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : ΑΤΕΙ Ιονίων Νήσων- Λεωφόρος Αντώνη Τρίτση Αργοστόλι Κεφαλληνίας, Ελλάδα 28100,+30
EE 570: Location and Navigation
EE 570: Location and Navigation INS Initialization Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen Bruder Electrical
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your
Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your GP practice in Islington Σε όλα τα Ιατρεία Οικογενειακού
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
- S P E C I A L R E P O R T - EMPLOYMENT. -January 2012- Source: Cyprus Statistical Service
- S P E C I A L R E P O R T - UN EMPLOYMENT -January 2012- Source: Cyprus Statistical Service This Special Report is brought to you by the Student Career Advisory department of Executive Connections. www.executiveconnections.eu
Abstract Storage Devices
Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD
Case 1: Original version of a bill available in only one language.
currentid originalid attributes currentid attribute is used to identify an element and must be unique inside the document. originalid is used to mark the identifier that the structure used to have in the
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΑΝΑΠΤΥΞΗ ΔΕΙΚΤΩΝ ΠΟΙΟΤΗΤΑΣ ΕΔΑΦΟΥΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΠΤΥΞΗ ΔΕΙΚΤΩΝ ΠΟΙΟΤΗΤΑΣ ΕΔΑΦΟΥΣ [Μαρία Μαρκουλλή] Λεμεσός 2015 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
"ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΕΤΑΙΡΕΙΩΝ ΣΥΓΚΡΙΤΙΚΑ ΓΙΑ ΤΑ ΟΙΚΟΝΟΜΙΚΑ ΕΤΗ 2011-2013"
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Επιμέλεια Κρανιωτάκη Δήμητρα Α.Μ. 8252 Κωστορρίζου Δήμητρα Α.Μ. 8206 Μελετίου Χαράλαμπος Α.Μ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΑΤΡΙΒΗ ΤΟΥ ΕΥΘΥΜΙΟΥ ΘΕΜΕΛΗ ΤΙΤΛΟΣ Ανάλυση
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Διπλωματική Εργασία του φοιτητή του τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ
Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η προβολή επιστημονικών θεμάτων από τα ελληνικά ΜΜΕ : Η κάλυψή τους στον ελληνικό ημερήσιο τύπο Σαραλιώτου
Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools
ΓΙΑΝΤΣΗΣ ΧΡΗΣΤΟΣ. Θέμα εργασίας: Υποθαλάσσια & υπόγεια δίκτυα αισθητήρων. Work title: Underwater & underground sensor networks
Πανεπιστήμιο Μακεδονίας ΠΜΣ Πληροφοριακά Συστήματα Τεχνολογίες Τηλεπικοινωνιών & Δικτύων Καθηγητής: Α.Α. Οικονομίδης University of Macedonia Master Information Systems Networking Technologies Professor:
Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.
φ φ φ φ Figure 1 Resampling of a rock-physics model from velocity-porosity to lithology-porosity space. C i are model results for various clay contents. φ ρ ρ δ Figure 2 Bulk modulus constraint cube in
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
Εποχές( 1. Εποχή(του(mainframe((πολλοί( χρήστες,(ένας(υπολογιστής)(( 2. Εποχή(του(PC((ένας(χρήστης,(
Κίνητρα( Η(εξάπλωση(των(υπολογιστικών(συσκευών( Πως(έγινε;( Ανάγκη(για(πληροφορία( Προς(τι;( Εφαρμογές(του(διάχυτου(υπολογισμού( Μπορούμε(να(σχεδιάσουμε(&(να(αναπτύξουμε(ώστε(οι( άνθρωποι(να(μπορούν(να(τον(χρησιμοποιούν(
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332
,**1 The Japanese Society for AIDS Research The Journal of AIDS Research +,, +,, +,, + -. / 0 1 +, -. / 0 1 : :,**- +,**. 1..+ - : +** 22 HIV AIDS HIV HIV AIDS : HIV AIDS HIV :HIV AIDS 3 :.1 /-,**1 HIV
ΣΗΣΛΟ: Ζ ΥΡΖΖ ΒΗΟΛΟΓΗΚΧΝ ΠΡΟΗΟΝΣΧΝ ΣΟΝ ΑΓΡΟΣΟΤΡΗΜΟ
ΑΛΔΞΑΝΓΡΔΗΟ ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΘΔΑΛΟΝΗΚΖ ΥΟΛΖ ΣΔΥΝΟΛΟΓΗΑ ΓΔΧΠΟΝΗΑ ΣΜΖΜΑ ΦΤΣΗΚΖ ΠΑΡΑΓΧΓΖ ΣΗΣΛΟ: Ζ ΥΡΖΖ ΒΗΟΛΟΓΗΚΧΝ ΠΡΟΗΟΝΣΧΝ ΣΟΝ ΑΓΡΟΣΟΤΡΗΜΟ ΓΚΟΓΚΗΓΟΤ ΗΧΑΝΝΑ Α.Μ:186/99 Δπηβιέπωλ θαζεγεηήο:παλασο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Firm Behavior GOAL: Firms choose the maximum possible output (technological
Communication Protocols in Ad-Hoc Radio Networks
ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Τµήµα Πληροφορικής και Τηλεπικοινωνιών, ΕΚΠΑ http://www.di.uoa.gr/~telelis/opt.html Communication Protocols in Ad-Hoc Radio Networks Αρης Παγουρτζής ΕΜΠ ΕΚΠΑ Ad-Hoc
Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ Νικόλας Χριστοδούλου Λευκωσία, 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ηλεκτρονική Υγεία
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ηλεκτρονική Υγεία Ενότητα: Use Case - an example of ereferral workflow Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr Τμήμα Μηχανικών Πληροφορικής