Modeling and management of run off erosion

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Modeling and management of run off erosion"

Transcript

1 Modeling and management of run off erosion Naxos, 5 September 2016 Dr. Dr. MSc Evelpidou Niki As. Professor

2 GEOGRAPIC INFORMATION SYSTEMS (G.I.S.)

3 What are the G.I.S.? Software that utilizes the capabilities of computers: Storing Presentation Data management Data analysis Direct or indirect geographical distribution G.I.S

4 Raster & vector data Basic characteristics Raster Digital images (maps, aerial photos, satellite images or even photographs) Vector Digitized data (points, lines, surfaces)

5 Coordinates & Scale Basic characteristics O L The scale of a map in GIS has no upper or lower bound. It is restrained by the scale of the primary data.

6 Basic principles of operation concepts Information layers Points Lines Areas Raster 3D relief The correct order of information layers ensures that no object of the map will be covered by others.

7 Geographic search Finding the residents within a radius of 5 Km from a square Finding the drillings within a distance of 9 Km from the shore Finding the drillings (of a depth greater than 15 m), within a distance of 9 Km from the shore building blocks based on a percentage of building or population density, or... & classification of these Selection of locations that are located in erodible rocks or within a land use type A, or Measurements General characteristics Management of objects through coordinates Distances (a village from the shoreline or from another point) Length (road network section, fault,.) Perimeter (of a settlement, ) Area (land use, geological formations, ) Direct transfer and presentation of data in different metric or projection systems

8 Visualization of data General characteristics Browsers Through known software (e.g. excel) Thematics Through known software (e.g. VBasic)

9 Spatial analysis Thematic cartography Methods of Thematic Cartography Ranges Bar charts Pie charts Graduated symbols Dot density Individual values Grid

10 Thematic cartography Data analysis

11 Find, Search & Find selections Spatial analysis Basic operations of analysis / find objects Find data based on descriptive data With precise wording of record Without precise wording of record Ability to find data based on spatial information Identifying selected object on the map or database

12 Spatial analysis SQL search SQL Search Combining more than one information layer Combining descriptive and spatial information Setting multiple criteria Setting rules for the form of response (e.g. order of display)

13 Spatial analysis Modifying objects Split objects based on other objects Split Erase Erase outside

14 Creation of buffer zones Spatial analysis 2 2 ) )

15 Spatial analysis Updating a database Updating the database based on: " " " " " " " ( Km " " " " " " " " " " " " " " " " """ " " "" " " " " " " " " " "" " " " " " " " " Geographic relation " " " "

16 Updating columns of a database Quantitative Analysis Updating the database Through another database With geographic data (area, length, geographic coordinates, etc.)

17 Quantitative Analysis Creating graphs Statistical analysis of data imported or produced in a GIS

18 Quantitative Analysis SQL search The SQL search provides a subset of the existing data In these we can define: The way of organization of records. The way of data combination.

19 EXAMPLES OF G.I.S. APPLICATION IN SECTORS OF SOCIETY

20 ΕΦΕΣΣΟΥ ΕΦΕΣΣΟΥ Examples of G.I.S. application in sectors of society Land uses (in an urban area) Ν 50 Γ. ΠΑΠΑΝΔΡΕΟΥ 17 ΩΠΗΣ road network Σχολείο building blocks Δημοτικό Νεκροταφείο 1ο etc. Νηπ/γείο Σχολείο ΠΛΑΤΕΙΑ ΚΩΝΣΤΑΝΤΙΝΟΥΠΟΛΕΩΣ Γ. ΠΑΠΑΝΔΡΕΟΥ 210 Σχολείο Σχολικά κτίρια ΠΛΑΤΕΙΑ ΚΩΝΣΤΑΝΤΙΝΟΥΠΟΛΕΩΣ ΔΗΜΟΣ Οικοδομικά τετράγωνανεασ ΦΙΛΑΔΕΛΦΕΙΑΣ ΠΑΠΑΦΛΕΣΣΑ ΒΟΥΡΝΟΒΑ ΝΕΑΠΟΛΕΩΣ ΑΝΔΡΙΑΝΟΥ ΠΡΕΒΕΖΗΣ Δημοτικό Νεκροταφείο ΛΕΣΒΟΥ ΚΟΙΜΗΣΕΩΣ ΘΕΟΤΟΚΟΥ ΥΨΗΛΑΝΤΟΥ Δ. ΘΕΟΤΟΚΟΠΟΥΛΟΥ ΑΝΘΕΩΝ ΣΟΛΩΜΟΥ ΘΕΜ. ΣΟΦΟΥΛΗ 209 ΜΗΔΕΙΑΣ ΜΑΓΝΗΣΙΑΣ ΔΙΓΕΝΗ ΕΘΝΙΚΗ ΟΔΟΣ ΑΘΗΝΩΝ - ΛΑΜΙΑΣ ΜΗΔΕΙΑΣ ΣΑΡΑΝΤΑ ΕΚΚΛΗΣΙΩΝ ΑΓ. ΤΡΙΑΔΟΣ ΕΠΤΑΛΟΦΟΥ ΣΟΛΩΜΟΥ ΚΥΖΙΚΟΥ ΚΡΕΣΤΑΙΝΗΣ ΘΕΜ. ΣΟΦΟΥΛΗ ΔΙΓΕΝΗ ΣΟΛΩΜΟΥ ΑΝΤΙΓΟΝΗΣ ΓΡ. ΛΑΜΠΡΑΚΗ ΦΙΛΙΠΠΟΥ ΔΡΑΜΑΣ Π. ΜΕΛΑ ΧΡΥΣΟΣΤΟΜΟΥ ΣΜΥΡΝΗΣ ΠΑΠΑΔΙΑΜΑΝΤΗ ΞΕΝΟΠΟΥΛΟΥ ΚΙΡΚΗΣ ΑΝΑΞΑΓΟΡΑ ΦΛΕΜΙΓΚ Σχολικά κτίρια ΙΑΣΩΝΙΔΗ ΣΤΡΑΤ. ΠΑΠΑΓΟΥ ΙΩΝΙΑΣ 185 Δημοτικό γυμναστήριο Ζωολογικός κήπος ΑΝΑΞΑΓΟΡΑ ΔΩΔΕΚΑΝΗΣΟΥ Δημοτικό γυμναστήριο Μνημείο/Μουσείο Μικρασιατών Δημοτικό Νεκροταφείο Πνευματικό κέντρο Σχολή Μετεωρολογικός σταθμός Αστυνομικών Γκαράζ Σχολή Αστυνομικών α Πεζόδρομος α ΑΕΚ α 17 Κέντρο διασκέδασης ΑΕΚ α Μονοπάτι β ε 448γ η Εκτός σχεδίου περιοχή δ Α 1 Β Δ Σχολείο α 55 Kallithea: Building blocks & Road network. The direction of ΚΟΙΜΗΣΕΩΣ ΘΕΟΤΟΚΟΥ 38 uses of building blocks 36 ΤΡΑΠΕΖΟΥΝΤΟΣ ΟΤΟΚΟΥ ΣΙΝΩΠΗΣ ΤΡΑΛΛΕΩΝ Ζωολογικός κήπος ΤΡΑΠΕΖΟΥΝΤΟΣ Μετεωρολογικός σταθμός ΚΑΙΣΑΡΙΑΣ Κένταυρος Σχολείο 39 ΤΥΑΝΩΝ ΥΠΟΜΝΗΜΑ ΚΑΙΣΑΡΙΑΣ Ποτάμι uses - ownership of buildings Χώροι πρασίνου Παιδική χαρά ` Ζωολογικός κήπος Σχολείο Γήπεδο ΕΦΕΣΣΟΥ ΝΙΓΔΗΣ ΕΦΕΣΣΟΥ ΕΦΕΣΣΟΥ ΜΟΥΔΑΝΙΩΝ ΒΡΥΟΥΛΩΝ ΤΥΑΝΩΝ ΚΑΒΑΔΕΛΑ 40 ΝΙΚΟΜΗΔΕΙΑΣ Nea Filadelfia: Building travel blocks of - vehicles Land Uses is noted. ΤΥΑΝΩΝ ΖΑΪΜΗ ΝΙΚΑΙΑΣ ΔΕΚΕΛΙΑΣ ΠΑΝΟΡΜΟΥ ΒΑΣ. ΑΛΕΞΑΝΔΡΟΥ ΜΕΡΣΙΝΗΣ ΝΙΚΑΙΑΣ ΦΩΚΩΝ ΙΚΟΝΙΟΥ ΝΙΚΑΙΑΣ ΑΧΑΪΑΣ 234 ΘΕΣΠΡΩΤΙΑΣ 271 ΛΥΚΟΥΡΓΟΥ 502 ΦΛΕΜΙΓΚ ΑΓ. ΜΑΡΙΝΑ ΧΑΝΙΩΝ 243β 239 ΣΟΥΛΙΟΥ ΡΙΜΙΝΙ 240 ΣΕΡΡΩΝ ΜΩΡΑΪΤΙΝΗ ΚΙΛΚΗΣ ΑΜΦΙΣΣΗΣ ΚΑΒΑΛΑΣ ΣΚΡΑ ΚΥΜΗΣ 349 ΛΑΧΑΝΑ Μετεωρολογικός σταθμός Κένταυρος Σχολείο ΚΑΡΔΙΤΣΗΣ ΧΙΟΥ 348 Σχολή Αστυνομικών ( ΑΡΤΗΣ 357 ΑΜΜΟΧΩΣΤΟΥ ΡΟΔΟΥ ΒΕΝΙΖΕΛΟΥ χιλιόμετρα

21 Examples of G.I.S. application in sectors of society Land uses (in an urban area) Attica / Panepistimioupoli

22 Examples of G.I.S. application in sectors of society Land uses (in an urban area) Acharnai / Attica

23 Examples of G.I.S. application in sectors of society Infrastructure networks Water supply Sewage network Irrigation network etc. Φυσικογεωγραφικά / Περιβαλλοντικά χαρακτηριστικά Κύριος αγωγός νερού Αγωγός αρδευτικού δικτύου Υδροληψία ) Δεξαμενή 4 Αντλιοστάσιο Διατομές Διατομή φ 63 Διατομή φ 90 ) ) Διατομή φ 110 Διατομή φ 140 Διατομή φ 160 ) Διατομή φ 200 Ανθρωπογενή χαρακτηριστικά ) Όρια Δήμων Χρήσεις Γης Δάσος Φρύγανα Υδρόβια βλάστηση Αμμώδης παραλία 4 ) Σταθεροποιημένες θίνες Ελαιώνες Καλλιέργειες Λίμνη Οικισμός

24 Examples of G.I.S. application in sectors of society Environmental characteristics 700 Διβαράτα ' 131 Καραβόμυλος 00 Αγία Ευφημία ,0 α Δυ νατή Όρμ.

25 Examples of G.I.S. application in sectors of society Geological Geomorphological characteristics

26 Examples of G.I.S. application in sectors of society Three-dimensional maps

27 Examples of G.I.S. application in sectors of society Distribution of fieldwork sites

28 Examples of G.I.S. application in sectors of society Monitoring of flood events Density Frequency Ranges Ranges 31 to 331 (219) Basins 5,4 to by 19 Class (228) Drainage network analysis 19 to 31 (218) 4,1 to 5,4 (235) 1 12 (685) to 19 (215) 3,2 to 4,1 (181) 2 (160) 1 to 12 (249) 0,5 to 3,2 (257) 3 (39) 4 (13) 0 5 (2) (1) 3 3 ydrological balance analysis Automatic water level monitoring and notification of potential flood event Km Km Definition of risk zones Economic damage * assessment * after flood events based on land use Km Creation of scenarios * Classification of drainage network per class Frequency Drainage density of drainage network

29 Examples of G.I.S. application in sectors of society Analysis of visibility areas of a pointof flood events Examples: From which points of the island, a selected area is visible (e.g. a landfill, a quarry, etc.). To mark segments along a route, where the point of arrival is visible. Etc. Ανάγλυφο Ν.Νάξου (m) Χάρτης ορατότητας από το σημείο Α

30 EROSION RISK MODEL

31 ow to do that? What do we expect from a model? EROSION RISK MODEL LET S BUILD ONE ow to start? Can I do it? Sounds difficult task!

32 Calculation of erosion risk The basic stages of methodology For the creation of an erosion risk map, a series of stages are followed: Definition of parameters affecting erosion risk Data collection Definition of input & output variables Calculation of parameters Establishment of logical rules amongst variables Application of logical rules Analysis and presentation of results

33 Calculation of erosion risk The basic stages of methodology For the creation of an erosion risk map, a series of stages are followed: Definition of parameters affecting erosion risk Data collection Definition of input & output variables Calculation of parameters Establishment of logical rules amongst variables Application of logical rules Analysis and presentation of results Sounds still complicated!

34 Ok! Let s Define the parameters affecting erosion risk

35 Calculation of erosion risk The basic stages of methodology Data collection: Stereoscopic observation of aerial photos Field work Data collection from maps and literature Analysis of geological characteristics Analysis of tectonic characteristics Analysis of topographic characteristics Analysis of hydrographic characteristics Analysis of land uses

36 Calculation of erosion risk The basic stages of methodology Define the shape and size of the smallest geographic entity, in which erosion risk will be calculated.

37 Calculation of variables Definition of shape and size of smallest geographic entity e.g. Grid: For the calculation of variables, a grid is created, of specific dimensions e.g. 500x500 m, with the exception of those adjacent to the coastline. The dimensions of cells are defined by their shape. Of course, the size of cells can be modified depending on the accuracy of primary data. Application

38 Calculation of erosion risk The basic stages of methodology Input variables, e.g. Vulnerability Morphological slope ydrographic density

39 Calculation of erosion risk The basic stages of methodology Development of primary data

40 Application Primary data Next step is the creation of primary information layers Vulnerability: Vulnerability is calculated by classifying rocks based on their resistance to erosion. The shape and size of rock grains define the permeability of the rock formation. This factor controls the quantity of surface flowing water. Finally, the presence and type of vegetation works as a negative factor in vulnerability.

41 Application Primary data The first step is the creation of primary information layers Vulnerability: In order to calculate vulnerability, we need the following layers: Geological formations, expresses as polygons, whose database will include lithology, age and area. Tectonic lines, expresses as polylines, whose database will include the type (fault, overthrust, etc.) and length. Land cover, expresses as polygons, whose database will include the type of soil, the thickness and the area. Land uses, expresses as polygons, whose database will include the type of land use and the area. Climatological data of the area are also necessary.

42 Calculation of variables Application Vulnerability: The database of the grid should be updated with: The percentage of area of each geological formation, The length and number of tectonic lines, The percentage of area of each land cover and The percentage of area of each land use. Based on the aforementioned and the climatic data, it is calculated how vulnerable each cell is in relation to its neighboring. Through successive selections, the formations with the maximum and minimum vulnerability are found. The formation with maximum vulnerability receives value 1, while the formation with minimum vulnerability receives value 0, and the rest receive intermediate values.

43 Application Primary data Slope: Apart from the value of morphological slope, other important factors are its shape, its direction and its length. It is clear that the value of slope is a defining factor for the intensity of erosion.

44 Application Primary data Morphological Slopes: Morphological slopes are calculated based on topography, therefore the information layer of contours is necessary. Contours, are expressed as polylines, whose database will include the altitude and length.

45 Application Primary data Drainage density: It is directly related with the quantity of surface water and the infiltration capability. In general, the drainage density is high on the cells that include vulnerable and impermeable formations and low in the cells that include massive, permeable formations. It is also proven that drainage density is increased in proportion to the altitude and the average slope of the cell.

46 Application Primary data Drainage density: Drainage density is secondarily calculated by the relief and the drainage network, therefore the information layers of drainage basins and network are necessary. Drainage basins, expresses as surfaces, whose database will include the number of branches, the total length of branches and the area of the basin. Drainage network, expressed as polylines, whose database will include the length and class.

47 Calculation of variables Calculation of variables Application

48 Calculation of erosion risk The basic stages of methodology The calculation of variables is relatively easy task because GIS is doing most of the job. Variables are calculated within one grid for each cell, meaning for each cell a triad of variables exists, which is used for the production of different thematic maps.

49 Calculation of erosion risk The basic stages of methodology In thematic maps, each variable is classified in three categories Low, Medium and igh, which constitute the input variables.

50 Application Input variables The normalized values of the 3 variables are divided in three ranges, which are presented in thematic maps. Vulnerability is divided with the method Equal Ranges in three categories Low, Medium and igh. Respectively, morphological slope is divided, while drainage density is divided with the method Equal Values.

51 Calculation of erosion risk The basic stages of methodology Subsequently, the appropriate logical rules are adopted for the calculation of the output variable, which are the different degrees of erosion risk that is classified as Very low, Low, Medium and igh.

52 Application Logical rules and output variable The adoption and application of rules follows The application of logical rules transforms the input variables to the output variable, which is the erosion risk. Their application is accomplished through successive selections and updates. The output variables are presented also through a thematic map.

53 Vulnerability Slope Drainage Erosion Density If Διαβρωτικότητα Is 0.8 igh - 1 & Κλίση Is igh Then Risk Is Index Vulnerability Slope ydrographic Erosion Mediu Υδρο/φική If Διαβρωτικότητα Is igh & Κλίση Is & Is igh Then Risk Is m Πυκνότητα density Index igh igh Erosion risk If Διαβρωτικότητα Is igh & Κλίση Is Low Then Erosion Risk Index Is Medium If Διαβρωτικότητα Is Mediu m & Κλίση Is igh Then Erosion Risk Index Is Medium If Διαβρωτικότητα Is 0 ( Mediu m Km & Κλίση Is Mediu m &( 0 Υδρο/φική Πυκνότητα Km Is igh Then Erosion Risk Index ( Km Is Medium If Διαβρωτικότητα Is Mediu & Κλίση Is Low Erosion Υδρο/φική & Risk m Πυκνότητα igh Is igh Then Medium Low If Διαβρωτικότητα Is Low & Κλίση Is Low Very Low Then Erosion Risk Index Erosion Risk Index Is Is Low Very Low 0 ( Km

54 Summary E R O S I O N R I S K

55 Modeling and management of run off erosion Thank you for your attention! Dr. Dr. MSc Evelpidou Niki As. Professor

Γεωγραφικά Συστήματα Πληροφοριών Βασικά Χαρακτηριστικά

Γεωγραφικά Συστήματα Πληροφοριών Βασικά Χαρακτηριστικά ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΚΑΙ ΓΕΩΠΕΡΙΒΑΛΛΟΝΤΟΣ Γεωγραφικά Συστήματα Πληροφοριών Βασικά Χαρακτηριστικά Δρ. Δρ. MSc Ευελπίδου Νίκη Αναπλ. Καθηγήτρια http://evelpidou.geol.uoa.gr

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΙΟ Τμήμα Μηχανικών Μεταλλείων-Μεταλλουργών ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κιτσάκη Μαρίνα

Διαβάστε περισσότερα

ΥΩΡΟΘΔΣΖΖ ΚΑΣΑΛΛΖΛΩΝ ΘΔΔΩΝ ΔΓΚΑΣΑΣΑΖ Υ.Τ.Σ.Τ. ΜΔ ΣΖ ΥΡΖΖ G.I.S.: ΔΦΑΡΜΟΓΖ ΣΖ ΕΑΚΤΝΘΟ

ΥΩΡΟΘΔΣΖΖ ΚΑΣΑΛΛΖΛΩΝ ΘΔΔΩΝ ΔΓΚΑΣΑΣΑΖ Υ.Τ.Σ.Τ. ΜΔ ΣΖ ΥΡΖΖ G.I.S.: ΔΦΑΡΜΟΓΖ ΣΖ ΕΑΚΤΝΘΟ ΥΩΡΟΘΔΣΖΖ ΚΑΣΑΛΛΖΛΩΝ ΘΔΔΩΝ ΔΓΚΑΣΑΣΑΖ Υ.Τ.Σ.Τ. ΜΔ ΣΖ ΥΡΖΖ G.I.S.: ΔΦΑΡΜΟΓΖ ΣΖ ΕΑΚΤΝΘΟ Φαηδεπαλαγηψηνπ Μ. 1, Οηθνλνκίδεο Γ. 2 θαη Βνπδνχξεο Κ. 3 1 Γεωλόγος, Αριζηοηέλειο Πανεπιζηήμιο Θεζζαλονίκης, 54124,

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΟΛΙΣΘΗΡΟΤΗΤΑ ΚΑΙ ΜΑΚΡΟΥΦΗ ΤΩΝ ΟΔΟΔΤΡΩΜΑΤΩΝ ΚΥΚΛΟΦΟΡΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΟΛΙΣΘΗΡΟΤΗΤΑ ΚΑΙ ΜΑΚΡΟΥΦΗ ΤΩΝ ΟΔΟΔΤΡΩΜΑΤΩΝ ΚΥΚΛΟΦΟΡΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΟΛΙΣΘΗΡΟΤΗΤΑ ΚΑΙ ΜΑΚΡΟΥΦΗ ΤΩΝ ΟΔΟΔΤΡΩΜΑΤΩΝ ΚΥΚΛΟΦΟΡΙΑΣ Χριστοδούλου Αντρέας Λεμεσός 2014 2 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ/ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΤΗΜΑΤΟΛΟΓΙΟΥ, ΦΩΤΟΓΡΑΜΜΕΤΡΙΑΣ ΚΑΙ ΧΑΡΤΟΓΡΑΦΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΧΕΙΡΙΣΗ ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΗΣ

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Spatiotemporal footprint of the WNV in Greece 2010 2012: Analysis & Risk Αssessment in a GIS Εnvironment

Spatiotemporal footprint of the WNV in Greece 2010 2012: Analysis & Risk Αssessment in a GIS Εnvironment Integrated surveillance and control programme for West Nile virus and malaria in Greece (MIS 365280) Spatiotemporal footprint of the WNV in Greece 2010 2012: Analysis & Risk Αssessment in a GIS Εnvironment

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3: 4 Πρόλογος Η παρούσα διπλωµατική εργασία µε τίτλο «ιερεύνηση χωρικής κατανοµής µετεωρολογικών µεταβλητών. Εφαρµογή στον ελληνικό χώρο», ανατέθηκε από το ιεπιστηµονικό ιατµηµατικό Πρόγραµµα Μεταπτυχιακών

Διαβάστε περισσότερα

Εκτίμηση μοντέλου διάβρωσης και στερεοπαροχής στον ταμιευτήρα του φράγματος Πηνειού Νομού Ηλείας

Εκτίμηση μοντέλου διάβρωσης και στερεοπαροχής στον ταμιευτήρα του φράγματος Πηνειού Νομού Ηλείας ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΠΜΣ ΓΕΩΕΠΙΣΤΗΜΕΣ & ΠΕΡΙΒΑΛΛΟΝ Εκτίμηση μοντέλου διάβρωσης και στερεοπαροχής στον ταμιευτήρα του φράγματος Πηνειού Νομού Ηλείας Βιδάλη Μαρία Γεωλόγος Πάτρα, 2013 ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE) EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class

Διαβάστε περισσότερα

ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF FORESTRY AND NATURAL ENVIRONMENT Institute of Mountainous Water Management and Control

ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF FORESTRY AND NATURAL ENVIRONMENT Institute of Mountainous Water Management and Control ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF FORESTRY AND NATURAL ENVIRONMENT Institute of Mountainous Water Management and Control Torrent Basin, Mountainous Watershed Management Dr. Panagiotis Stefanidis

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΟΠΟΓΡΑΦΙΑΣ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ Πτυχιακή Εργασία των Αϊβαλιώτης Κων/νος (ΑΕΜ 902) Τσουρέκας Κων/νος (ΑΕΜ 559)

Διαβάστε περισσότερα

Πεξηβάιινλ θαη Αλάπηπμε ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΓΙΔΠΙΣΗΜΟΝΙΚΟ - ΓΙΑΣΜΗΜΑΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ (Γ.Π.Μ..) "ΠΔΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΣΤΞΗ"

Πεξηβάιινλ θαη Αλάπηπμε ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΓΙΔΠΙΣΗΜΟΝΙΚΟ - ΓΙΑΣΜΗΜΑΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ (Γ.Π.Μ..) ΠΔΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΣΤΞΗ ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΓΙΔΠΙΣΗΜΟΝΙΚΟ - ΓΙΑΣΜΗΜΑΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ (Γ.Π.Μ..) "ΠΔΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΣΤΞΗ" 2 ε ΚΑΣΔΤΘΤΝΗ ΠΟΤΓΧΝ «ΠΔΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΣΤΞΗ ΣΧΝ ΟΡΔΙΝΧΝ ΠΔΡΙΟΥΧΝ» Πεξηβάιινλ

Διαβάστε περισσότερα

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗΣ ΠΡΟΣΤΑΣΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΒΙΩΣΙΜΗ ΑΝΑΠΤΥΞΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΙΕΣΕΩΝ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ

Διαβάστε περισσότερα

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ» ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΟΥΣ ΦΥΣΙΚΟΥΣ ΠΟΡΟΥΣ» «Χωρικά μοντέλα πρόβλεψης αναβλάστησης

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΔΕΙΚΤΩΝ ΚΑΤΑΝΑΛΩΣΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΑ ΑΝΤΛΙΟΣΤΑΣΙΑ ΤΟΥ ΤΜΗΜΑΤΟΣ ΑΝΑΠΤΥΞΕΩΣ ΥΔΑΤΩΝ Γεωργίου

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Ηλεκτρονικός Άτλαντας της Νήσου Λέσβου.

Ηλεκτρονικός Άτλαντας της Νήσου Λέσβου. Ηλεκτρονικός Άτλαντας της Νήσου Λέσβου. Καρανικόλας Νικόλας Α.Π.Θ. Δρ. Παπαδόπουλος Κων/νος ΕΚΕΧΑΚ ΠΕΡΙΛΗΨΗ Η παραγωγή Ατλάντων στην Ελληνική Χαρτογραφική διαδικασία κρίνεται ιδιαίτερα φτωχή τα τελευταία

Διαβάστε περισσότερα

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ

Διαβάστε περισσότερα

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ» I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Προσδιορισμός Χαρακτηριστικών των Λεκανών Απορροής

Προσδιορισμός Χαρακτηριστικών των Λεκανών Απορροής Προσδιορισμός Χαρακτηριστικών των Λεκανών Απορροής της Νήσου Λέσβου με Χρήση ΓΣΠ Αθηνά Κων. Πήτα ΔΙΑΤΡΙΒΗ Που υποβλήθηκε στο Πρόγραμμα Μεταπτυχιακών Σπουδών Περιβαλλοντική Πολιτική και Διαχείριση του Τμήματος

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ

Διαβάστε περισσότερα

Test Data Management in Practice

Test Data Management in Practice Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0

Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0 Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ - ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) "ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ" 2 η ΚΑΤΕΥΘΥΝΣΗ

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Τμήμα Πολιτικών και Δομικών Έργων

Τμήμα Πολιτικών και Δομικών Έργων Τμήμα Πολιτικών και Δομικών Έργων Πτυχιακή Εργασία: Τοπογραφικό διάγραμμα σε ηλεκτρονική μορφή κεντρικού λιμένα Κέρκυρας και κτιρίου νέου επιβατικού σταθμού σε τρισδιάστατη μορφή και σχεδίαση με AutoCAD

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ: ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ: ΠΡΟΣΕΓΓΙΣΗ ΜΕΣΩ ΔΕΙΚΤΩΝ Επιβλέπων: Αθ.Δελαπάσχος

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Περίληψη (Executive Summary)

Περίληψη (Executive Summary) 1 Περίληψη (Executive Summary) Η παρούσα διπλωματική εργασία έχει ως αντικείμενο την "Αγοραστική/ καταναλωτική συμπεριφορά. Η περίπτωση των Σπετσών" Κύριος σκοπός της διπλωματικής εργασίας είναι η διερεύνηση

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Copernicus for Local and Regional Authorities

Copernicus for Local and Regional Authorities S P A C E T E C H N O L O G I E S F O R P U B L I C A D M I N I S T R A T I O N S I N C H A R G E O F C O N T R O L S R E L A T E D T O T H E E L I G I B I L I T Y O F F A R M E R S F O R E U A I D S I

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο την απόκτηση του διπλώματος «Οργάνωση και Διοίκηση Βιομηχανικών Συστημάτων με εξειδίκευση στα Συστήματα Εφοδιασμού

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES, CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Oracle SQL Developer An Oracle Database stores and organizes information. Oracle SQL Developer is a tool for accessing and maintaining the data

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

CYPRUS UNIVERSITY OF TECHNOLOGY. Faculty of Engineering and Technology. Department of Civil Engineering and Geomatics. Dissertation Thesis

CYPRUS UNIVERSITY OF TECHNOLOGY. Faculty of Engineering and Technology. Department of Civil Engineering and Geomatics. Dissertation Thesis CYPRUS UNIVERSITY OF TECHNOLOGY Faculty of Engineering and Technology Department of Civil Engineering and Geomatics Dissertation Thesis GEOSPATIAL TECHNOLOGIES FOR REAL ESTATE AND LAND VALUATION IN CYPRUS

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

ΠΙΛΟΤΙΚΗ ΕΦΑΡΜΟΓΗ ΑΥΤΟΝΟΜΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΛΟΗΓΗΣΗΣ ΓΙΑ ΤΗΝ ΠΑΡΑΓΩΓΗ ΥΨΗΛΗΣ ΑΝΑΛΥΣΗΣ ΟΡΘΟΦΩΤΟΓΡΑΦΙΩΝ ΓΕΩΡΓΙΚΩΝ ΕΚΤΑΣΕΩΝ

ΠΙΛΟΤΙΚΗ ΕΦΑΡΜΟΓΗ ΑΥΤΟΝΟΜΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΛΟΗΓΗΣΗΣ ΓΙΑ ΤΗΝ ΠΑΡΑΓΩΓΗ ΥΨΗΛΗΣ ΑΝΑΛΥΣΗΣ ΟΡΘΟΦΩΤΟΓΡΑΦΙΩΝ ΓΕΩΡΓΙΚΩΝ ΕΚΤΑΣΕΩΝ Σχολή Μηχανικής & Τεχνολογίας Τμήμα Πολιτικών & Μηχανικών Γεωπληροφορικής Μεταπτυχιακή διατριβή ΠΙΛΟΤΙΚΗ ΕΦΑΡΜΟΓΗ ΑΥΤΟΝΟΜΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΛΟΗΓΗΣΗΣ ΓΙΑ ΤΗΝ ΠΑΡΑΓΩΓΗ ΥΨΗΛΗΣ ΑΝΑΛΥΣΗΣ ΟΡΘΟΦΩΤΟΓΡΑΦΙΩΝ ΓΕΩΡΓΙΚΩΝ

Διαβάστε περισσότερα

«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ»

«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ» ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΕΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗ: ΕΔΑΡΜΟΓΕΣ ΤΗΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΟΥΣ ΦΥΣΙΚΟΥΣ ΠΟΡΟΥΣ «ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ιπλωµατική Εργασία του φοιτητή του τµήµατος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου Σχολή Γεωτεχνικών Επιστημών και Διαχείρισης Περιβάλλοντος Μεταπτυχιακή διατριβή Κτίρια σχεδόν μηδενικής ενεργειακής κατανάλωσης :Αξιολόγηση συστημάτων θέρμανσης -ψύξης και ΑΠΕ σε οικιστικά κτίρια στην

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΜΕΛΕΤΗ ΘΕΜΑΤΩΝ ΔΑΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΜΕΛΕΤΗ ΘΕΜΑΤΩΝ ΔΑΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗΣ ΠΡΟΣΤΑΣΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΒΙΩΣΙΜΗ ΑΝΑΠΤΥΞΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Πτυχιακή εργασία ΕΠΙΠΤΩΣΕΙΣ ΤΗΣ ΚΑΚΗΣ ΔΙΑΤΡΟΦΗΣ ΣΤΗ ΠΡΟΣΧΟΛΙΚΗ ΗΛΙΚΙΑ ΜΕ ΑΠΟΤΕΛΕΣΜΑ ΤΗ ΠΑΧΥΣΑΡΚΙΑ Έλλη Φωτίου 2010364426 Επιβλέπουσα

Διαβάστε περισσότερα

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

IMES DISCUSSION PAPER SERIES

IMES DISCUSSION PAPER SERIES IMES DISCUSSION PAPER SERIES Will a Growth Miracle Reduce Debt in Japan? Selahattin mrohorolu and Nao Sudo Discussion Paper No. 2011-E-1 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 2-1-1

Διαβάστε περισσότερα

Χρήση συστημάτων πληροφορικής στην οδική υποδομή

Χρήση συστημάτων πληροφορικής στην οδική υποδομή ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής Χρήση συστημάτων πληροφορικής στην οδική υποδομή Συσχέτιση δεδομένων GPS και χάρτη Βύρωνας Νάκος Καθηγήτης ΕΜΠ bnakos@central.ntua.gr

Διαβάστε περισσότερα

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΜΖΜΑ

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Démographie spatiale/spatial Demography

Démographie spatiale/spatial Demography ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Earthquake, Landslide and Flood Disaster Prevention: the SciNetNatHaz project

Earthquake, Landslide and Flood Disaster Prevention: the SciNetNatHaz project Information: K. Papatheodorou, Project Coordinator, TEI of Central Macedonia, Hellas, www.scinetnathaz.net Earthquake, Landslide and Flood Disaster Prevention: the SciNetNatHaz project K. Papatheodorou

Διαβάστε περισσότερα

ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ

ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ Δ ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΠΡΟΣΤΑΣΙΑΣ ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ Σπουδάστρια: Διαούρτη Ειρήνη Δήμητρα Επιβλέπων καθηγητής:

Διαβάστε περισσότερα

GREECE BULGARIA 6 th JOINT MONITORING

GREECE BULGARIA 6 th JOINT MONITORING GREECE BULGARIA 6 th JOINT MONITORING COMMITTEE BANSKO 26-5-2015 «GREECE BULGARIA» Timeline 02 Future actions of the new GR-BG 20 Programme June 2015: Re - submission of the modified d Programme according

Διαβάστε περισσότερα

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Queensland University of Technology Transport Data Analysis and Modeling Methodologies Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΨΗΦΙΑΚΩΝ Ε ΟΜΕΝΩΝ ΚΑΙ ΜΕΘΟ ΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΤΗΣ ΑΣΚΗΣΗΣ 2

ΠΕΡΙΓΡΑΦΗ ΨΗΦΙΑΚΩΝ Ε ΟΜΕΝΩΝ ΚΑΙ ΜΕΘΟ ΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΤΗΣ ΑΣΚΗΣΗΣ 2 ΠΕΡΙΓΡΑΦΗ ΨΗΦΙΑΚΩΝ Ε ΟΜΕΝΩΝ ΚΑΙ ΜΕΘΟ ΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΤΗΣ ΑΣΚΗΣΗΣ 2 1 Ε ΟΜΕΝΑ Για την Άσκηση σε περιβάλλον ΣΓΠ Arc GIS, δίνονται τα απαραίτητα γεωγραφικά δεδοµένα της λεκάνης του Τιταρήσιου στη θέση Μεσοχώρι.

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

; +302 ; +313; +320,.

; +302 ; +313; +320,. 1.,,*+, - +./ +/2 +, -. ; +, - +* cm : Key words: snow-water content, surface soil, snow type, water permeability, water retention +,**. +,,**/.. +30- +302 ; +302 ; +313; +320,. + *+, *2// + -.*, **. **+.,

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η προβολή επιστημονικών θεμάτων από τα ελληνικά ΜΜΕ : Η κάλυψή τους στον ελληνικό ημερήσιο τύπο Σαραλιώτου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 12: Συνοπτική Παρουσίαση Ανάπτυξης Κώδικα με το Matlab Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα