Eastern Orthodox - Oriental Orthodox Dialogue - A Historical and Theological Survey
|
|
- Αμφιτρίτη Λαιμός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Neapolis University HEPHAESTUS Repository School of Health Sciences Articles 2014 Eastern Orthodox - Oriental Orthodox Dialogue - A Historical and Theological Survey Martzelos, Georgios Volos Academy Publications Downloaded from HEPHAESTUS Repository, Neapolis University institutional repository
2 GEORGIOS D. MARTZELOS University Professor THE ORIGIN OF THE DYOPHYSITE FORMULA IN THE DEFINITION OF CHALCEDON Introduction The dyophysite formula in the Definition of Chalcedon («ἕνα καί τόν αὐτόν Χριστόν ἐν δύο φύσεσιν γνωριζόμενον» One and the Same Christ known in two natures ) 1, which constitutes, as is well known, its most crucial and decisive expression, existed immediately after the Fourth Ecumenical Council a controversial point among its Orthodox supporters and 1 The main dogmatic part of the Definition of Chalcedon, the so-called Symbol of Chalcedon, has in its verses as follows: 1. «Ἑπόμενοι τοίνυν τοῖς ἁγίοις πατράσιν 2. ἕνα καί τόν ὁμολογεῖν υἱόν 3. τόν κύριον ἡμῶν Ἰησοῦν Χριστόν 4. συμφώνως ἅπαντες ἐκδιδάσκομεν, 5. τέλειον τόν αὐτόν ἐν θεότητι 6. καί τέλειον τόν αὐτόν ἐν ἀνθρωπότητι, 7. θεόν ἀληθῶς καί ἄνθρωπον ἀληθῶς τόν αὐτόν 8. ἐκ ψυχῆς λογικῆς καί σώματος, 9. ὁμοούσιον τῷ πατρί κατά τήν θεότητα 10. καί ὁμοούσιον ἡμῖν τόν αὐτόν κατά τήν ἀνθρωπότητα, 11. κατά πάντα ὅμοιον ἡμῖν χωρίς ἁμαρτίας, 12. πρό αἰώνων μέν ἐκ τοῦ πατρός γεννηθέντα κατά τήν θεότητα, 13. ἐπ ἐσχάτων δέ τῶν ἡμερῶν τόν αὐτόν 14. δι ἡμᾶς καί διά τήν ἡμετέραν σωτηρίαν 15. ἐκ Μαρίας τῆς παρθένου τῆς θεοτόκου κατά τήν ἀνθρωπότητα, 16. ἕνα καί τόν αύτόν Χριστόν υἱόν κύριον μονογενῆ, 17. ἐν δύο φύσεσιν ἀσυγχύτως ἀτρέπτως ἀδιαιρέτως ἀχωρίστως γνωριζόμενον, 18. οὐδαμοῦ τῆς τῶν φύσεων διαφορᾶς ἀνῃρημένης διά τήν ἕνωσιν, 19. σῳζομένης δέ μᾶλλον τῆς ἰδιότητος ἑκατέρας φύσεως 20. καί εἰς ἕν πρόσωπον καί μίαν ὑπόστασιν συντρεχούσης, 21. οὐκ εἰς δύο πρόσωπα μεριζόμενον ἤ διαιρούμενον, 22. ἀλλ ἕνα καί τόν αὐτόν υἱόν μονογενῆ 23. θεόν λόγον κύριον Ἰησοῦν Χριστόν, 24. καθάπερ ἄνωθεν οἱ προφῆται περί αὐτοῦ 25. καί αὐτός ἡμᾶς Ἰησοῦς Χριστός ἐξεπαίδευσεν 26. καί τῷ τῶν πατέρων ἡμῖν παραδέδωκε σύμβολον» (Mansi [= J. D. Mansi, Sacrorum Conciliorum Nova et Amplissima Collectio, Graz ] VII, 116; ACO [= E. Schwartz, Acta Conciliorum Oecumenicorum, Berolini et Lipsiae ] II,1,2, 129[325] f.). [1]
3 their anti-chalcedonian opponents. This fact is not unexplainable, because at first glance this formula does not have any connection to Cyril of Alexandria, who was considered by the anti- Chalcedonians as the sole and undisputable authority for the solution of the Christological problem; moreover, it seems and strikingly resembles some particular dyophysite expressions used by Nestorius. However, as we will see in the development of our subject, the direct source of this dyophysite formula was not Nestorian, but, as proven more convincingly by modern research, is completely Orthodox, especially with a very clear Cyrillian character: it is the Confession formulated by Basil of Seleucia at the Endemousa Synod of 448, who generates this formula from the Epistle of Cyril to John of Antioch 2. In other words, this formula, before its use by Basil of Seleucia and the Fathers of Chalcedon, with its Orthodox, and of course with its Cyrillian meaning, had been understood and used by the very same Nestorius with a divisible Christological meaning. Let us look into more detail at the concept, which was the formula used by Nestorius, and the concept which was used both by Basil of Seleucia in his above-mentioned Confession and by the Fathers of Chalcedon in the Definition of Faith they drafted. a) The meaning of the dyophysite formula One Christ or Son known in two natures according to Nestorius and to Basil of Seleucia As is already known, the dyophysite formula in the Definition of Chalcedon one Christ or Son known in two natures was expressed for the first time from an Orthodox 2 See Th. Šagi-Bunić, «Duo perfecta et duae naturae in definitionem dogmatica chalcedonensi», in Laurentianum 5(1964), p. 325; see also the same author, «Deus perfectus et homo perfectus» a Concilio Ephesino (a. 431) ad Chalcedonense (a. 451), Romae-Friburgi Brisg. - Barcinone 1965, p. 219 f.; M. van Parys, «L évolution de la doctrine christologique de Basile de Séleucie», in Irénikon 44(1971), p. 405 f.; Α. de Halleux, «La définition christologique à Chalcédoine», in Revue Théologique de Louvain 7(1976), p. 160; see also G. D. Martzelos, Γένεση καί πηγές τοῦ Ὅρου τῆς Χαλκηδόνας. Συμβολή στήν ἱστορικοδογματική διερεύνηση τοῦ Ὅρου τῆς Δ Οἰκουμενικῆς συνόδου, P. Pournaras Pub., Thessaloniki 1986, p [2]
4 viewpoint by Basil of Seleucia in his Confession at the Endemousa Synod of However, it is an indisputable fact that before the formula was used by Basil, it was used, perhaps not verbatim, but with a similar form, by Nestorius. At least two of Nestorius sermons show that he must have been the architect of dyophysite expressions such as one Son known in two natures in the Antiochian Christological tradition. In an excerpt from one of his sermons, which refers to the Nativity of Christ, he writes characteristically: We know therefore the humanity of the baby and the divinity, [we confess the difference of the natures ], we keep the oneness of the sonhood in the nature of humanity and divinity 4. Additionally, in an excerpt of one of his sermons Concerning Faith, which is saved in a Syriac translation, it is noted: 3 See G. D. Martzelos, op. cit., p. 172; see also the same author, Ἡ Χριστολογία τοῦ Βασιλείου Σελευκείας καί ἡ οἰκουμενική σημασία της, P. Pournaras Pub., Thessaloniki 1990, pp. 119 f., 235. See also the Confession of Basil at the Endemousa Synod of 488 with the following verses: 1. «Τίς δύναται ταῖς τοῦ μακαρίου πατρός ἡμῶν Κυρίλλου μέμψασθαι φωναῖς; 2. ὅς τήν ἀσέβειαν Νεστορίου μέλλουσαν ἐπικλύζειν τήν οἰκουμένην 3. ἐπέσχεν διά οἰκείας συνέσεως 4. κἀκείνου διαιροῦντος εἰς δύο πρόσωπα καί δύο υἱούς 5. τόν ἕνα κύριον ἡμῶν καί θεόν καί σωτῆρα Χριστόν 6. αὐτός ἔδειξεν ἐπί ἑνός προσώπου καί υἱοῦ καί κυρίου καί δεσπότου τῆς κτίσεως 7. θεότητά τε γνωριζομένην τελείαν καί ἀνθρωπότητα τελείαν. 8. ἀποδεχόμεθα τοίνυν πάντα τά παρ αὐτοῦ γεγραμμένα καί ἐπεσταλμένα 9. ὡς ἀληθῆ καί τῆς εὐσεβείας ἐχόμενα 10. καί προσκυνοῦμεν τόν ἕνα κύριον ἡμῶν Ἰησοῦν Χριστόν 11. ἐν δύο φύσεσι γνωριζόμενον. 12. τήν μέν γάρ εἶχεν ἐν ἑαυτῷ προαιώνιον 13. ὡς ὤν ἀπαύγασμα τῆς τοῦ πατρός δόξης, 14. τήν δέ ὡς ἐκ μητρός δι ἡμᾶς γεννηθείς 15. λαβών ἐξ αὐτῆς ἥνωσεν ἑαυτῷ καθ ὑπόστασιν 16. καί κεχρημάτικεν ὁ τέλειος θεός καί υἱός τοῦ θεοῦ 17. καί τέλειος ἄνθρωπος καί υἱός ἀνθρώπου, 18. πάντας ἡμᾶς σῶσαι βουληθείς 19. ἐν τῷ γενέσθαι κατά πάντα ἡμῖν παραπλήσιος πλήν ἁμαρτίας. 20. τούς δέ ἐναντιουμένους τοῖς τοιούτοις δόγμασιν 21. ἐχθρούς τῆς ἐκκλησίας εἶναι φαμέν» (Mansi VI, 828; ACO II,1,1, 179). 4 See Fr. Loofs, Nestoriana. Die Fragmente des Nestorius, Halle 1905, p. 328: «Γνωρίζομεν τοίνυν τήν ἀνθρωπότητα τοῦ βρέφους καί τήν θεότητα, [ὁμολογοῦμεν τήν τῶν φύσεων διαφοράν ], τό τῆς υἱότητος τηροῦμεν μοναδικόν ἐν ἀνθρωπότητος καί θεότητος φύσει». The passage in brackets is only saved in the Syriac translation, from which Loofs included it translated into German in the extant Greek quote. In Greek we attach the archaic style, trying to give the approximate original form. [3]
5 [ one and the same regarded in uncreated and created nature He is known therefore as one Christ in two natures, divine and human, visible and invisible one son in two natures] 5. As is becoming clear, not only the expression one Christ or Son in two natures, but also the connection with this expression of the verb know is commonplace in the aforementioned excerpts of both sermons of Nestorius and in the dyophysite formula of Basil. Perhaps this explains why, when Basil expressed his dyophysite formula for the first time in Chalcedon, the Egyptian and other Monophysite bishops cried: this is what Nestorius believed; this is what Nestorius said 6. This certainly does not exclude Basil, who knew well, as we have shown in our related study, the sermons and the teaching of Nestorius 7, to take the dyophysite formula one Christ or Son known in two natures from Nestorius, or, even if that did not occur, he took the formula via the Antiochian Christological tradition, where it would have been widely known. However, he had already undertaken by his Confession in the Endemousa Synod of 448 and here exactly appears his fruitful and creative contribution in bridging the chasm between the Antiochian and Alexandrian Christologies not merely to orthodoxly use this dyophysite formula and even against the teaching of Nestorius, characterizing him as lunatic 8, but also to genetically link it, concerning its content, with Cyril, considering his Christological teaching as its source. Furthermore, already from the beginning of his Confession, he not only explicitly turns against the heresy of Nestorius, but argues with fervour and enthusiasm the undisputed character of Cyril's Christological teaching 9. While, as noted, Nestorius with 5 See op. cit., p. 330: «[ ἕνα καί τόν αὐτόν θεωρούμενον ἐν ἀκτίστῳ καί κτιστῇ φύσει Γνωρίζεται οὖν ὡς εἷς Χριστός ἐν δύο φύσεσιν, θείᾳ τε καί ἀνθρωπίνῃ, ὁρατῇ καί ἀοράτῳ εἷς υἱός ἐν δύο φύσεσιν]». What is said in the above footnote because of Nestorius excerpt, surviving in the Syriac translation, applies also to this passage. 6 See Mansi VI, 636; ACO II,1,1, 93 : «ταῦτα Νεστόριος ἐφρόνει. ταῦτα Νεστόριος ἐβόα». 7 See G. D. Martzelos, Η Χριστολογία του Βασιλείου Σελευκείας και η οικουμενική σημασία της, P. Pournaras Pub., Thessaloniki 1990, pp. 44 ff. 8 See Mansi VI, 636; ACO II,1,1, See footnote 3, v [4]
6 his impious teaching divided our one Lord and God and Saviour Christ to two persons and two sons (v. 4-5), Cyril showed that perfect divinity and perfect humanity is known in one person and Son and Lord and Master of creation (v. 6-7). Especially at this point, Basil paraphrases, in an original and creative way, the interpretation that Cyril makes in double perfection ( perfect God and perfect man ) 10 of the Formulary of Reunion (433), the socalled Symbol of Union, as expressed in his letter to John of Antioch ( perfect... in divinity and the same perfect in humanity «τέλειος ἐν θεότητι καί τέλειος ὁ αὐτός ἐν ἀνθρωπότητι») 11 and in this way he essentially summarizes the quintessence of the Christology of Cyril, so as to clearly exclude Nestorianism. Precisely for this reason, regarding the under discussion dyophysite formula, there exists a radical difference between Nestorius and Basil. For Nestorius the one Christ and Son, for whom he speaks about, is not the Son and Word of God, as is for Basil, but the moral person which resulted from the union of the two natures. For Nestorius the terms Christ and Son do not exclusively declare the Son and Word of God, but both of his natures; they are messages of the two natures 12. Contrarily for Basil, the one Christ who is known in two natures, as already shown in his Confession and as he explicitly underlined in Chalcedon, is solely the only-begotten Son of God, God the Word 13, something which Nestorius would not be able to accept on the basis of his teaching. However, beyond that, Basil clearly stresses that his dyophysite formula is not only anti-nestorian, but also originates from the Christological teaching of Cyril and is inextricably tied to it 14. Indeed, already in his Confession, his dyophysite formula (v ) not only conclusively summarizes the paraphrase that he 10 See Mansi, VI, 668; ACO II,1,1, See PG 77, 180 B; Mansi VI, 672; ACO II,1, See Fr. Loofs, op. cit., pp. 171, 175, 176, 182, 192, 196, 211, 254, 269, 271, 273, 274, 295, 307, 317, 318, 336, 358, 361. See also F. Nau, Nestorius. Le livre d Héraclide de Damas (traduit en français), Paris 1910, pp. 146, 184, 185; G. L. Driver L. Hodgson, Nestorius. The Bazaar of Heracleides (newly translated from the Syriac), Oxford 1925, pp. 166, 207, See Mansi, op. cit.; ACO II,1,1,92 f. 14 See footnote 3, v [5]
7 himself makes regarding Cyril's interpretation of the two perfect [natures] of the Symbol of Union, but also it is considered in a way to be dogmatically equivalent to that, since it produces the same dogmatic truth in a slightly different way. In his dyophysite formula our one Lord Jesus Christ is known in two natures (v ), while in the paraphrase that is made in Cyrillian interpretation of two perfect [natures] of the Symbol of Union, the perfect divinity and perfect humanity is known as over one person and Son and Lord and Master of creation (v. 6-7). Common points between these two Christological formulas are not only the emphasis on one Lord or one person, but also the use of the participle of the verb to know. The close relationship between these two Christological formulas becomes even more evident for Basil s dyophysite formula with his clarifications which he affirms in Chalcedon: "What I said: known in two natures after the union, in perfect divinity and perfect humanity 15. This clarification clearly shows that the two natures in the dyophysite formula of Basil s Confession are just the perfect divinity and the perfect humanity, for which he speaks in the paraphrase that he makes in Cyril's interpretation of the two perfect [natures] in the Symbol of Union (v. 6-7) 16. b) The source of the dyophysite formula of Basil of Seleucia These data inevitably lead us to the source from which Basil produces his dyophysite formula and, as is plausible, this source can not be other than the above-mentioned passage from Cyril s Epistle to John of Antioch, in which Cyril interprets, with his own manner, the two perfect [natures] of the Symbol of Union. Indeed, in this passage, Cyril does not refer only to the double perfection of one and the same person in divinity and humanity, but also explicitly calls his divinity and 15 See Mansi, VI, 636; ACO II,1,1,93 : «Ὅ ἔλεγον. ἐν δύο φύσεσιν γνωριζόμενον μετά τήν ἕνωσιν, θεότητι τελείᾳ καί ἀνθρωπότητι τελείᾳ». 16 See also Th. Šagi-Bunić, «Deus perfectus et homo perfectus» a Concilio Ephesino (a. 431) ad Chalcedonense (a. 451), Romae-Friburgi Brisg.-Barcinone 1965, p. 192 [6]
8 humanity natures (φύσεις) ( even if the difference of natures «κἄν ἡ τῶν φύσεων διαφορά») 17, and that, as it appears, did not go unnoticed by Basil. Already in the Endemousa Synod of 448 he has a clear and crystallized opinion on this subject. It is very enlightening for the meaning, of which Basil observes in the phrase two natures, the question he asks Eutyches at the Endemousa Synod: do you say that two natures are known in the Lord, divinity and humanity? 18. Certainly the characterization of the divinity and the humanity of Christ as natures, and of course different from each other, not only responds to the above-mentioned passage from Cyril s Epistle to John of Antioch, but also to his Second Epistle to Nestorius 19. However, the advantage of the above-mentioned Cyrillian passage is that the characterization of the divinity and the humanity of Christ as natures is combined with the double perfection of the one and the same person of Christ and this is exactly what Basil exploits theologically. Thus from the phrase "one Lord Jesus Christ perfect in divinity and perfect in humanity of the above-mentioned Cyrillian passage very easily produces the phrase one Lord Jesus Christ in two natures of his dyophysite formula. Th. Šagi-Bunić holds the opinion that Basil could be in his conclusion probably influenced by Proclus of Constantinople 20. Perhaps the fact that Proclus spoke of two natures in one hypostasis 21, thus distinguishing the terms nature («φύσις») 17 See PG 77, 180 B; Mansi VI, 672; ACO II,1,1, 110: «τέλειος ὤν ἐν θεότητι καί τέλειος ὁ αὐτός ἐν ἀνθρωπότητι, καί ὡς ἐν ἑνί προσώπῳ νοούμενος. εἷς γάρ κύριος Ἰησοῦς Χριστός, κἄν ἡ τῶν φύσεων μή ἀγνοῆται διαφορά, ἐξ ὧν τήν ἀπόρρητον ἕνωσιν πεπρᾶχθαι φαμέν». 18 See Mansi VI, 813; ACO II,1,1, 173: «λέγεις γνωρίζεσθαι δύο φύσεις ἐν τῷ κυρίῳ, θεότητα καί ἀνθρωπότητα;». 19 See PG 77, 45 C; Mansi VI, 661; ACO II,1,1, 105: «οὐχ ὡς τῆς τῶν φ ύ σ ε ω ν διαφορᾶς ἀνῃρημένης διά τήν ἕνωσιν, ἀποτελεσασῶν δέ μᾶλλον τόν ἕνα κύριον καί Χριστόν καί υἱόν θ ε ό τ η τ ό ς τε καί ἀ ν θ ρ ω π ό τ η τ ο ς διά τῆς ἀφράστου καί ἀπορρήτου πρός ἑνότητα συνδρομῆς». 20 See Th. Šagi-Bunić, op. cit., p. 195 f. 21 See Proclus of Constantinople, Sermo de dogmate incarnationis (excerpt), Fr. Diekamp, Doctrina Patrum De incarnatione Verbi. Ein griechisches Florilegium aus der Wende des 7. Und 8. Jahrhunderts, Aschendorff Münster , p. 49: «καί ἔστιν εἷς υἱός, οὐ τῶν φύσεων εἰς δύο [7]
9 and hypostasis («ὑπόστασις»), constitutes a precedent for Basil, in order to consider as a nature not only the divinity but also the humanity of Christ 22. Moreover, at the Endemousa Synod of 448 there existed certain points of Proclus Christology, which undoubtedly cannot be ignored 23. However, regardless of the fact that there are some elements of Proclus Christology on the doctrinal formulations of the Fathers of the Endemousa Synod, we have the opinion that in this particular case there is absolutely no need to resort to Proclus Christology, in order to explain the origin of the phrase one in two natures in Basil s dyophysite formula. This is not only because Basil stresses its direct origin from Cyril 24, but also because the same Cyril, as we have seen, explicitly calls the divinity and the humanity of the one Lord natures. Consequently, the passage, in which Cyril in his Epistle to John of Antioch interprets with his own manner the two perfect [natures] of the Symbol of Union, has all the prerequisites to allow Basil with the liveliness and fruitfulness of his thought to generate from the phrase one perfect in divinity and perfect in humanity the phrase one in two natures of his dyophysite formula. With this phrase Basil essentially summarizes, in a conclusive way, the double perfection in divinity and humanity of the one person of Christ, according to the above-mentioned passage of the Epistle of Cyril to John of Antioch 25. As far as the participle «γνωριζόμενον» ( known ) is concerned, with which Basil puts down his dyophysite formula (v. 11), we can reasonably argue that, like the participle ὑποστάσεις διαιρουμένων, ἀλλά τῆς φρικτῆς οἰκονομίας τάς δύο φύσεις εἰς μίαν ὑπόστασιν ἑνωσάσης». 22 See Th. Šagi-Bunić, op. cit., p. 194: «Novum episcopi seleuciensis in so est, quod post Proclum Constantinopolitanum clare terminum natura ponit ex parte quidditatis, seiungendo decisive naturam ab illo qui in natura dignoscitur atque in ea perfectus est». 23 See op. cit., p. 196 f. 24 See in footnote 3, verses 6-7, which are formulated, as we have seen, in a different way from v of the Confession of Basil. 25 See Th. Šagi-Bunić, «Duo perfecta et duae naturae in definitionem dogmatica chalcedonensi», in Laurentianum 5(1964), p. 325; see also the same author, «Deus perfectus et homo perfectus» a Concilio Ephesino (a. 431) ad Chalcedonense (a. 451), Romae-Friburgi Brisg.- Barcinone 1965, p. 209; see also G. D. Martzelos, op. cit., p [8]
10 «γνωριζομένην» ( known ) of his dyophysite Confession (v. 7), he produces it in all likelihood from the phrase «μή ἀγνοῆται» (= not to be ignored = to be known ), which also exists in the same Cyrillian passage 26. With this participle Basil essentially renders with one word the basic teaching of Cyril, which survives in this passage, that the unity of the person of Christ does not negate the difference of His two natures which came together in this secret union («ἀπόρρητον ἕνωσιν») 27, as well as his widespread teaching, after the Reconciliation of 433, that the knowledge of the difference of natures after the union does not mean division or separation or a breakdown of a person of the incarnate Word in two natures and two persons, because his natures are distinguished by themselves only in a theoretical manner («κατά μόνην τήν θεωρίαν») 28. Characteristics for the notion, in which Basil of Seleucia understands the participle known (v. 7 and 11) in his dyophysite Confession, are his two following clarifying interventions at the Council of Chalcedon: 26 See the passage in footnote See in this case also the passage in footnote See Cyril of Alexandria, Epistle 46, To Succensus Bishop of Diocaesareia, Second Epistle, PG 77, 245 A; ACO I,1,6, 162: «Ἀλλ ἠγνόησαν ὅτι ὅσα μή κατά μόνην τήν θεωρίαν διαιρεῖσθαι φιλεῖ, ταῦτα πάντως καί εἰς ἑτερότητα τήν ἀνά μέρος ὁλοτρόπως καί ἰδικήν ἀποφοιτήσειεν ἄν ἀλλήλων. ἔστω δέ ἡμῖν είς παράδειγμα πάλιν ὁ καθ ἡμᾶς ἄνθρωπος. Δύο μέν γάρ καί ἐπ αὐτοῢ νοοῦμεν τάς φύσεις, μίαν μέν τῆς ψυχῆς, ἑτέραν δέ τοῦ σώματος. ἀλλ ἐν ψιλαῖς διελόντες ἐννοίαις καί ὡς ἐν ἰσχναῖς θεωρίαις ἤτοι νοῦ φαντασίαις τήν διαφοράν δεξάμενοι οὐκ άνά μέρος τίθεμεν τάς φύσεις οὔτε μήν διαμπάξ διατομῆς δύναμιν ἐφίεμεν αὐταῖς ἀλλ ἑνός εἶναι νοοῦμεν, ὥστε τάς δύο μηκέτι μέν εἶναι δύο, δι ἀμφοῖν δέ τό ἕν ἀποτελεῖσθαι ζῷον». See also Epistle 44, To Eulogios Presbyter of Constantinople, PG 77, 225 Β; ACO I,1,4, 35: «ὁποῖόν ἐστιν καί ἐπί τοῦ κοινοῦ εἰπεῖν ἀνθρώπου. ἔστιν μέν γάρ ἐκ διαφόρων φύσεων, ἀπό τε σώματος, φημί, καί ψυχῆς. Καί ὁ μέν λόγος καί ἡ θεωρία οἶδε τήν διαφοράν. ἑνώσαντες δέ, τότε ποιοῦμεν μίαν ἀνθρώπου φύσιν. Οὐκοῦν οὐ τό εἰδέναι τῶν φύσεων τήν διαφοράν, διατέμνειν ἐστίν εἰς δύο τόν ἕνα Χριστόν»; Epistle 45, To Succensus Bishop of Diocaesareia, First Epistle, PG 77, 232 D 233 A; ACO I,1,6, 153 f.: «Οὐκοῦν ὅσον μέν ἦκεν εἰς ἔννοιαν καί εἰς μόνον τό ὁρᾶν τοῖς τῆς ψυχῆς ὄμμασιν τίνα τρόπον ἐνηνθρώπησεν ὁ μονογενής, δύο τάς φύσεις εἶναι φαμέν τάς ἑνωθείσας, ἕνα δέ Χριστόν καί υἱόν καί κύριον, τόν τοῦ θεοῦ λόγον ἐνανθρωπήσαντα καί σεσαρκωμένον»; Epistle 40, To Akakius Bishop of Melitene, PG 77, 192 D, 193 A, 193 C; ACO I,1,4, 26, 27. See also R. V. Sellers, Two ancient Christologies. A study in the Christological thought of the schools of Alexandria and Antioch in the early history of Christian doctrine, London 1954, p. 93. See also the same author, The Council of Chalcedon. A historical and doctrinal survey, London , p [9]
11 a) When the Egyptians and other monophysite bishops reacted because of his dyophysite formula, shouting: No one should divide the undivided; no one should say the one two 29, he agreed with them while underlining at the same time his opposition to Monophysitism, with the following statement: Anathema to splitting, anathema to dividing the two natures after the union; but also anathema to not knowing the peculiarity of the natures 30. b) Also, when Eustathios of Beirut, also obviously alarmed by Basil s dyophysite formula and other dyophysite expressions that were heard at the Council, expressed the fear that there was a danger for some to claim that a doctrinal decision was taken to say two divided natures after the union 31, then Basil interrupted him abruptly and, wanting to make clear the difference of the Orthodox Christological doctrine from Nestorianism and Monophysitism, he emphatically gave the following clarification: We know the natures, we do not divide them; we do not say them either divided or confused 32. In the Nestorian division and in the Monophysite confusion of the natures Basil puts up their simple knowledge, which is not understood differently than the Cyrillian way as a distinction of natures only in a theoretical manner. The expressions to know the natures and to know the peculiarity of the natures, which Basil used above, are identical to each other. To know the natures means to know the peculiarity of the natures. In this sense, as we understand, these expressions are parallel with the expression the difference of the natures is not ignored that Cyril used in the above-mentioned passage of his Epistle to John of Antioch, where he interprets the two perfect [natures] of the Symbol of Union 33. Of course there are other similar expressions that Cyril used mainly in his epistles after the Reconciliation of 29 See Mansi, VI, 636; ACO II,1,1, See Mansi, op. cit.; ACO, op. cit.: «Ἀνάθεμα τῷ μερίζοντι ἀνάθεμα τῷ διαιροῦντι τάς δύο φύσεις μετά τήν ἕνωσιν. ἀνάθεμα δέ καί τῷ μή γνωρίζοντι τό ἰδιάζον τῶν φύσεων» 31 See Mansi, VI, 744; ACO II,1,1, See Mansi, op. cit.; ACO, op. cit.: «Γνωρίζομεν τάς φύσεις, οὐ διαιροῦμεν. οὔτε διῃρημένας οὔτε συγκεχυμένας λέγομεν» 33 See footnote 19. [10]
12 433 34, expressions that Basil certainly knew, because he was, as it seems from his Christological statements in the Endemousa Synod (448) and in the so called Robber Synod (449), well learned of both two aspects of the Christology of Cyril. However, we have the opinion that the term «γνωρίζειν» ( to know ) in its various forms, which Basil consciously and persistently connects with the two natures, can only be derived from the expression «μή ἀγνοῆται» (= not to be ignored = to be known ) of the abovementioned Cyrillian passage. This not only because both participles known (v. 7 and 11) in his Confession are organically connected with the expressions perfect divinity and perfect humanity (v. 7) and in two natures (v. 11) respectively, which also originate from the same Cyrillian passage, but also because the two natures, which are attached with the verb to know or to be known, mean, as we have seen, according to Basil just as in the above-mentioned Cyrillian passage: as perfect divinity and perfect humanity. Consequently, even if the dyophysite formula of Basil s Confession (v ) is morphologically associated with Nestorius and perhaps originates from him, we can reasonably accept with certainty that essentially Basil produces it from Cyril. This is because its morphological relationship with Nestorius does not primarily matter as much as the genetic and according to its content relationship with the Christology of Cyril. Only in the way that Basil understands and uses his dyophysite formula can be understood, according to the teaching of Cyril, the distinction of natures of the incarnate Word after the union, without risking a danger of splitting His person. Exactly for that reason in relation with the expressions to know the natures or to know the peculiarity of the natures, which are certainly associated with the dyophysite formula of his Confession, Basil feels, as we have seen, 34 See the particular expressions: «τό εἰδέναι τῶν φύσεων τήν διαφοράν» (Epistle 44, To Eulogios Presbyter of Constantinople, PG 77, 225 Β; ACO I,1,4, 35); «ἐν ψιλαῖς διελόντες ἐννοίαις καί ὡς ἐν ἰσχναῖς θεωρίαις ἤτοι νοῦ φαντασίαις τήν διαφοράν (ενν. των φύσεων) δεξάμενοι» (Epistle 46, To Succensus Bishop of Diocaesareia, Second Epistle, PG 77, 245 A; ACO I,1,6, 162); «Καί κατ αὐτό δή τοῦτο νοηθείη ἄν ἡ τῶν φύσεων, ἤγουν ὑποστάσεων διαφορά. οὐ γάρ που ταὐτόν ἐν ποιότητι φυσικῇ θεότης καί ἀνθρωπότης» (Epistle 40, To Akakius Bishop of Melitene, PG 77, 193 ΒC; ACO I,1,4, 27). [11]
13 the need to emphasize the unconfused and indivisibile character of the two natures. This emphasis is indeed done in such a way as to be considered an integral element of knowing the natures and by extension of his dyophysite formula. Moreover, it is by no coincidence that since the Endemousa Synod of 448, where his dyophysite formula was expressed for the first time, Basil stresses with particular emphasis the unconfused and indivisibile character of the two natures, while rejecting both Nestorianism and Monophysitism 35. In his two-sided struggle against the two extreme and opposite amongst them Christological heresies his dyophysite formula is the most effective weapon in his hands, based on the Epistle of Cyril to John of Antioch. c) The emphasis of the Cyrillian character of the dyophysite formula of Basil in the Definition of Chalcedon The value of Basil s dyophysite formula for the addressing against both Nestorianism and Monophysitism on the basis of the Christological teaching of Cyril was certainly not ignored by the Fathers of Chalcedon, who in the Definition they composed, as supported by our related study 36, sought not only to give a visibly Cyrillian character, but also to keep it intact from the few additions and modifications proposed in the Council. Consequently, when during the fifth session of the Council there arose a question of replacing the formula of two natures («ἐκ δύο φύσεων») of the original Definition with another phrase, deriving from the Tome of Leo and having a clear dyophysite character, the Committee set up for the revision of the original Definition preferred for this purpose instead of the dyophysite formula of Pope Leo, which was proposed by the imperial representatives 37, Basil s dyophysite 35 See the remark made by Basil to Eutyches because of his monophysite confession at the Endemic Council of 488: «ἐάν μή μετά τήν ἕνωσιν ἀ χ ω ρ ί σ τ ο υ ς και ἀ σ υ γ χ ύ τ ο υ ς εἴπῃς δύο φύσεις σύγχυσιν λέγεις καί σύγκρασιν» (Mansi VI, 637; ACO II,1,1 93. See also Mansi VI, 817 f.; ACO II,1,1, 175). 36 See G. D. Martzelos, Γένεση καί πηγές τοῦ Ὅρου τῆς Χαλκηδόνας. Συμβολή στήν ἱστορικοδογματική διερεύνηση τοῦ Ὅρου τῆς Δ Οἰκουμενικῆς συνόδου, P. Pournaras Pub., Thessaloniki 1986, pp. 93, 136, See Mansi VII, 105; ACO II,1,2, 125[321]: «Οἱ μεγαλοπρεπέστατοι καί ἐνδοξότατοι ἄρχοντες εἶπον. Πρόσθετε οὖν τῷ ὅρῳ κατά τήν ψῆφον τοῦ ἁγιωτάτου πατρός ἡμῶν [12]
14 formula, which had a Cyrillian origin and harmonised perfectly with the general Cyrillian character of the original Definition 38. Indeed, the Committee which was set up for the revision of the original Definition, in order to make clear in the text of the final Definition the Cyrillian origin of the new dyophysite formula and to thus exclude the possibility of being considered as Nestorian, expressed the double perfection not in the form of the Symbol of Union ( perfect God and perfect man ), which echoed the Antiochian mode of expression, but in the interpretative form that Cyril gave in his Epistle to John of Antioch ( perfect in divinity and perfect the same in humanity ), on the basis of which Basil, as we have seen, produces his dyophysite formula 39. For this reason the review Committee formulated the double perfection in the text of the final Definition as follows: «τέλειον τόν αὐτόν ἐν θεότητι καί τέλειον τόν αὐτόν ἐν ἀνθρωπότητι» - perfect the same in divinity and perfect the same in humanity (v. 5-6). With this manner, the review Committee of the original Definition not only achieved to make the Cyrillian origin of the new dyophysite formula irrefutable in the text of the final Definition, but also strongly highlighted its intimate and inseparable relationship with the double perfection, as, according with what we have said, similarly occurred in the Confession of Basil of Seleucia at the Endemousa Synod in In other words, the dyophysite formula of the Definition of Chalcedon one and the same Christ known in two natures does not mean for the Fathers of the Fourth Ecumenical Council anything more than the perfection of the one and the same person, the incarnate Word, in divinity and in humanity, so as to exclude the Nestorian division or the Monophysite confusion of the two natures, of divinity and of humanity, in Christ. Moreover, this also is clearly underlined by the four adverbs («ἀσυγχύτως, Λέοντος δύο φύσις εἶναι ἡνωμένας ἀτρέπτως καί ἀμερίστως καί ἀσυγχύτως ἐν τῷ Χριστῷ». 38 See G. D. Martzelos, op. cit., pp. 175 f., See also op. cit., p. 207 f. 40 See also G. D. Martzelos, Ἡ Χριστολογία τοῦ Βασιλείου Σελευκείας καί ἡ οἰκουμενική σημασία της, P. Pournaras Pub., Thessaloniki 1990, p. 242 f. [13]
15 ἀτρέπτως, ἀδιαιρέτως, ἀχωρίστως» - unconfusedly, immutably, undivisibly, inseparably ) inserted in the dyophysite formula of the Definion of Chalcedon. It is characteristic that the Fathers of the Fifth Ecumenical Council (553) understand the dyophysite formula of the Definition of Chalcedon in the same sense, not only stressing its anti- Nestorian, but also its anti-monophysite meaning. As explicitly mentioned in their Definition, If anyone using the expression in two natures, does not confess that our one Lord Jesus Christ is known in divinity and humanity, so as to designate by that expression the difference of the natures of which the ineffable union is unconfusedly made but shall take the expression with regard to the mystery of Christ in a sense so as to divide the parties, or recognising the two natures in the same our Lord Jesus Christ, God the Word incarnated, does not content himself with taking only in a theoretical manner the difference of the natures which is not destroyed by the union between them let him be anathema 41. Just as much as the Fathers of Fourth Ecumenical Council, the Fathers of the Fifth Ecumenical Council fully accord as to the Cyrillian meaning of the dyophysite formula of the Definition of Chalcedon and in this respect there is no doctrinal differentiation between the Fourth and the Fifth Ecumenical Councils, as certain Western researchers have erroneously assumed See Mansi IX, 381; ACO IV,1, 242: «Εἴ τις ἐν δύο φύσεσι λέγων μή ὡς ἐν θεότητι καί ἀνθρωπότητι τόν ἕνα κύριον ἡμῶν Ἰησοῦν Χριστόν γνωρίζεσθαι ὁμολογεῖ, ἵνα διά τούτου σημάνῃ τήν διαφοράν τῶν φύσεων, ἐξ ὧν ἀσυγχύτως ἡ ἄφραστος ἕνωσις γέγονεν ἀλλ ἐπί διαιρέσει τῇ ἀνά μέρος τήν τοιαύτην λαμβάνει φωνήν ἐπί τοῦ κατά Χριστόν μυστηρίου ἤ τόν ἀριθμόν τῶν φύσεων ὁμολογῶν ἐπί τοῦ αὐτοῦ ἑνός κυρίου ἡμῶν Ἰησοῦ Χριστοῦ τοῦ θεοῦ λόγου σαρκωθέντος μή τῇ θεωρίᾳ μόνῃ τήν διαφοράν τούτων λαμβάνει οὐκ ἀναιρουμένην διά τήν ἕνωσιν ὁ τοιοῦτος ἀνάθεμα ἔστω». 42 See indicatively A. von Harnack, Lehrbuch der Dogmengeschichte, 2. Bd. (Die Entwickelung des kirchlichen Dogmas I), Akademische Verlagsbuchhandlung von J. C. B. Mohr (Paul Siebeck), Freiburg i. B , p. 36 f., 399; Al. Grillmeier, «Vorbereitung des Mittelalters. Eine Studie über das Verhältnis von Chalkedonismus und Neu-Chalkedonismus in der lateinischen Theologie von Boethius bis zu Gregor dem Grossen», in A. Grillmeier H. Bacht, Das Konzil von Chalkedon, Bd. II, Würzburg 1953, p. 563; R. Devreesse, Essai sur Théodore de Mopsueste, Studi e Testi 141, Cittá del Vaticano 1948, p. 220; Ch. Moeller, «Le chalcédonisme et le néo-chalcédonisme en Orien de 451 à la fin du VI e siècle», in Α. Grillmeier H. Bacht, Das Konzil von Chalkedon, Bd. I, Würzburg 1952, p. 647; see also Metropolitan Meletius of [14]
16 Conclusion After everything that we have said, we believe that it has been made clear that, even though the dyophysite formula in the Definition of Chalcedon was initially in all probability of Nestorian origin, nevertheless following the step taken by Basil of Seleucia from the Antiochian side to link it genetically and according to content with the Christology of Cyril of Alexandria, was unconditionally used by the Fathers of the Fourth Ecumenical Council in the Definition they drafted, not only with an anti- Monophysite, but also with an anti-nestorian meaning. In other words, the Fathers of Chalcedon in the most crucial and decisive point of their Definition of Faith, i.e. in its dyophysite formula, in order to express clearly the Orthodox Christology, did not hesitate to use the terminology that even Nestorius used, after they first have given it an entirely Cyrillian content, thus bridging the gap between the Antiochian and Alexandrian Christological terminologies. This fact, although not unique in the history of Orthodox theology, however, highlights in the most eloquent and impressive way the theological principle that prevails within the entire Orthodox tradition, according to which what interests the Church Fathers in the formulation of the Orthodox doctrine is not the terminology itself or its origin, but the meaning it obtains, so as to be in the position to express clearly the Orthodox doctrine. In this regard the dyophysite formula of the Definition of Chalcedon is indeed one of the most characteristic examples in the history of the Church. Nicopolis, Ἡ Πέμπτη Οἰκουμενική Σύνοδος (Εἰσαγωγή, Πρακτικά, Σχόλια), Athens 1985, p. 131 f. [15]
þÿ º±Ä±³É³ Ä Â Å ÆÅùĹº Â
Neapolis University HEPHAESTUS Repository School of Health Sciences http://hephaestus.nup.ac.cy Articles 2014 þÿ º±Ä±³É³ Ä Â Å ÆÅùĹº  þÿæìá¼ Å»±Â Ä Å ŒÁ Å Ä Â ±» Martzelos, Georgios http://hdl.handle.net/11728/7676
The Cyrillian Character of the Chalcedonian Definition of Faith»,
Neapolis University HEPHAESTUS Repository School of Health Sciences http://hephaestus.nup.ac.cy Articles 2000 The Cyrillian Character of the Chalcedonian Definition of Faith», Martzelos, Georgios http://hdl.handle.net/11728/7711
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 1: Elements of Syntactic Structure Το περιεχόμενο του μαθήματος διατίθεται με άδεια
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
Right Rear Door. Let's now finish the door hinge saga with the right rear door
Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Συντακτικές λειτουργίες
2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης
Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ «ΠΑΙ ΙΚΟ ΒΙΒΛΙΟ ΚΑΙ ΠΑΙ ΑΓΩΓΙΚΟ ΥΛΙΚΟ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που εκπονήθηκε για τη
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Chapter 2 * * * * * * * Introduction to Verbs * * * * * * *
Chapter 2 * * * * * * * Introduction to Verbs * * * * * * * In the first chapter, we practiced the skill of reading Greek words. Now we want to try to understand some parts of what we read. There are a
ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΕΘΝΩΝ ΣΧΕΣΕΩΝ & ΟΙΚΟΝΟΜΙΑΣ
ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΕΘΝΩΝ ΣΧΕΣΕΩΝ & ΟΙΚΟΝΟΜΙΑΣ Ενότητα 1β: Principles of PS Ιφιγένεια Μαχίλη Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Galatia SIL Keyboard Information
Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
þÿ»±íº »¹ Áà  : É º±¹ Ä þÿ Á³ Ä Å : ¼¹± ºÁ¹Ä¹º ±À Ä ¼
Neapolis University HEPHAESTUS Repository School of Health Sciences http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ»±íº »¹ Áà  : É º±¹ Ä þÿ Á³ Ä Å : ¼¹± ºÁ¹Ä¹º ±À Ä ¼ þÿ Ä Æ Á Â, Á ÃÄ Â þÿ Á̳Á±¼¼±
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 4: English a Language of Economy Το περιεχόμενο του μαθήματος διατίθεται με άδεια
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α. Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:.
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α 2 ειδήσεις από ελληνικές εφημερίδες: 1. Τα Νέα, 13-4-2010, Σε ανθρώπινο λάθος αποδίδουν τη συντριβή του αεροσκάφους, http://www.tanea.gr/default.asp?pid=2&artid=4569526&ct=2 2. Τα Νέα,
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014
LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Συστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Πτυχιακή Εργασία. Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΔΙΑΤΡΟΦΗΣ ΚΑΙ ΔΙΑΙΤΟΛΟΓΙΑΣ Πτυχιακή Εργασία Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους Εκπόνηση:
Démographie spatiale/spatial Demography
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»
I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Ι Ο Ν Ι Ω Ν Ν Η Σ Ω Ν ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : ΑΤΕΙ Ιονίων Νήσων- Λεωφόρος Αντώνη Τρίτση Αργοστόλι Κεφαλληνίας, Ελλάδα 28100,+30
Code Breaker. TEACHER s NOTES
TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,
Chapter 29. Adjectival Participle
Chapter 29 Adjectival Participle Overview (29.3-5) Definition: Verbal adjective Function: they may function adverbially or adjectivally Forms: No new forms because adverbial and adjectival participles
Επιβλέπουσα Καθηγήτρια: ΣΟΦΙΑ ΑΡΑΒΟΥ ΠΑΠΑΔΑΤΟΥ
EΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟ ΤΕΧΝΟΛΟΓΙΚΟ ΙΔΡΥΜΑ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : Λεωφ. Αντ.Τρίτση, Αργοστόλι Κεφαλληνίας Τ.Κ. 28 100 τηλ. : 26710-27311 fax : 26710-27312
department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Chapter 3: Ordinal Numbers
Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ
Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η προβολή επιστημονικών θεμάτων από τα ελληνικά ΜΜΕ : Η κάλυψή τους στον ελληνικό ημερήσιο τύπο Σαραλιώτου
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
þÿ ¹µ ½  ±À±³É³ À±¹ ¹Î½ º±Ä þÿ ͼ²±Ã Ä Â ³ Â Ä Å
Neapolis University HEPHAESTUS Repository School of Law and Social Sciences http://hephaestus.nup.ac.cy Master Degree Thesis 2016 þÿ ¹µ ½  ±À±³É³ À±¹ ¹Î½ º±Ä þÿ ͼ²±Ã Ä Â ³ Â Ä Å 1 9 8 0 þÿ ¼ à ½ ÅÂ,
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Iohannes Damascenus - De theologia
This text belongs to the Thesaurus Linguae Graecae (TLG ), a Research Center at the University of California, Irvine, which digitized it and owns the relevant Copyright. On May 15, 2008, Prof. M. Pantelia,
ΑΓΓΛΙΚΑ IV. Ενότητα 6: Analysis of Greece: Your Strategic Partner in Southeast Europe. Ιφιγένεια Μαχίλη Τμήμα Οικονομικών Επιστημών
Ενότητα 6: Analysis of Greece: Your Strategic Partner in Southeast Europe Ιφιγένεια Μαχίλη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 11: The Unreal Past Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Case 1: Original version of a bill available in only one language.
currentid originalid attributes currentid attribute is used to identify an element and must be unique inside the document. originalid is used to mark the identifier that the structure used to have in the
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ Πρόγραμμα Μεταπτυχιακών Σπουδών «Επιστήμη και Τεχνολογία Τροφίμων και Διατροφή του Ανθρώπου» Κατεύθυνση: «Διατροφή, Δημόσια
Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Business English Ενότητα # 9: Financial Planning Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 7: More about gerunds Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.
Θέμα διπλωματικής εργασίας: «Από το «φρενοκομείο» στη Λέρο και την Ψυχιατρική Μεταρρύθμιση: νομικό πλαίσιο και ηθικοκοινωνικές διαστάσεις»
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΕΣ ΙΑΤΡΙΚΗΣ & ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΤΜΗΜΑΤΑ ΝΟΜΙΚΗΣ & ΘΕΟΛΟΓΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΥΓΧΡΟΝΕΣ ΙΑΤΡΙΚΕΣ ΠΡΑΞΕΙΣ: ΔΙΚΑΙΙΚΗ ΡΥΘΜΙΣΗ ΚΑΙ ΒΙΟΗΘΙΚΗ
3.4 Αζηίεξ ημζκςκζηήξ ακζζυηδηαξ ζημ ζπμθείμ... 64 3.4.1 Πανάβμκηεξ πνμέθεοζδξ ηδξ ημζκςκζηήξ ακζζυηδηαξ... 64 3.5 οιαμθή ηςκ εηπαζδεοηζηχκ ζηδκ
2 Πεξηερόκελα Δονεηήνζμ πζκάηςκ... 4 Δονεηήνζμ δζαβναιιάηςκ... 5 Abstract... 6 Πενίθδρδ... 7 Δζζαβςβή... 8 ΘΔΩΡΗΣΙΚΟ ΜΔΡΟ... 12 Κεθάθαζμ 1: Θεςνδηζηέξ πνμζεββίζεζξ βζα ηδκ ακζζυηδηα ζηδκ εηπαίδεοζδ...
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
εἶμι, φημί, Indirect Discourse Intensive Classical Greek Prof. Kristina Chew June 28, 2016
εἶμι, φημί, Indirect Discourse Intensive Classical Greek Prof. Kristina Chew June 28, 2016 Conditional Relative Clauses relative clauses referring to an indefinite person or thing (whoever, whatever, anyone,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ του Γεράσιμου Τουλιάτου
ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΚΑΠΝΙΣΤΙΚΕΣ ΣΥΝΗΘΕΙΕΣ ΓΟΝΕΩΝ ΚΑΙ ΕΠΙΡΡΟΗ ΤΟΥΣ ΣΤΗΝ ΕΝΑΡΞΗ ΤΟΥ ΚΑΠΝΙΣΜΑΤΟΣ ΣΤΟΥΣ ΕΦΗΒΟΥΣ Ονοματεπώνυμο Φοιτήτριας: Χριστοφόρου Έλενα
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας
Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί