Generalized Double Star Closed Sets in Interior Minimal Spaces

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Generalized Double Star Closed Sets in Interior Minimal Spaces"

Transcript

1 IOSR Journal of Mathematics (IOSR-JM) e-issn: , p-issn: X. Volume 11, Issue 4 Ver. II (Jul - Aug. 2015), PP Generalized Double Star Closed Sets in Interior Minimal Spaces B. Uma Devi 1 and Dr. S. Somasundaram 2 Department of Mathematics, S. T. Hindu College, Nagercoil, Tamilnadu, India. 1 Department of Mathematics, ManonmaniamSundaranar University, Tirunelveli, Tamilnadu, India. 2 Abstract: The aim of this paper is to introduce and investigate Generalized Double Star Closed set in Interior Minimal spaces. Several properties of these new notions are investigated. Keywords: M-g** Separationspace, Maximal M-g**closed, Maximal M-g**open, Minimal M-g**closed, Minimal M-g** open I. Introduction Norman Levine [1] introduced the concepts of generalized closed sets in topological spaces.closed sets are fundamental objects in a topological space. For example, one can define the topology on a set by using either the axioms for the closed sets or the Kuratowski closure axioms. By definition, a subset A of a topological space X is called generalized closed if cla U whenever A U and U is open. This notion has been studied by many topologists because generalized closed sets are not only natural generalization of closed sets but also suggest several new properties of topological spaces. Nakaoka and Oda[2,3,4] have introduced minimal open sets and maximal open sets, which are subclasses of open sets. Later on many authors concentrated in this direction and defined many different types of minimal and maximal open sets. Inspired with these developments we further study a new type of closed and open sets namely Minimal M-g**Open sets, Maximal M-g** Closed sets. In this paper a space X means a Minimal space (X, M). For any subset A of X its M-interior and M-closure are denoted respectively by the symbols M-int(A) and M-cl(A). II. Preliminaries Definition 1A is said to be M-g ** closed (M-generalized double star closed) if M-cl(A) U whenever A U and U is M-g*open. Definition2A is said to be M-g ** open(m-generalized double star open) if M-cl(A) U whenever A U and U is M-g*closed. Theorem3EveryM-closed set is M-g**closed. ProofLet A be an M-closed subset of X.Let A U and U be M-g*open.Since A is M-closed, then M-cl(A) =A. So M-cl(A) U.Thus A is M-g**closed. Converse is not true Theorem4If A is M-g**closed and A B M-cl(A), then B is M-g**closed. ProofSince B M-cl(A), M-cl(B) M-cl(A). Let B U and U be M-g*open.Since A B, A is M-g**closed and U is M-g*open. Gives M-cl(A) U. Since B M-cl(A), M-cl(B) M-cl(A). M-cl(B) U.Hence B is M- g**closed. Theorem5EveryM-open set is M-g**open. ProofLet A be a M-open set of X.Then A c is M-closed set. By Theorem3, A c is M-g**closed, then A is M- g**open. Converse is not true Theorem6If A is M-g**open and M-int(A) B A. Then B is M-g**open. ProofA is M-g**open. Hence A c is M-g**closed. Also M-Int(A) B A gives[m-int(a)] c B c A c. So A c B c M-cl(A c ). Thus B c is M-g**closed and hence B is M-g**open. Theorem7IfA and B are M-g**closed sets in X and M-cl(A B) = M-cl(A) M-cl(B), then A B is also M- g**closed set in X. DOI: / Page

2 ProofSuppose that Uis M-g*open and A B U. Then A U and B U.Since A and B are M-g**closed subsets in X,M-cl(A) U and M cl(b) U.Hence M-(A) M-(B) U. GivenM-cl(A B) = M-cl(A) M-cl(B) U. Therefore A B is alsom-g**closed set in X. Definition8A Interior minimal space (X, M) is said to be am-g**t 0 space if for every pair of points x y in X either there existsm-g**open set U such that x U, y U or y U, x U. Theorem9EveryM-T 0 space is M-g**T 0 space but not conversely. Proof is obvious since every M-open set is M-g**open. Definition10An Interior minimal space (X, M) is said to be a M-g**T 1 space if for every pair of points x y in X there existsm-g**open sets U and V such that x U, y U and y V, x V. Theorem11EveryM-T 1 space is M-g**T 1 space. Proof is obvious since every M-open set is M-g**open. Definition12An Interior minimal space(x, M) is said to be a M-g**T 2 space if for every pair of distinct points x, y in X there exists disjointm-g**open sets U and V in X such that U V =. Theorem13EveryM-T 2 space is M-g**T 2 space. Proof is obvious since every M-open set is M-g**open. Theorem14EveryM-g**T 2 space is M-g**T 1 space but not conversely. Proof is obvious from the definitions. Theorem15Any singleton set in an Interior minimal space is either M-semiclosed or M-g**open ProofLet {x} be a singleton set in an Interior minimal space X.If {x} is M-semiclosed, then proof is over.if {x} is not a M-semiclosed set, Then {x} c is not M-semiopen.Therefore X is the only M-semiopen set containing {x} c and{x} c is M-g**closed. Hence {x} is M-g**open. Thus {x} is M-semiclosed or M-g*s*open. Definition16An Interior minimal space X is called M-g**T1 /3 space if every M-gclosed set in X is M-g**closed in X. Theorem17An Interior minimal space X is M-g**T 1/3 if and only if every M-gopen set is M-g**open. ProofLet X be M-g**T 1/3. Let A be M-gopen set.to prove, A is M-g**open.Since A is M-gopen then A c is M- gclosed.thus A c is M-g**closed. [X is M-g**T 1/3 ] givesa is M-g**open.Conversely,Suppose every M-gopen is M-g**open.Then every M-gclosed set is M-g**closed.Hence X is M-g**T 1/3. Definition18An Interior minimal space X is called M-g**T 1/2 space if every M-g**closed set is M-closed. Theorem19An Interior minimal space X is M-g**T 1/2 if and only if every M-g**open set is M-open. ProofLet X be M-g**T 1/2 and let A be M-g**open.Then A c is M-g**closed and so A c is M-closed.Thus A is M- open. Conversely,Suppose every M-g**open set is M-open.Let A be any M-g**closed set.then A c is M-g**open gives A c is M-open and A is M-closed.Thus every M-g**closed set is M-closed set.hence X is M-g**T 1/2. 3. Minimal M-g**open sets and Maximal M-g**closed sets We now introduce Minimal M-g**open sets and Maximal M-g**closed sets in Interior minimal spaces as follows. Definition1A proper nonempty M-g**open subset U of X is said to be a Minimal M-g**open set if any M- g**open set contained in U is or U. RemarkMinimalM-open set and Minimal M-g**open set are independent to each other. Theorem2 (i) Let U be a Minimal M-g**open set and W be am-g**open set. Then U W = or U W. (ii) Let U and V be Minimal M-g**open sets. DOI: / Page

3 Then U V = or U = V. Proof (i) Let U be a Minimal M-g**open set and W be am-g**open set.if U W =, then there is nothing to prove. If U W. Then U W U. Since U is a Minimal M-g**open set, we have U W = U. Therefore U W. (ii) Let U and V be Minimal M-g**open sets. If U V, then U V and V U by (i). Therefore U = V. Theorem3Let U be a Minimal M-g**open set. If x U, then U W for some M-g**open set W containing x. ProofLet U be a Minimal M-g**open set and x U.Let W be any other M-g**open set. U W = or U W. If U W x U x W. Since W is arbitrary, there exists am-g**open set W containing x such that U W. Theorem4Let U be a Minimal M-g**open set.then U = {WW is a M-g**open set of X containing x} for any element x of U. ProofBy Theorem3, and U is a Minimal M-g**open set containing x, then U W for some M-g**open set W containing x.we have U {WW is a M-g**open set of X containing x} U. Thus U = {WW is a M- g**open set of X containing x} U. Theorem5Let V be a nonempty finite M-g**open set. Then there exists at least one (finite) Minimal M- g**open set U such that U V. ProofLet V be a nonempty finite M-g**open set. If V is a Minimal M-g**open set, we may set U = V. If V is not a Minimal M-g**open set, then there exists (finite) M-g**open set V 1 such that V 1 V. If V 1 is a Minimal M-g**open set, we may set U = V 1. If V 1 is not a Minimal M-g**open set, then there exists (finite)mg**open set V 2 such that V 2 V 1. Continuing this process, we have a sequence of M-g**open sets V V 1 V 2 V 3... V k...since V is a finite set, this process repeats only finitely. Then finally we get a Minimal M-g**open set U = V n for some positive integer n. Hence there exists atleast one Minimal M-g**open set U such that U V. [An Interior minimal space X is said to be M-locally finite space if each of its elements is contained in a finite M-g**open set.] Corollary6Let X be am-locally finite space and V be a nonempty M-g**open set. Then there exists at least one (finite) Minimal M-g**open set U such that U V. ProofLet X be a M-locally finite space and V be a nonempty M-g**open set.let x V.Since X is M-locally finite space, we have a finite M-open set V x such that x V x.then V V x is a finite M-g**open set. By Theorem5, there exists at least one (finite) Minimal M-g**open set U such that U V Vx.That is U V V x V. Hence there exists at least one (finite) Minimal M-g**open set U such that U V. Corollary7Let V be a finite Minimal M-open set. Then there exists at least one (finite) Minimal M-g**open set U such that U V. ProofLet V be a finite Minimal M-open set. Then V is a nonempty finite M-g**open set. By Theorem5, there exists at least one (finite) Minimal M-g**open set U such that U V. Theorem8Let U; U λ be Minimal M-g**open sets for any element λ Γ. If U λ Γ U λ, then there exists an element λ Γ such that U = U λ. ProofLet U λ Γ U λ. Then U ( λ Γ U λ ) = U. That is λ Γ (U U λ ) = U.Also by Theorem2 (ii), U U λ = or U = U λ for any λ Γ.Then there exists an element λ Γ such that U = U λ. Theorem9Let U; U λ be Minimal M-g**open sets for any λ Γ. If U = U λ for any λ Γ, then ( λ Γ U λ ) U =. ProofSuppose that ( λ Γ U λ ) U for any λ Γ such that U U λ. That is λ Γ (U λ U). Then there exists an element λ Γ such that U U λ.by Theorem2(ii), we have U = U λ, which contradicts the fact that U U λ for any λ Γ.Hence ( λ Γ U λ ) U =. We now introduce Maximal M-g**closed sets in Interior Minimal spaces as follows. Definition10A proper nonempty M-g**closed set F X is said to be Maximal M-g**closed setif any M- g**closed set containing F is either X or F. DOI: / Page

4 RemarkEvery Maximal M-closed sets are Maximal M-g**closed sets. Generalized Double Star Closed Sets In Interior Minimal Spaces Theorem11A proper nonempty subset F of X is Maximal M-g**closed set if and only if X\F is a Minimal M- g**open set. ProofLet F be a Maximal M-g**closed set. Suppose X\F is not a Minimal M-g**open set. Then there exists amg**open set U X\F such that U X\F. That is F X\U and X\U is am-g**closed set gives a contradiction to F is a Maximal M-g**closed set.so X\F is a Minimal M-g**open set. Conversely, Let X\F be a Minimal M-g**open set. Suppose F is not a Maximal M-g**closed set. Then there exists am-g**closed set E F such that F E X. That is X\E X\F and X\E is am-g**open set gives a contradiction to X\F is a Minimal M-g**open set. Thus F is a Maximal M-g**closed set. Theorem12 (i) Let F be a Maximal M-g**closed set and W be am-g**closed set. Then F W = X or W F. (ii) Let F and S be Maximal M-g**closed sets. Then F S = X or F = S. Proof(i)Let F be a Maximal M-g**closed set and W be a M-g**closed set. If F W = X, then there is nothing to prove.suppose F W X. Then F F W.Therefore F W= F implies W F. (ii) Let F and S be Maximal M-g**closed sets.if F S X, then we have F S and S F by (i).therefore F = S. Theorem13Let F α, F β, F δ be Maximal M-g**closed sets such that F α F β. If F α F β F δ, then either F α = F δ or F β = F δ ProofGiven that F α F β F δ. If F α = F δ then there is nothing to prove. If F α F δ then we have to prove F β = F δ.now F β F δ = F β (F δ X) = F β (F δ (F α F β )(by Theorem12(ii)) = F β ((F δ F α ) (F δ F β )) = (F β F δ F α ) (F β F δ F β ) = (F α F β ) (F δ F β ) (by F α F β F δ ) = (F α F δ ) F β = X F β (Since F α and F δ are Maximal M-g**closed sets by Theorem12(ii), F α F δ = X)= F β. That isf β F δ = F β implies F β F δ. Since F β and F δ are Maximal M-g**closed sets, we have F β = F δ Therefore F β = F δ Theorem14Let F α, F β and F δ be different Maximal M-g**closed sets to each other. Then (F α F β ) (F α F δ ). ProofLet (F α F β ) (F α F δ ) (F α F β ) (F δ F β ) (F α F δ ) (F δ F β )gives(f α F δ ) F β F δ (F α F β ).Since by Theorem12(ii), F α F δ = X and F α F β = X givesx F β F δ X.That is F β F δ. From the definition of Maximal M-g**closed set, we get F β = F δ which gives a contradiction to the fact that F α, F β and F δ are different to each other. Thus(F α F β ) (F α F δ ). Theorem15Let F be a Maximal M-g**closed set and x be an element of F. Then F = { SS is a M-g**closed set containing x such that F S X}. ProofBy Theorem13, and fact that F is a M-g**closed set containing x, we have F {SS is a M-g**closed set containing x such that F S X} F.So we have F = {SS is a M-g**closed set containing x such that F S X}. Theorem16Let F be a Maximal M-g**closed set. If x is an element of X\F. Then X\F E for any M- g**closed set E containing x. ProofLet F be a Maximal M-g**closed set and x is in X\F. E F for any M-g**closed set E containing x.then E F = X (by Theorem12 (ii)). Thus X\F E. Minimal M-g**closed set and Maximal M-g**open set We now introduce Minimal M-g**closed sets and Maximal M-g**open sets in Interior Minimal spaces as follows. Definition17A proper nonempty M-g**closed subset F of X is said to be a Minimal M-g**closed set if any M- g**closed set contained in F is or F. RemarkMinimalM-closed and Minimal M-g**closed set are independent to each other. DOI: / Page

5 Definition18A proper nonempty M-g**open U X is said to be a Maximal M-g**open setif any M-g**open set containing U is either X or U. RemarkMaximalM-open set and Maximal M-g**open set are independent to each other. Theorem19A proper nonempty subset U of X is Maximal M-g**open set if and only ifx\u is a Minimal M- g**closed set. ProofLet U be a Maximal M-g**open set. Suppose X\U is not a Minimal M-g**closed set. Then there exists M- g**closed set V X\U such that V X\U. That is U X\V and X\V is am-g**open set gives a contradiction to U is a Minimal M-g**closed set. Conversely, Let X\U be a Minimal M-g**closed set.suppose U is not a Maximal M-g**open set. Then there exists M-g**open set E U such that U E X. That is X\E X\U and X\E is am-g**closed set which is a contradiction for X\U is a Minimal M-g**closed set.therefore U is a Maximal M-g**closed set. Theorem20 (i) Let U be a Minimal M-g**closed set and W be am-g**closed set. Then U W = or U W. (ii) Let U and V be Minimal M-g**closed sets. Then U V = or U = V. Proof (i) Let U be a Minimal M-g**closed set and W be am-g**closed set. If U W =, then there is nothing to prove.if U W. Then U W U. Since U is a Minimal M-g**closed set, we have U W = U.Therefore U W. (ii) Let U and V be Minimal M-g**closed sets. If U V, then U V and V U by (i). Therefore U = V. Theorem21Let V be a nonempty finite M-g**closed set. Then there exists at least one (finite) Minimal M- g**closed set U such that U V. ProofLet V be a nonempty finite M-g**closed set. If V is a minimal M-g**closed set, we may set U = V.If V is not a Minimal M-g**closed set, then there exists (finite) M-g**closed set V 1 such that V 1 V. If V 1 is a Minimal M-g**closed set, we may set U = V 1.If V 1 is not a minimal M-g**closed set, then there exists (finite)m-g**closed set V 2 such that V 2 V 1. Continuing this process, we have a sequence of M-g**closed sets V V 1 V 2 V 3... V k Since V is a finite set, this process repeats only finitely. Then finally we get a Minimal M-g**closed set U = V n for some positive integer n. Corollary22Let X be a M-locally finite space and V be a nonempty M-g**closed set. Then there exists at least one (finite) Minimal M-g**closed set U such that U V. ProofLet X be a M-locally finite space and V be a nonempty M-g**closed set. Let x V.Since X is M-locally finite space, we have a finite M-open set V x such that x V x. Then V V x is a finite M-g**closed set. By Theorem21, there exists at least one (finite) Minimal M-g**closed set U such that U V V x. That is U V V x V. Hence there exists at least one (finite) Minimal M-g**closed set U such that U V. Corollary23Let V be a finite Minimal M-open set. Then there exists at least one (finite) Minimal M-g**closed set U such that U V. ProofLet V be a finite Minimal M-open set. Then V is a nonempty finite M-g**closed set. By Theorem21,there exists at least one (finite) Minimal M-g**closed set U such that U V. Theorem24Let U; U λ be Minimal M-g**closed sets for any element λ Γ. If U λ Γ U λ, then there exists an element λ Γ such that U = U λ. ProofLet U λ Γ U λ. Then U ( λ Γ U λ ) = U. That is λ Γ (U U λ ) = U. Also by Theorem20(ii), U U λ = or U = U λ for any λ Γ. This implies that there exists an element λ Γ such that U = U λ. Theorem25Let U; U λ be Minimal M-g**closed sets for any λ Γ. If U = U λ for any λ Γ, then ( λ Γ U λ ) U =. ProofSuppose that ( λ Γ U λ ) U. That is λ Γ (U λ U). Then there exists an element λ Γ such that U U λ. By Theorem20(ii), we have U = U λ, which contradicts the fact that U U λ for any λ Γ. Hence ( λ Γ U λ ) U =. DOI: / Page

6 Theorem26A proper nonempty subset F of X is Maximal M-g**open set if and only ifx\f is a Minimal M- g**closed set. ProofLet F be a Maximal M-g**open set. Suppose X\F is not a Minimal M-g**open set. Then there exists M- g**open set U X\F such that U X\F. That is F X\U and X\U is am-g**open set which is a contradiction for F is a Minimal M-g**closed set. Conversely, Let X\F be a Minimal M-g**closed set. Suppose F is not a Maximal M-g**open set. Then there exists M-g**open set E F such that F E X. That is X\E X\F and X\E is am-g**open set which is a contradiction for X\F is a Minimal M-g**closed set. Thus F is a Maximal M-g**open set. Theorem27 (i) Let F be a Maximal M-g**open set and W be am-g**open set. Then F W = X or W F. (ii) Let F and S be Maximal M-g**open sets. Then F S=X or F = S. Proof (i) Let F be a Maximal M-g**open set and W be am-g**open set.if F W = X, then there is nothing to prove. Suppose F W X. Then F F W.Therefore F W = F givesw F. (ii) Let F and S be Maximal M-g**open sets.if F S X, then we have F S and S F by (i). Therefore F = S. Theorem28Let F α, F β, F δ be Maximal M-g**open sets such that F α F β. If F α F β F δ, then either F α = F δ or F β = F δ ProofGiven that F α F β F δ. If F α = F δ then there is nothing to prove. If F α F δ then we have to prove F β = F δ. Now F β F δ = F β (F δ X) = F β (F δ (F α F β )(by Theorem27(ii)) = F β ((F δ F α ) (F δ F β )) = (F β F δ F α ) (F β F δ F β ) = (F α F β ) (F δ F β ) (by F α F β F δ ) = (F α F δ ) F β = X F β. (Since F α and F δ are Maximal M-g**open sets by Theorem27 (ii), F α F δ = X)= F β.that is F β F δ = F β. Thus F β F δ. Since F β and F δ are Maximal M-g**open sets, we have F β = F δ. Therefore F β = F δ. Theorem29Let F α, F β and F δ be different Maximal M-g**open sets to each other. Then (F α F β ) (F α F δ ). ProofLet (F α F β ) (F α F δ ) (F α F β ) (F δ F β ) (F α F δ ) (F δ F β ) (F α F δ ) F β F δ (F α F β ).(Since by Theorem27(ii), F α F δ = X and F α F β = X X F β F δ X F β F δ. From the definition of Maximal M-g**open set it follows that F β = F δ, which is a contradiction to the fact that F α, F β and F δ are different to each other. Therefore (F α F β ) (F α F δ ). Theorem30Let F be a Maximal M-g**open set. If x is an element of X \ F. Then X\F E for any M-g**open set E containing x. ProofLet F be a Maximal M-g**open set and x X\F. E F for any M-g**open set E containing x. Then E F = X by Theorem27(ii).Therefore X\F E. References [1]. F. Nakaoka and N. Oda, On Minimal Closed Sets, Proceeding of Topological spaces Theory and its Applications, 5(2003), [2]. F. Nakaoka and N. Oda, Some Properties of Maximal Open Sets, Int. J. Math. Sci. 21,(2003) [3]. A. Vadivel and K. Vairamanickam, Minimal rgα-open Sets and Maximal rgα-closed Sets, Submitted to Journal of Tripura Mathematical Society [4]. S. Balasubramanian, C. Sandhya and P. A. S. Vyjayanthi, On v-closed sets (In press) ActaCienciaIndica. DOI: / Page

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept

Διαβάστε περισσότερα

Operation Approaches on α-γ-open Sets in Topological Spaces

Operation Approaches on α-γ-open Sets in Topological Spaces Int. Journal of Math. Analysis, Vol. 7, 2013, no. 10, 491-498 Operation Approaches on α-γ-open Sets in Topological Spaces N. Kalaivani Department of Mathematics VelTech HighTec Dr.Rangarajan Dr.Sakunthala

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Intuitionistic Supra Gradation of Openness

Intuitionistic Supra Gradation of Openness Applied Mathematics & Information Sciences 2(3) (2008), 291-307 An International Journal c 2008 Dixie W Publishing Corporation, U. S. A. Intuitionistic Supra Gradation of Openness A. M. Zahran 1, S. E.

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 1 (2011), pp. 61-71 International Research Publication House http://www.irphouse.com A Note on Characterization

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Fuzzifying Tritopological Spaces

Fuzzifying Tritopological Spaces International Mathematical Forum, Vol., 08, no. 9, 7-6 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/imf.08.88 On α-continuity and α-openness in Fuzzifying Tritopological Spaces Barah M. Sulaiman

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II)

ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II) Commun. Korean Math. Soc. 25 (2010), No. 3, pp. 457 475 DOI 10.4134/CKMS.2010.25.3.457 ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II) Ahmed Abd El-Kader Ramadan, Salah El-Deen Abbas, and Ahmed Aref

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ) IFSCOM016 1 Proceeding Book No. 1 pp. 155-161 (016) ISBN: 978-975-6900-54-3 SOME RESULTS ON S α,β AND T α,β INTUITIONISTIC FUZZY MODAL OPERATORS GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

On Annihilator of Fuzzy Subsets of Modules

On Annihilator of Fuzzy Subsets of Modules International Journal of Algebra, Vol. 3, 2009, no. 10, 483-488 On Annihilator of Fuzzy Subsets of Modules Helen K. Saikia 1 and Mrinal C. Kalita 2 1 Department of Mathematics, Gauhati university, Guwahati-781014,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Knaster-Reichbach Theorem for 2 κ

Knaster-Reichbach Theorem for 2 κ Knaster-Reichbach Theorem for 2 κ Micha l Korch February 9, 2018 In the recent years the theory of the generalized Cantor and Baire spaces was extensively developed (see, e.g. [1], [2], [6], [4] and many

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

λρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application;

λρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application; λρ-calculus Yuichi Komori komori@math.s.chiba-u.ac.jp Department of Mathematics, Faculty of Sciences, Chiba University Arato Cho aratoc@g.math.s.chiba-u.ac.jp Department of Mathematics, Faculty of Sciences,

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Strukturalna poprawność argumentu.

Strukturalna poprawność argumentu. Strukturalna poprawność argumentu. Marcin Selinger Uniwersytet Wrocławski Katedra Logiki i Metodologii Nauk marcisel@uni.wroc.pl Table of contents: 1. Definition of argument and further notions. 2. Operations

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

3.2 Simple Roots and Weyl Group

3.2 Simple Roots and Weyl Group 44 CHAPTER 3. ROOT SYSTEMS 3.2 Simple Roots and Weyl Group In this section, we fix a root system Φ of rank l in a euclidean space E, with Weyl group W. 3.2.1 Bases and Weyl chambers Def. A subset of Φ

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition UNIT - I LINEAR ALGEBRA Definition Vector Space : A non-empty set V is said to be vector space over the field F. If V is an abelian group under addition and if for every α, β F, ν, ν 2 V, such that αν

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points Applied Mathematical Sciences, Vol. 2, 2008, no. 35, 1739-1748 Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points S. M. Khairnar and

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ON INTUITIONISTIC FUZZY SUBSPACES

ON INTUITIONISTIC FUZZY SUBSPACES Commun. Korean Math. Soc. 24 (2009), No. 3, pp. 433 450 DOI 10.4134/CKMS.2009.24.3.433 ON INTUITIONISTIC FUZZY SUBSPACES Ahmed Abd El-Kader Ramadan and Ahmed Aref Abd El-Latif Abstract. We introduce a

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Chapter 2. Ordinals, well-founded relations.

Chapter 2. Ordinals, well-founded relations. Chapter 2. Ordinals, well-founded relations. 2.1. Well-founded Relations. We start with some definitions and rapidly reach the notion of a well-ordered set. Definition. For any X and any binary relation

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

CHARACTERIZATION OF BIPOLAR FUZZY IDEALS IN ORDERED GAMMA SEMIGROUPS

CHARACTERIZATION OF BIPOLAR FUZZY IDEALS IN ORDERED GAMMA SEMIGROUPS JOURNAL OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4866, ISSN (o) 2303-4947 www.imvibl.org /JOURNALS / JOURNAL Vol. 8(2018), 141-156 DOI: 10.7251/JIMVI1801141C Former BULLETIN OF

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα