Μαθηματικά στην Πολιτική Επιστήμη:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μαθηματικά στην Πολιτική Επιστήμη:"

Transcript

1 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 3.1 : Απαρίθμηση Συνδυαστική (Ι). Θεόδωρος Χατζηπαντελής

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creativee Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Απαρίθμηση - Συνδυαστική Μέρος Ι

5 Περιεχόμενα ενότητας 1. Συνδυασμοί, Μεταθέσεις, Διατάξεις και Απαρίθμηση. i. Συνδυαστική. ii. Συνδυασμοί. iii. Απαρίθμηση. iv. Διατάξεις. 5

6 Εκλογικό Σύστημα Χάρτης 1: εκλογικό σύστημα κρατών μελών. Evarts Anosovs, Eva-Maria Poptcheva, Giulio Sabbati Members' Research Service 2014 European elections: national rules, Voting system and number of MEPs, November 13,

7 Συνδυαστική 1 Ας πάρουμε το υποσύνολο των χωρών που χρησιμοποιούν το σύστημα κλειστής λίστας. Αυτό είναι ΚΛ ={Βουλγαρία, Ουγγαρία, Γερμανία, Γαλλία, UK, Ισπανία, Πορτογαλία}. Αν θέλουμε να διαλέξουμε 3 από αυτές τις χώρες για να μελετήσουμε το σύστημα τους, αναρωτιόμαστε πόσες είναι οι επιλογές που έχουμε. 7

8 Συνδυαστική 2 Αρκεί να σκεφτούμε ότι πρέπει να σχηματίσουμε όλα τα υποσύνολα μεγέθους 3 από το αρχικό σύνολο που έχει 7 στοιχεία και να μετρήσουμε τον αριθμό τους. Οι δύο αυτοί αριθμοί παίζουν κεντρικό ρόλο στην επιλογή μας. Συμβολίζουμε τον ένα με n (τον πληθικό αριθμό του συνόλου μας, 7 στο παράδειγμα) και τον άλλο με k (ο πληθικός αριθμός του υποσυνόλου, 3 στο παράδειγμα μας). 8

9 Συνδυασμοί 1 Όπως θα δούμε λίγο παρακάτω, ο πληθικός αριθμός του συνόλου όλων των υποσυνόλων μεγέθους 3 από το σύνολο αναφοράς μας μεγέθους 7 (γενικά των υποσυνόλων μεγέθους k από ένα σύνολο μεγέθους n) είναι ίσος με τον αριθμό των συνδυασμών n ανά k [7 ανά 3 στο παράδειγμα] και συμβολίζεται C(n,k). 9

10 Συνδυασμοί 2 Ένας συνδυασμός είναι το υποσύνολο {Βουλγαρία, Ουγγαρία, Γερμανία}. Ένας άλλος το {Βουλγαρία, Γερμανία, Γαλλία}. Υπάρχουν γενικά 35 συνδυασμοί, όπως θα μπορούσαμε να μετρήσουμε αν τους απαριθμήσουμε έναν προς έναν αναλυτικά. 10

11 Απαρίθμηση 1 Για να «απαριθμήσουμε», δηλαδή να μετρήσουμε έναν-έναν τους συνδυασμούς n ανά k (στο παράδειγμα μας υποσύνολα μεγέθους 3 ενός συνόλου μεγέθους 7), ξεκινάμε γράφοντας όλα τα υποσύνολα στα οποία περιέχεται ένα από τα στοιχεία. Έστω η Βουλγαρία. Δεύτερο μπορεί να είναι οποιοδήποτε από τα άλλα 6 και άρα υπάρχουν 6 επιλογές. Γράφουμε τις έξη αυτές δυνατότητες. Για κάθε μία από τις έξη υπάρχουν 5 επιλογές για την θέση (αφού η Βουλγαρία και ότι από τα 6 έχουμε επιλέξει για δεύτερο δεν μπορεί να επαναληφθούν). 11

12 Απαρίθμηση 2 Έτσι από το ΚΛ ={Βουλγαρία, Ουγγαρία, Γερμανία, Γαλλία, UK, Ισπανία, Πορτογαλία} προκύπτουν τα εξής υποσύνολα που περιέχουν τη Βουλγαρία: {Βο, Ου, Γε}, {Βο, Ου, Γα}, {Βο, Ου, UK}, {Bo, Ου, Ισ}, {Βο, Ου, Πο}, {Βο, Γε, Γα}, {Βο, Γε, UK}, {Βο, Γε, Ισ}, {Βο, Γε, Πο}, {Βο, Γα, UK}, {Βο, Γα, Ισ}, {Βο, Γα, Πο}, {Βο, UK, Ισ}, {Βο, UK, Πο}, {Βο, Ισ, Πο}. 12

13 Απαρίθμηση 3 Συνεχίζουμε με τον ίδιο τρόπο στο σύνολο {Ουγγαρία, Γερμανία, Γαλλία, UK, Ισπανία, Πορτογαλία} και προκύπτουν τα εξής υποσύνολα (μεγέθους 3) που περιέχουν την Ουγγαρία: {Ου, Γε, Γα}, {Ου, Γε,UK}, {Ου, Γε, Ισ}, {Ου, Γε,Πο}, {Ου, Γα,UK}, {Ου, Γα, Ισ}, {Ου, Γα,Πο}, {Ου, UK, Ισ}, {Ου, UK,Πο}, {Ου, Ισ, Πο}. 13

14 Απαρίθμηση 4 Συνεχίζουμε με τον ίδιο τρόπο στο σύνολο {Γερμανία, Γαλλία, UK, Ισπανία, Πορτογαλία} και προκύπτουν τα εξής υποσύνολα (μεγέθους 3) που περιέχουν την Γερμανία : {Γε, Γα, UK}, {Γε, Γα, Ισ} }, {Γε, Γα, Πο}, {Γε,UK, Ισ}, {Γε, UK,Πο}, {Γε, Ισ, Πο}. 14

15 Απαρίθμηση 5 Συνεχίζουμε με τον ίδιο τρόπο στο σύνολο {Γαλλία, UK, Ισπανία, Πορτογαλία} και προκύπτουν τα εξής υποσύνολα (μεγέθους 3) που περιέχουν την Γαλλία: {Γα, UK, Ισ}, {Γα, UK,Πο},, {UK, Ισ, Πο}. Και τέλος έχουμε το σύνολο {UK, Ισπανία, Πορτογαλία} που είναι το ίδιο μεγέθους 3. Συνολικά μετρώντας τα υποσύνολα που σχηματίσαμε έχουμε =35. 15

16 Οι Συνδυασμοί Ακόμη και αν οι δύο αριθμοί (Ν και k) διαιρούνται ακριβώς, δηλαδή αν Ν/k κάνει p, αυτό δεν σημαίνει όπως λανθασμένα πιστεύουν κάποιοι ότι υπάρχουν p συνδυασμοί. Η διαίρεση του συνόλου Ν στοιχείων σε υποσύνολα μεγέθους k, ξένα μεταξύ τους, ορίζει μια διαμέριση του συνόλου που αποτελείται από p σύνολα. 16

17 Διατάξεις 1 Έστω ότι η χώρα που θα διαλέξουμε πρώτη θα αναλάβει την προεδρία της τριμελούς επιτροπής, η χώρα που θα διαλέξουμε δεύτερη θα αναλάβει την αντιπροεδρία και η τρίτη θα αναλάβει την γραμματεία της επιτροπής. Έχει δηλαδή σημασία η σειρά επιλογής. Και κατά συνέπεια σχηματίζουμε διατεταγμένες τριάδες (και όχι υποσύνολα). Διαλέγουμε πρώτα μία από τις 7 χώρες. Όποια και αν διαλέξουμε, για την επόμενη (δεύτερη) θέση της τριάδας έχουμε 6 επιλογές και κατά συνέπεια όποια και αν έχουμε διαλέξει για δεύτερη, για την επόμενη (τρίτη) θέση έχουμε 5 επιλογές. 17

18 Διατάξεις 2 Δηλαδή, αν έχουμε τρεις θέσεις έχουμε 7*6*5=210 διαφορετικές επιλογές. Ο πληθικός αριθμός του συνόλου των διατεταγμένων υποσυνόλων μεγέθους 3 από τα 7 στοιχεία του συνόλου μας είναι ίσος με τον αριθμό των διατάξεων n ανά k στοιχείων και συμβολίζεται με Ρ( (n,k). 18

19 Μεταθέσεις 1 Αν n=k τότε έχουμε να σχηματίσουμε τις διατάξεις n ανά n στοιχείων. Στο παράδειγμα μας για το σύνολο {Βουλγαρία, Γερμανία, Γαλλία} αν μας ενδιαφέρει η σειρά θα έχουμε τρεις επιλογές για την προεδρία της επιτροπής, για κάθε μία από αυτές δυο επιλογές για την αντιπροεδρία και για κάθε μία από αυτές 1 επιλογή για την γραμματεία. 19

20 Μεταθέσεις 2 Έτσι οι διατάξεις 3 ανά 3 στοιχείων (μεταθέσεις) θα είναι 3*2*1=6: {Βουλγαρία, Γερμανία, Γαλλία}. {Βουλγαρία, Γαλλία, Γερμανία}. (Γερμανία, Βουλγαρία, Γαλλία}. {Γερμανία, Γαλλία, Βουλγαρία}. {Γαλλία, Βουλγαρία, Γερμανία}. {Γαλλία, Γερμανία, Βουλγαρία}. 20

21 Μεταθέσεις 3 Οι διατάξεις n ανά n στοιχείων ονομάζονται μεταθέσεις n στοιχείων. Ο αριθμός τους είναι ίσος με το γινόμενο 1* *2* *n. Προσέξτε ότι ο συμβολισμός είναι που σημαίνει ότι συνεχίζουμε να πολλαπλασιάζουμε τους αριθμούς από το 2 μέχρι το n. Το γινόμενο αυτό λέγεται n παραγοντικό και συμβολίζεται με n!. 21

22 Οι Διατάξεις 1 Αν σκεφτούμε ότι οι διατάξεις των n ανά k είναι το γινόμενο n*(n-1)* *(n-k+1) (γινόμενο k όρων ξεκινώντας από το n) (παρατηρήστε ότι για 7 ανά 3 έχουμε 7*6*5) μπορούμε να γράψουμε με τη βοήθεια του παραγοντικού τον αριθμό των διατάξεων ως εξής: Ρ(n,k)=n!/(n-k)! 22

23 Οι Διατάξεις 2 Πράγματι γιατί αφού: n!=1*2* *n και (n-k)!= =1*2* *(n-k) αν διαιρέσουμε το n! με το (n-k)! θα μείνουν στον αριθμητή οι όροι: n*(n-1)* *(n-k+1). Στο παράδειγμα μας: 7!=1*2*3*4*5*6*7, (7-3)!=4!=1*2*3*4 και 7!/4!=7*6*5. 23

24 Πως Προκύπτει ο αριθμός Ρ(n,n)=n!/(n-n)!=n!/0! 0!=1, Ρ(n,n)=n!. συνδυασμών και επειδή εξ ορισμού Αν παρατηρήσουμε ότι από κάθε συνδυασμό k στοιχείων (δηλαδή από ένα σύνολο μεγέθους k) προκύπτουν k! μεταθέσεις μπορούμε να υπολογίσουμε τον αριθμό των συνδυασμών των n ανά k στοιχείων αρκεί να διαιρέσουμε τον αριθμό των διατάξεων των n ανά k με τον αριθμό των μεταθέσεων των k στοιχείων. 24

25 Παρατηρούμε Πράγματι ισχύει: C(n,k)=P(n,k)/P(k,k)=n!/[ [(n-k)!k!]. Παρατηρήστε ότι στο παράδειγμα μας για κάθε μη διατεταγμένη τριάδα έχουμε έξη διατεταγμένες τριάδες. Έτσι: C(7,3)=P(7,3)/P(3,3)=7!/[ [(7-3)!3!]= =1*2* *7/1*2* *4*1*2*3= =7*5=35. 25

26 Συνδυασμοί, Μεταθέσεις, Διατάξεις Συνδυασμός είναι ένα υποσύνολο μεγέθους k από ένα σύνολο μεγέθους n στο οποίο δεν έχει σημασία η σειρά των στοιχείων του. [συνδυασμοί k από n ή συνδυασμοί n ανά k]. Διάταξη είναι ένα διατεταγμένο υποσύνολο μεγέθους k από ένα σύνολο μεγέθους n στο οποίο έχει σημασία η σειρά των στοιχείων του. [διατάξεις k από n ή διατάξεις n ανά k]. Μετάθεση είναι ένα υποσύνολο μεγέθους k από ένα σύνολο μεγέθους k στο οποίο έχει σημασία η σειρά των στοιχείων του. [διατάξεις k από k]. 26

27 Συνδυασμοί (παράδειγμα) Στις εκλογές του 2012 στην Α το ψηφοδέλτιο κάθε κόμματος είχε μέχρι 20 ονόματα. Ο εκλογέας είχε τη δυνατότητα να σημειώσει την προτίμηση του σε μέχρι 4 υποψήφιους στο ψηφοδέλτιο που επέλεξε. Για παράδειγμα, στο ψηφοδέλτιο του ΚΚΕ μπορούσε να επιλέξει μέχρι 4 από τους 19 (εκτός από την επικεφαλής του κόμματος). 27

28 Συνδυασμοί (παράδειγμα ΚΚΕ) Εικόνα 1: Ψηφοδέλτιο ΚΚΕ ΠΑΠΑΡΗΓΑ ΑΛΕΞΑΝΔΡΑ του ΝΙΚΟΛΑΟΥ ΑΓΑΘΑΓΓΕΛΟΥ ΝΙΚΟΛΑΟΣ του ΑΝΑΣΤΑΣΙΟΥ ΒΑΛΑΝΑΣ ΣΤΥΛΙΑΝΟΣ του ΒΑΣΙΛΕΙΟΥ ΒΑΡΔΑΛΗΣ ΑΘΑΝΑΣΙΟΣ του ΔΗΜΗΤΡΙΟΥ ΒΕΛΛΗΣ ΧΑΡΑΛΑΜΠΟΣ του ΣΑΡΑΝΤΗ ΖΙΩΓΑΣ ΙΩΑΝΝΗΣ του ΗΛΙΑ ΔΕΛΗΣ ΙΩΑΝΝΗΣ του ΙΩΑΝΝΗ ΚΑΠΕΤΑΝΓΙΩΡΓΗ ΟΥΡΑΝΙΑ (ΡΑΝΙΑ) του ΓΕΩΡΓΙΟΥ ΚΩΝΣΤΑΝΤΙΝΙΔΗΣ ΘΕΟΔΟΣΙΟΣ του ΝΙΚΟΛΑΟΥ ΜΑΓΓΟΥ ΕΥΑΓΓΕΛΙΑ του ΔΗΜΗΤΡΙΟΥ ΜΑΛΛΙΑ ΣΤΟΛΙΔΟΥ ΧΡΥΣΑΦΕΝΙΑ του ΔΗΜΗΤΡΙΟΥ ΜΗΤΣΙΑΚΟΣ ΓΕΩΡΓΙΟΣ του ΑΣΤΕΡΙΟΥ ΜΩΫΣΙΔΟΥ ΠΟΥΛΟΥ ΣΟΦΙΑ του ΠΑΝΑΓΙΩΤΗ ΝΙΚΟΠΟΛΙΤΙΔΟΥ ΠΑΡΘΕΝΑ (ΝΕΝΑ) του ΝΑΠΟΛΕΟΝΤΟΣ ΠΑΠΑΕΠΑΜΕΙΝΩΝΔΑΣ ΓΕΩΡΓΙΟΣ του ΘΕΜΙΣΤΟΚΛΗ ΡΑΪΖΗ ΗΛΕΚΤΡΑ του ΔΗΜΗΤΡΙΟΥ ΤΗΛΙΚΙΔΟΥ ΕΙΡΗΝΗ του ΙΩΑΝΝΗ ΤΣΑΜΠΟΥΚΗΣ ΓΕΩΡΓΙΟΣ του ΘΕΟΔΩΡΟΥ ΤΣΙΑΟΥΣΗΣ ΚΥΡΙΑΚΟΣ του ΒΑΣΙΛΕΙΟΥ ΧΑΤΖΗ ΑΘΑΝΑΣΙΑ του ΝΙΚΟΛΑΟΥ 28

29 Συνδυασμοί (σταυροδοσία) Έτσι μπορούσε να σημειώσει 0, 1, 2, 3 ή 4 επιλογές (σταυρούς) χωρίς να έχει σημασία η σειρά επιλογής του. Όπως είναι φανερό αναζητούμε τα υποσύνολα μεγέθους 0, μεγέθους 1, μεγέθους 2, μεγέθους 3 και μεγέθους 4 από τη λίστα των 19 υποψηφίων που είναι ο αντίστοιχος αριθμός των συνδυασμών 19 ανά 0, 19 ανά 1, 19 ανά 2, 19 ανά 3 και 19 ανά 4. 29

30 Άρα 19 ανά 0 που αντιστοιχεί στα διαφορετικά ψηφοδέλτια χωρίς σταυρό κάνει ανά 1 που αντιστοιχεί στα διαφορετικά ψηφοδέλτιο με ένα σταυρό κάνει 19. Εκεί που είχαμε δισταυρίες υπάρχουν 19 ανά 2 [19*9=171] διαφορετικές περιπτώσεις. Για τις τρισταυρίες έχουμε 19*18*17/1*2*3=19*3*17=969 διαφορετικές περιπτώσεις και για τις τετρασταυρίες έχουμε 19*18*17*16/1*2*3*4=19*3*17*4=3876 περιπτώσεις. 30

31 Ο κανόνας του αθροίσματος Για να υπολογίσουμε το σύνολο όλων των συνδυασμών (δηλαδή για 0, 1, 2, 3 και 4 σταυρούς) παρατηρούμε ότι μπορεί να συμβεί μία μόνο από αυτές τις περιπτώσεις (η πραγματοποίηση μιας αποκλείει όλες τις άλλες) και έτσι το σύνολο είναι το άθροισμα: =

32 Ο κανόνας του γινομένου 1 Όπως έχουμε πει υπάρχουν 7 χώρες που χρησιμοποιούν σύστημα κλειστής λίστας, 2 που χρησιμοποιούν STV, και 19 που χρησιμοποιούν σύστημα ανοικτής λίστας. Αν θέλουμε να επιλέξουμε 3 χώρες από την πρώτη ομάδα, 1 από την δεύτερη και 4 από την τρίτη για να επιλέξουμε 8 χώρες τότε παρατηρούμε ότι η επιλογή των 3 από την πρώτη ομάδα δεν επηρεάζει την επιλογή 1 από τη δεύτερη που δεν επηρεάζει την επιλογή 4 από την τρίτη. 32

33 Ο κανόνας του γινομένου 2 Ο αριθμός των συνδυασμών 7 ανά 3 είναι 35. Ο αριθμός των συνδυασμών 2 ανά 1 είναι 2. Ο αριθμός των συνδυασμών 19 ανά 4 είναι Έτσι ο συνολικός αριθμός είναι το γινόμενο των αριθμών 35*2*3876=

34 Ο κανόνας του γινομένου 3 Γενικά αν n=n 1 +n 2 και k=k 1 +k 2 και θέλουμε να διαλέξουμε k 1 από τα n 1 και k 2 από τα n 2 ο συνολικός αριθμός συνδυασμών (διατάξεων) είναι το γινόμενο των επιμέρους. Πχ για συνδυασμούς είναι C(n 1,k 1 )*C(n 2,k 2 ). Αυτό γενικεύεται για περισσότερες από δύο ομάδες. 34

35 Άθροισμα ή γινόμενο; Ο κανόνας του αθροίσματος χρησιμοποιείται όταν έχουμε ξένα μεταξύ τους γεγονότα (δηλαδή η πραγματοποίηση ενός αποκλείει τα άλλα). Ο κανόνας του γινομένου χρησιμοποιείται όταν έχουν ανεξάρτητα μεταξύ τους γεγονότα (δηλαδή όταν η πραγματοποίηση ενός δεν επηρεάζει τα άλλα). 35

36 Διατάξεις (παράδειγμα) Στις εκλογές του 2007 για την εκλογική περιφέρεια Carlow Kilkenny (με 5 έδρες) στην Ιρλανδία συμμετείχαν 11 υποψήφιοι (3 από το Fianna Fáil, 3 από το Fine Gael, 1 από το Sinn Féin, 2 από το Labour Party, 1 από το Green Party και 1 από το Progressive Democrats). 36

37 Διατάξεις (ανά κόμμα) Στις εκλογές του 2007 για την εκλογική περιφέρεια Carlow Kilkenny (με 5 έδρες) στην Ιρλανδία συμμετείχαν 11 υποψήφιοι (3 από το Fianna Fáil, 3 από το Fine Gael, 1 από το Sinn Féin, 2 από το Labour Party, 1 από το Green Party και 1 από το Progressive Democrats). 37

38 Διατάξεις (ανά κόμμα/υποψήφιοι) Εικόνα 2 : Υποψήφιοι. Carlow Kilkenny Bobby Aylward Fergal Browne Kathleen Funchion Phil Hogan Walter Lacey John McGuinness M J Nolan Michael O'Brien John Paul Phelan Jim Townsend Mary White FFF FG SF FG PD FFF FFF LAB FG LAB G 38

39 Διατάξεις (επιλογές) Στις εκλογές ο κάθε εκλογέας μπορεί να δηλώσει από 1 μέχρι 11 επιλογές (βάζοντας τους αριθμούς από το 1 μέχρι την μέγιστη επιλογή του δίπλα στο όνομα κάθε υποψηφίου). Αν πχ θέλει να δηλώσει 5 υποψηφίους πρέπει να βάλει τον αριθμό 1 σε κάποιον, 2 σε κάποιον άλλο, 3 σε κάποιον άλλο, 4 σε κάποιον άλλο και 5 σε κάποιον άλλο. 39

40 Διατάξεις (σειρά επιλογής) Επειδή έχει σημασία η σειρά επιλογής (υπάρχει διάταξη στις επιλογές του) για να βρούμε όλες τις πεντάδες υπολογίζουμε πόσες είναι οι διατάξεις των 11 ανά 5. Ρ(11,5)=11!/6!= Σημείωση: Αν θέλουμε και υπολογίσουμε όλες τις διατάξεις πρέπει να προσθέσουμε Ρ(11,1)+Ρ(11,2)+ +Ρ(11,,11). 40

41 Διατάξεις (ο κανόνας αθροίσματος) Αυτό γιατί ο εκλογέας δεν είναι υποχρεωμένος να σημειώσει 11 επιλογές. Μπορεί να σημειώσει όσες θέλει από 1 μέχρι 11. Αν δεν σημειώσει καμία τότε το ψηφοδέλτιο δεν μετρά προφανώς. Ο αριθμός των διαφορετικών ψηφοδελτίων που μπορεί να προκύψουν υπολογίζεται με τον κανόνα του αθροίσματος. 41

42 Ο περιστερώνας 1 Μία από τις πολύ απλές «αρχές» αλλά και πολύ χρήσιμη είναι η αρχή του περιστερώνα. Αν έχουμε 10 περιστέρια και 9 φωλιές είναι σίγουρο ότι σε κάποια από αυτές θα μπουν τουλάχιστον 2 περιστέρια. Πράγματι αφού αν σε κάθε μία μπει ένα, τότε σε κάποια θα μπει το 10 ο που περισσεύει. Προσέξτε ότι δεν ξέρουμε σε ποια από τις φωλιές θα μπει. 42

43 Ο περιστερώνας 2 Σε κάθε ομάδα 13 ατόμων είναι βέβαιο ότι 2 τουλάχιστον από αυτούς έχουν γενέθλια τον ίδιο μήνα. Κάποιο μήνα, όχι κάποιον συγκεκριμένο μήνα! Σε μια παρέα 8 ατόμων δύο τουλάχιστον έχουν γεννηθεί την ίδια μέρα της εβδομάδας. Η συνηθισμένη σύγχυση είναι η λανθασμένη πεποίθηση ότι έχουν γεννηθεί μια συγκεκριμένη μέρα (πχ Δευτέρα) ή ότι έχουν γενέθλια τον ίδιο συγκεκριμένο μήνα (πχ Σεπτέμβριο). 43

44 Μερικές χρήσιμες λέξεις Τουλάχιστον k: σημαίνει ότι ο αριθμός που προκύπτει είναι μεγαλύτερος ή το πολύ ίσος με k. Ακριβώς k: σημαίνει ότι ο αριθμός που προκύπτει είναι ίσος με k. Το πολύ k: σημαίνει ότι ο αριθμός που προκύπτει είναι μικρότερος ή το πολύ ίσος με k. 44

45 Σημείωμα Χρήσης Έργων Τρίτων Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνα 1-2: Παράδειγμα. Χάρτης 1 : Evarts Anosovs, Eva-Maria Poptcheva, Giulio Sabbati Members' Research Service 2014 European elections: national rules, Voting system and number of MEPs, November 13, 2013, ( European-elections-national-rules.pdf,European Parliamentary Research Service).

46 Σημείωμα Αναφοράς Copyright,. Θεόδωρος Χατζηπαντελής. «. Απαρίθμηση Συνδυαστική (Ι)». Έκδοση: 1.0. Θεσσαλονίκη Διαθέσιμο από τη δικτυακή διεύθυνση:

47 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά - Μη Εμπορική Χρήση - Όχι Παράγωγα Έργα 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος αδειοδόχο από την χρήση του έργου, για το διανομέα του έργου και που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο [1]

48 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Τέλος ενότητας Επεξεργασία: Σωτήρογλου Μαρίνα Θεσσαλονίκη, Χειμερινό Εξάμηνο

49 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Σημειώματα

50 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 3.2 : Απαρίθμηση Συνδυαστική (ΙΙ). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 6 : Ασκήσεις (Ι). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Θέματα Εφαρμοσμένης. Ενότητα 14.2: Η ψήφος στα πρόσωπα. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Θέματα Εφαρμοσμένης. Ενότητα 14.2: Η ψήφος στα πρόσωπα. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Εφαρμοσμένης Πολιτικής Ανάλυσης Ενότητα 14.2: Η ψήφος στα πρόσωπα. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Θέματα Εφαρμοσμένης. Ενότητα 6 : Εκλογικά Συστήματα. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Θέματα Εφαρμοσμένης. Ενότητα 6 : Εκλογικά Συστήματα. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Εφαρμοσμένης Πολιτικής Ανάλυσης Ενότητα 6 : Εκλογικά Συστήματα. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 4.1: Πιθανότητα Δεσμευμένη Πιθανότητα- Όρια (Ι). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης

Διαβάστε περισσότερα

Θέματα Εφαρμοσμένης. Ενότητα 3 : Κόμματα ή Πρόσωπα. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Θέματα Εφαρμοσμένης. Ενότητα 3 : Κόμματα ή Πρόσωπα. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Εφαρμοσμένης Πολιτικής Ανάλυσης Ενότητα 3 : Κόμματα ή Πρόσωπα. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

Θέματα Εφαρμοσμένης. Ενότητα 11 : Οργάνωση κόμματων. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Θέματα Εφαρμοσμένης. Ενότητα 11 : Οργάνωση κόμματων. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Εφαρμοσμένης Πολιτικής Ανάλυσης Ενότητα 11 : Οργάνωση κόμματων. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 6: Ασκήσεις, 3 η γενική εργασία. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θέματα Εφαρμοσμένης. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θέματα Εφαρμοσμένης. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Εφαρμοσμένης Πολιτικής Ανάλυσης Ενότητα 1 : Η ανάλυση του εκλογικού ανταγωνισμού. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6: 1η εργαστηριακή άσκηση και προσομοίωση με το SPICE Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 2.1 : Σύνολα, Σχέσεις, Συναρτήσεις (Ι). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 4.3 : Πιθανότητα Δεσμευμένη Πιθανότητα- Όρια (ΙΙΙ). Θεόδωρος Χατζηπαντελής Άδειες

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Ενότητα 8: Αξιολόγηση και επιλογή αγορών στόχων από ελληνική εταιρία στον κλάδο παραγωγής και εμπορίας έτοιμου γυναικείου Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης

Διαβάστε περισσότερα

Δομές Δεδομένων Ενότητα 1

Δομές Δεδομένων Ενότητα 1 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Εισαγωγή Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6: Ανάδραση Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ιστορία της μετάφρασης

Ιστορία της μετάφρασης ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο

Εκκλησιαστικό Δίκαιο ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11η: Οργανισμοί της Εκκλησίας της Ελλάδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Άσκηση 1 Ενότητα : Υλοποίηση Λεξικών µε

Διαβάστε περισσότερα

Μάρκετινγκ Αγροτικών Προϊόντων

Μάρκετινγκ Αγροτικών Προϊόντων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μάρκετινγκ Αγροτικών Προϊόντων Ενότητα 4 η : Οι Παραγωγοί Αγροτικών Προϊόντων Χρίστος Καμενίδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνων

Ψηφιακή Επεξεργασία Εικόνων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων

Διαβάστε περισσότερα

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 7η: Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Βάσεις Περιβαλλοντικών Δεδομένων

Βάσεις Περιβαλλοντικών Δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Ατμοσφαιρική Ρύπανση

Ατμοσφαιρική Ρύπανση ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Ατμοσφαιρική Τύρβη Μουσιόπουλος Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ενότητα. Εισαγωγή στις βάσεις δεδομένων

Ενότητα. Εισαγωγή στις βάσεις δεδομένων Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 6: Διαπεριφερειακές διαφορές Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής

Διδακτική της Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 14: Διδακτικές Προσεγγίσεις για τον Προγραμματισμό Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 2: ΑΠΛΟΣ ΤΟΚΟΣ Υπολογισμός Απλού Τόκου Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creatve Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 1: Κρίσιμα συμβάντα Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Απομαγνητοφώνηση αποσπάσματος από Β Λυκείου

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,

Διαβάστε περισσότερα

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 10η: Απεσταλμένοι του Ρωμαίου Ποντίφικα και Ρωμαϊκή Κουρία Κυριάκος Κυριαζόπουλος

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 3

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 3 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 3: Ενισχυτές στις χαμηλές συχνότητες Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskl Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 1.2 : Ο εκλογικός νόμος των Βουλευτικών εκλογών (ΙΙ). Θεόδωρος Χατζηπαντελής Άδειες

Διαβάστε περισσότερα

Διοίκηση Επιχειρήσεων

Διοίκηση Επιχειρήσεων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η λήψη των αποφάσεων Ευγενία Πετρίδου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 10 Βάσεις Groebner ενός ιδεώδους 10.1 Τρίτο μέρος Επαναλαμβάνουμε

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 2: Οργάνωση και Διοίκηση Εισαγωγή Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 4: Στρατηγικοί προσανατολισμοί Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΣΤΑΘΜΟΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΣΤΑΘΜΟΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΤΑΘΜΟΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Ενότητα 8: Στρόβιλοι Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο

Εκκλησιαστικό Δίκαιο ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8η: Ο νέος αντιρατσιστικός νόμος και ο ν.4301/2014 Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 9: Άσκηση εμπορικής πολιτικής Παράδειγμα άσκησης εμπορικής πολιτικής Γρηγόριος Ζαρωτιάδης

Διαβάστε περισσότερα

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα

Διαβάστε περισσότερα

Τεχνολογία Λογισμικού

Τεχνολογία Λογισμικού ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα #12: Περιπτώσεις Χρήσης Σταμέλος Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ιδιότητες και Τεχνικές Σύνταξης Επιστημονικού Κειμένου

Ιδιότητες και Τεχνικές Σύνταξης Επιστημονικού Κειμένου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ιδιότητες και Τεχνικές Σύνταξης Επιστημονικού Κειμένου Ενότητα 2: Η Πρωτόλεια Σκέψη Αναστασία Χριστοδούλου, αναπλ. Καθηγήτρια Dr. Γεώργιος

Διαβάστε περισσότερα

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Βάσεις Δεδομένων. Ενότητα 1: Εισαγωγή στις Βάσεις δεδομένων. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών

Βάσεις Δεδομένων. Ενότητα 1: Εισαγωγή στις Βάσεις δεδομένων. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών Βάσεις Δεδομένων Ενότητα 1: Εισαγωγή στις Βάσεις δεδομένων Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΣΥΜΠΕΡΙΦΟΡΑ ΚΑΤΑΝΑΛΩΤΗ

ΣΥΜΠΕΡΙΦΟΡΑ ΚΑΤΑΝΑΛΩΤΗ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΣΥΜΠΕΡΙΦΟΡΑ ΚΑΤΑΝΑΛΩΤΗ Ενότητα 8: ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΙ ΚΑΤΑΤΜΗΣΗΣ ΚΑΤΑΝΑΛΩΤΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons

Διαβάστε περισσότερα

Μάρκετινγκ Αγροτικών Προϊόντων

Μάρκετινγκ Αγροτικών Προϊόντων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μάρκετινγκ Αγροτικών Προϊόντων Ενότητα 5 η : Οι Καταναλωτές Αγροτικών Προϊόντων Χρίστος Καμενίδης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ιδιότητες και Τεχνικές Σύνταξης Επιστημονικού Κειμένου

Ιδιότητες και Τεχνικές Σύνταξης Επιστημονικού Κειμένου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ιδιότητες και Τεχνικές Σύνταξης Επιστημονικού Κειμένου Ενότητα 2: Η πρωτόλεια σκέψη Αναστασία Χριστοδούλου, αναπλ. Καθηγήτρια Dr. Γεώργιος

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 3: Κλασικά Υποδείγματα της Διεθνούς Οικονομικής Θεωρίας (Heckscher-Ohlin model) Γρηγόριος

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Μάθημα ασκήσεων 3: Κοντή γραμμή μεταφοράς Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Δούκας Δημήτριος Τμήμα

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Ιδιότητες και Τεχνικές Σύνταξης Επιστημονικού Κειμένου

Ιδιότητες και Τεχνικές Σύνταξης Επιστημονικού Κειμένου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ιδιότητες και Τεχνικές Σύνταξης Επιστημονικού Κειμένου Ενότητα 4: Μεθοδολογικές Προεργασίες Αναστασία Χριστοδούλου, αναπλ. Καθηγήτρια

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων.

Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων. Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θέματα Εφαρμοσμένης. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θέματα Εφαρμοσμένης. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Εφαρμοσμένης Πολιτικής Ανάλυσης Ενότητα 15..2: Θέματα ΙΙ Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εφηρμοσμένη Θερμοδυναμική

Εφηρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 12: Κλιματισμός Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 6: ΕΦΑΡΜΟΓΕΣ ΑΠΛΟΣ ΤΟΚΟΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θέματα Εφαρμοσμένης. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θέματα Εφαρμοσμένης. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Εφαρμοσμένης Πολιτικής Ανάλυσης Ενότητα 14.3: : Τα Πρόσωπα Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Θέματα Εφαρμοσμένης. Ενότητα 15.3: Πρόσωπα και Θέματα. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Θέματα Εφαρμοσμένης. Ενότητα 15.3: Πρόσωπα και Θέματα. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Εφαρμοσμένης Πολιτικής Ανάλυσης Ενότητα 15.3: Πρόσωπα και Θέματα Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 5: ΙΣΟΔΥΝΑΜΙΑ ΣΥΝΑΛΛΑΓΜΑΤΙΚΩΝ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 1.1: Ο εκλογικός νόμος των Βουλευτικών εκλογών (Ι). Θεόδωρος Χατζηπαντελής Άδειες

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 11 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.9: Το Διαφορικό Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.9: Το Διαφορικό 1 Άδειες

Διαβάστε περισσότερα

Παράκτια Τεχνικά Έργα

Παράκτια Τεχνικά Έργα ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΘΕΣΗ ΥΓΡΩΝ ΣΤΗ ΘΑΛΑΣΣΑ ΥΠΟΒΡΥΧΙΟΙ ΑΓΩΓΟΙ Ενότητα 5 η : Κατασκευαστικά παραδείγματα Γιάννης Ν. Κρεστενίτης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα