ΥΠΟΛΟΓΙΣΤΕΣ Ι. Γιατί πολυδιάστατους πίνακες; ΠΟΛΥΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ. Δήλωση πολυδιάστατων πινάκων. Δήλωση πολυδιάστατων πινάκων
|
|
- Ἀρφαξάδ Ευάγγελος Αυγερινός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΥΠΟΛΟΓΙΣΤΕΣ Ι ΠΟΛΥΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Γιατί πολυδιάστατους πίνακες; Αναλόγως με τις ανάγκες του προγράμματος, μπορεί να είναι πιο εύχρηστοι Προβλήματα γραμμικής άλγεβρας Παράδειγμα: δηλώστε σε πρόγραμμα έναν πίνακα για 100 σημεία με δύο συνιστώσες το καθένα PROGRM POINTS DOULE PRECISION P(2,100) εντολές 1 2 Δήλωση πολυδιάστατων πινάκων Οι επιπλέον διαστάσεις χωρίζονται με κόμμα DOULE PRECISION P(2,100) INTEGER I(2,2), K(3,3), M(2,2,2) DOULE PRECISION R(100,100,100) εντολές Στη Fortran μπορούμε να έχουμε μέχρι και 7 διαστάσεις Δήλωση πολυδιάστατων πινάκων Οι επιπλέον διαστάσεις χωρίζονται με κόμμα INTEGER N1, N2, N3 PRMETER(N1 = 100, N2 = 2, N3 = 3) DOULE PRECISION P(N2,N1) INTEGER I(N2,N2), K(N3,N3), M(N2,N2,N2) DOULE PRECISION R(N1,N1,N1) εντολές Στη Fortran μπορούμε να έχουμε μέχρι και 7 διαστάσεις 3 4
2 Δισδιάστατοι πίνακες DOULE PRECISION Α(2,2) Ο πίνακας Α είναι ο: δύο γραμμές δύο στήλες Τα στοιχεία του πίνακα είναι: Α(1,1) Α(1,2) Α(2,1) Α(2,2) Παράδειγμα #1 2 2 πίνακα: INTEGER Α(2,2) Α(1,1) = 10 Α(2,1) = 30 Α(1,2) = Α(2,2) = Παράδειγμα #2 2 3 πίνακα: INTEGER Α(2,3) Α(1,1) = 10 Α(1,2) = Α(1,3) = 30 Α(2,1) = 40 Α(2,2) = 50 Α(2,3) = 60 Παράδειγμα #2β 2 3 πίνακα: INTEGER Α(2,3), I, J, T DO J = 1, 3 T = T + 10 (I,J) = T 7 8
3 Παράδειγμα #2γ 2 3 πίνακα: INTEGER Α(2,3), I, J, T DO J = 1, 3 T = T + 10 (I,J) = T 9 ή Ανάθεση τιμών με εντολή RED: Παράδειγμα #3α Γράψτε πρόγραμμα που δημιουργεί και διαβάζει έναν πίνακα 2 3, μια-μια τις στήλες INTEGER Α(2,3) WRITE(*,*) ΔΩΣΕ ΜΙΑ-ΜΙΑ ΤΙΣ ΣΤΗΛΕΣ RED(*,*) (1,1),(2,1),(1,2),(2,2),(1,3),(2,3) INTEGER Α(2,3), I, J WRITE(*,*) ΔΩΣΕ ΜΙΑ-ΜΙΑ ΤΙΣ ΣΤΗΛΕΣ RED(*,*) (((I,J), I = 1, 2), J = 1, 3) 10 ή Ανάθεση τιμών με εντολή RED: Παράδειγμα #3β Γράψτε πρόγραμμα που δημιουργεί και διαβάζει έναν πίνακα 2 3, μια-μια τις γραμμές _Β INTEGER Α(2,3) WRITE(*,*) ΔΩΣΕ ΜΙΑ-ΜΙΑ ΤΙΣ ΓΡΑΜΜΕΣ RED(*,*) (1,1),(1,2),(1,3),(2,1),(2,2),(2,3) _Β INTEGER Α(2,3), I, J WRITE(*,*) ΔΩΣΕ ΜΙΑ-ΜΙΑ ΤΙΣ ΓΡΑΜΜΕΣ RED(*,*) (((I,J), J = 1, 3), I = 1, 2) Αποθήκευση πίνακα στη μνήμη Τελικά, τι να κάνουμε, γραμμή-γραμμή ή στήλη-στήλη; Στην μνήμη, η Fortran αποθηκεύει τους πίνακες στήληστήλη. Π.χ ο παρακάτω πίνακας αποθηκεύεται ως ΠΙΝΑΚΑΣ ΔΙΑΤΑΞΗ ΣΤΗ ΜΝΗΜΗ θέση 1: Α(1,1) 30 θέση 2: Α(2,1) θέση 3: Α(1,2) θέση 4: Α(2,2) θέση 5: Α(1,3) θέση 6: Α(2,3) Εάν ακολουθούμε την διάταξη της μνήμης, οι πράξεις εκτελούνται πιο γρήγορα
4 10 Εξαγωγή τιμών 2 3 πίνακα, και κατόπιν τον εξάγει στην οθόνη στην οθόνη εμφανίζεται INTEGER Α(2,3), I, J, T DO J = 1, 3 T = T + 10 (I,J) = T WRITE(*,*) ((I,J), J = 1, 3) 13 Παράδειγμα #4: Υπολογισμός ίχνους τετραγωνικού πίνακα Το ίχνος ενός τετραγωνικού πίνακα Ν Ν είναι το άθροισμα των στοιχείων της διαγωνίου Tr { } = Tr = NN 14 Παράδειγμα #4: Υπολογισμός ίχνους τετραγωνικού πίνακα (1/2) Γράψτε πρόγραμμα που δημιουργεί πίνακα Ν Ν σύμφωνα με την δίπλα σχέση, και κατόπιν να εξάγει στην οθόνη τον πίνακα και το ίχνος του PROGRM TRCE INTEGER NMX, N, I, J PRMETER (NMX = 100) DOULE PRECISION Α(NMX,NMX), T, PI 2π ij = sin i + j WRITE(*,*) ΠΟΙΑ Η ΔΙΑΣΤΑΣΗ ΤΟΥ ΠΙΝΑΚΑ; RED(*,*) Ν IF (N.GT. NMX.OR. N.LE. 0) THEN WRITE(*,*) ΛΑΘΟΣ: ΜΕΧΡΙ, ΝΜΑΧ STOP IF ΣΥΝΕΧΙΖΕΤΑΙ Παράδειγμα #4: Υπολογισμός ίχνους τετραγωνικού πίνακα (2/2) PI = COS(-1.0) DO J = 1, Ν DO I = 1, Ν (I,J) = SIN( 2*PI / (I+J) ) T = T + (I,I) WRITE(*,*) Ο ΠΙΝΑΚΑΣ ΠΟΥ ΔΗΜΙΟΥΡΓΗΘΗΚΕ ΕΙΝΑΙ: WRITE(*,*) ((I,J), J = 1, N) WRITE(*,*) ΚΑΙ ΕΧΕΙ ΙΧΝΟΣ, Τ 16
5 Παράδειγμα #5 Αντιγραφή πίνακα από μονοδιάστατο σε δισδιάστατο Γράψτε πρόγραμμα που 1) διαβάζει μονοδιάστατο πίνακα Α(100) στοιχείων 2) τον αντιγράφει σε δισδιάστατο πίνακα Β(10,10) ως εξής: i. τα 10 πρώτα στοιχεία του Α στην πρώτη γραμμή του Β ii. τα 10 επόμενα του Α στην δεύτερη γραμμή του Β, κοκ. 3) Αντιγράφει σε δισδιάστατο πίνακα C(5,5) τις τιμές του τρίτου τεταρτημορίου (κάτω αριστερά) του Β 4) Εκτυπώνει τον πίνακα C και το ίχνος του π.χ. για Α(16), Β(4,4) και C(2,2) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,,, 13, 14, 15, 16} = C = Παράδειγμα #5 Αντιγραφή πίνακα από μονοδιάστατο σε δισδιάστατο (1/2) PROGRM COPY_MTRIX INTEGER N, I, J, K PRMETER (N = 10) DOULE PRECISION Α(N*N), (N,N), C(N/2,N/2), T WRITE(*,*) ΔΩΣΕ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥ ΠΙΝΑΚΑ Α RED(*,*) ((I), I = 1, N*N) K = 0 DO J = 1, N K = K + 1 (I,J) = (K) ΣΥΝΕΧΙΖΕΤΑΙ Παράδειγμα #5 Αντιγραφή πίνακα από μονοδιάστατο σε δισδιάστατο (2/2)( /2 DO J = 1, N/2 C(I,J) = (I+N/2, J) /2 T = T + C(I,I) WRITE(*,*) Ο ΠΙΝΑΚΑΣ ΠΟΥ ΔΗΜΙΟΥΡΓΗΘΗΚΕ ΕΙΝΑΙ: /2 WRITE(*,*) (C(I,J), J = 1, N/2) WRITE(*,*) ΚΑΙ ΕΧΕΙ ΙΧΝΟΣ, Τ 19 Παράδειγμα #5 Πολλαπλασιασμός πινάκων Έστω δύο πίνακες Α(Ν,Ν) και Β(Ν,Ν). Το γινόμενό τους Α Β είναι ένας πίνακας C(Ν,Ν), όπου το κάθε στοιχείο C ij είναι το εσωτερικό γινόμενο της i γραμμής του Α επί την j στήλη του Β π.χ. για 2 2 πίνακες: = Σε «μαθηματική» γλώσσα: C = N ij k = 1 ik + + kj + +
6 Παράδειγμα #6: Πολλαπλασιασμός πινάκων (1/2) Γράψτε πρόγραμμα που διαβάζει δύο πίνακες Ν Ν και υπολογίζει και τυπώνει το γινόμενό τους PROGRM MULTIPLY INTEGER NMX, N, I, J, K PRMETER (NMX = 1000) DOULE PRECISION Α(NMX,NMX), (NMX,NMX), & C(NMX,NMX), WRITE(*,*) ΠΟΙΑ Η ΔΙΑΣΤΑΣΗ ΤΩΝ ΠΙΝΑΚΩΝ; RED(*,*) Ν IF (N.GT. NMX.OR. N.LE. 0) THEN WRITE(*,*) ΛΑΘΟΣ: ΜΕΧΡΙ, ΝΜΑΧ STOP IF WRITE(*,*) ΔΩΣΕ ΤΟΥΣ ΠΙΝΑΚΕΣ ΣΤΗΛΗ-ΣΤΗΛΗ; RED(*,*) (((I,J), I = 1, N), J = 1, N) Παράδειγμα #6: Πολλαπλασιασμός πινάκων (2/2) DO J = 1, N C(I,J) = 0 DO K = 1, N C(I,J) = C(I,J) + (I,K) * (K,J) WRITE(*,*) ΤΟ ΓΙΝΟΜΕΝΟ Α ΕΠΙ Β ΕΙΝΑΙ Ο ΠΙΝΑΚΑΣ: WRITE(*,*) (C(I,J), J = 1, N) DΟ RED(*,*) (((I,J), I = 1, N), J = 1, N)
Υπολογιστές Ι. Άδειες Χρήσης. Πολυδιάστατοι πίνακες. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Πολυδιάστατοι πίνακες Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι είναι μια συνάρτηση; ΣΥΝΑΡΤΗΣΕΙΣ. Δήλωση συνάρτησης sq. Παράδειγμα συνάρτησης: υπολογισμός τετραγώνου
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι είναι μια συνάρτηση; ΣΥΝΑΡΤΗΣΕΙΣ Μια ομάδα εντολών, σχεδιασμένη να εκτελεί έναν υπολογισμό και να γυρνάει το αποτέλεσμα Ιδανικές για περιπτώσεις που ο υπολογισμός επαναλαμβάνεται πολλές
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι είναι μια υπορουτίνα; με υπορουτίνα ΥΠΟΡΟΥΤΙΝΕΣ. Παράδειγμα #1: η πράξη SQ. Ποια η διαφορά συναρτήσεων και υπορουτίνων;
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι είναι μια υπορουτίνα; ΥΠΟΡΟΥΤΙΝΕΣ Μια ομάδα εντολών, σχεδιασμένη να εκτελεί έναν ή περισσότερους υπολογισμούς Ιδανικές για περιπτώσεις που ο υπολογισμός επαναλαμβάνεται πολλές φορές μέσα
Υπολογιστές Ι. Άδειες Χρήσης. Συναρτήσεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Συναρτήσεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Υπολογιστές Ι. Άδειες Χρήσης. Υποπρογράμματα. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Υποπρογράμματα Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Πίνακες. FORTRAN και Αντικειμενοστραφής Προγραμματισμός
Πίνακες (i) Δομημένη μεταβλητή: αποθηκεύει μια συλλογή από τιμές δεδομένων Πίνακας (array): δομημένη μεταβλητή που αποθηκεύει πολλές τιμές του ίδιου τύπου INTEGER:: pinakas(100)ή INTEGER, DIMENSION(100)::pinakas
Ενότητα 1 Διάλεξη 3. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 1 Διάλεξη 3 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν
Μήτρες Ειδικές μήτρες. Στοιχεία Γραμμικής Άλγεβρας
Μήτρες Ειδικές μήτρες Στοιχεία Γραμμικής Άλγεβρας Το διάνυσμα ως μήτρα Είδαμε ότι ένα διάνυσμα u = (u 1, u 2, u 3 ) μπορεί να γραφεί και ως μήτρα 3x1, δηλ. μήτρα με 3 γραμμές x 1 στήλη: 1 η γραμμή 2 η
Εισαγωγή στο Προγραμματισμό για Μηχανολόγους Οδηγός Προετοιμασίας για τη Τελική Εξέταση
Σκοπός Εισαγωγή στο Προγραμματισμό για Μηχανολόγους Οδηγός Προετοιμασίας για τη Τελική Εξέταση. Επανάληψη των βασικών εννοιών της PASCAL και του προγραμματισμού οι έννοιες της μεταβλητής, του τύπου δεδομένων,
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD ΕΙΣΑΓΩΓΗ Οι πίνακες είναι συλλογές δεδομένων που μοιράζονται τα ίδια χαρακτηριστικά.
1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75
1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75 2. Έστω x = [2 5 1 6] α. Προσθέστε το 16 σε κάθε στοιχείο β. Προσθέστε το 3 σε κάθε στοιχείο που βρίσκεται σε μονή θέση.
ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ (20/2/2012)
1. Να γραφεί πρόγραµµα FORTRAN το οποίο θα ορίζει έναν µονοδιάστατο ακέραιο πίνακα και έναν δυδιάστατο πραγµατικό πίνακα ίδιου µεγέθους και θα υπολογίζει τον µέσο όρο των τιµών του µονοδιάστατου πίνακα.
ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012)
Φτιάξε ένα πρόγραµµα FORTRAN που θα βρίσκει αν ο ακέραιος N που θα εισάγει ο χρήστης είναι άρτιος ή περιττός. Φτιάξε ένα πρόγραµµα FORTRAN που να προσδιορίζει και να τυπώνει την θέση των στοιχείων ενός
Εισαγωγή στον Προγραμματισμό Η/Υ (Fortran 90/95/2003)
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ () Ενότητα 7: Πολυδιάστατοι Πίνακες Νίκος Καραμπετάκης Τμήμα Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Σκοπός. Αλγεβρικοί και Λογικοί Υπολογισμοί στη PASCAL
Αλγεβρικοί και Λογικοί Υπολογισμοί στη PASCAL Δυνατότητα ανάπτυξης, μεταγλώττισης και εκτέλεσης προγραμμάτων στη PASCAL. Κατανόηση της σύνταξης των προτάσεων της PASCAL. Κατανόηση της εντολής εξόδου για
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016. ΦΥΣ145 Υπολογιστικές Μέθοδοι στην Φυσική
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016 Διδάσκoντες: Χαράλαμπος Παναγόπουλος, Μάριος Κώστα Βαθμός: Όνομα: Α.Δ.Τ.:... ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 24/03/2016 Άσκηση 1 (1 μονάδα) Ποιο είναι το αποτέλεσμα
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD ΕΙΣΑΓΩΓΗ Οι πίνακες είναι συλλογές δεδομένων που μοιράζονται τα ίδια χαρακτηριστικά.
Προγραμματισμός Η/Υ (ΤΛ2007 )
Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε.Ι. Κρήτης Προγραμματισμός Η/Υ (ΤΛ2007 ) Δρ. Μηχ. Νικόλαος Πετράκης (npet@chania.teicrete.gr) Ιστοσελίδα Μαθήματος: https://eclass.chania.teicrete.gr/ Εξάμηνο: Εαρινό 2014-15
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO. Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος.
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος. Τετριμμένο παράδειγμα: Κατασκευάστε πρόγραμμα που θα εμφανίζει
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. Πρόοδος 28 Μαρτίου 2009 Οµάδα 1 η
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική Πρόοδος 28 Μαρτίου 2009 Οµάδα 1 η Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. Πρέπει να απαντήσετε σε όλα τα προβλήµατα
Fortran και Αντικειμενοστραφής προγραμματισμός.
Fortran και Αντικειμενοστραφής προγραμματισμός www.corelab.ntua.gr/courses/fortran_naval/naval Δδάσκοντες: Άρης Παγουρτζής (pagour@cs.ntua.gr) (Επίκουρος Καθηγητής ΣΗΜΜΥ ) Δώρα Σούλιου (dsouliou@mail.ntua.gr)
Μονοδιάστατοι πίνακες (συνέχεια)
Μονοδιάστατοι πίνακες (συνέχεια) Άσκηση Να γράψετε πρόγραμμα που θα διαβάζει 5 πραγματικούς αριθμούς και θα τους τοποθετεί σε ένα μονοδιάστατο πίνακα 5 θέσεων και στη συνέχεια θα εκτυπώνει το ελάχιστο
Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης
Εργαστήριο 6 Εντολές Επανάληψης Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL. Ρεύμα Εισόδου / Εξόδου.. Ρεύμα Εισόδου / Εξόδου. To πρόγραμμα γραφικών gnuplot. Γραφικά στη PASCAL. Σκοπός 6.1 ΕΠΙΔΙΩΞΗ
ΚΕΦΑΛΑΙΑ 3 & 9 (ΠΙΝΑΚΕΣ)
ΚΕΦΑΛΑΙΑ 3 & 9 (ΠΙΝΑΚΕΣ) ίνακες - Ερωτήσεις Σ/Λ ίνακες Ερωτήσεις Σ/Λ 1. Το ακριβές μέγεθος ενός πίνακα καθορίζεται κατά τη διάρκεια του προγραμματισμού και δεν μπορεί να τροποποιηθεί κατά τη διάρκεια εκτέλεσης
ΚΕΦΑΛΑΙΟ 9 ΒΑΣΙΚΕΣ ΕΝΤΟΛΕΣ
ΚΕΦΑΛΑΙΟ 9 ΒΑΣΙΚΕΣ ΕΝΤΟΛΕΣ 9.1 Εντολές Εισόδου/εξόδου Στην Pascal, 1. Tα δεδομένα των προγραμμάτων λαμβάνονται: είτε από το πληκτρολόγιο είτε από ένα αρχείο με τη χρήση των διαδικασιών read και readln,
Παρακάτω δίνεται o σκελετός προγράμματος σε γλώσσα C. Σχολιάστε κάθε γραμμή του κώδικα.
Ερωτήσεις προόδου C Παρακάτω δίνεται o σκελετός προγράμματος σε γλώσσα C. Σχολιάστε κάθε γραμμή του κώδικα. #include // δίνει οδηγία στον compiler να // συμπεριλάβει την βιβλιοθήκη stdio int
Κεφάλαιο 8.7. Πολυδιάστατοι Πίνακες (Διάλεξη 19)
Κεφάλαιο 8.7 Πολυδιάστατοι Πίνακες (Διάλεξη 19) Πολυδιάστατοι πίνακες Μέχρι τώρα μιλούσαμε για Μονοδιάστατους Πίνακες. ή π.χ. int age[5]= {31,28,31,30,31; για Παράλληλους πίνακες, π.χ. int id[5] = {1029,1132,1031,9991,1513;
Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 5ο Aντώνης Σπυρόπουλος Πράξεις μεταξύ των
Συμβολικά ονόματα που δίνονται σε θέσεις μνήμης όπου αποθηκεύονται αριθμοί. ιεύθυνση
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι είναι οι μεταβλητές ΕΣ ΤΑΒΛΗΤ - ΜΕΤ ΙΣΤΕΣ Ι ΠΟΛΟΓΙ ΥΠ ΜΕΤΑΒΛΗΤΕΣ Συμβολικά ονόματα που δίνονται σε θέσεις μνήμης όπου αποθηκεύονται αριθμοί. ιεύθυνση 0 1 2 3 4 MNHMH 5 6 7 8 9 Κ Α 1..
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Γιατί χρειαζόμαστε πίνακες; ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ. Παράδειγμα #1B (με πίνακες) Παράδειγμα #1Α (χωρίς πίνακες)
ΥΠΟΛΟΓΙΣΤΕΣ Ι ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Γιατί χρειαζόμαστε πίνακες; Σε πολλά προγράμματα μπορεί να χρειαστεί να ορίσουμε πολλές μεταβλητές παρόμοιου τύπου π.χ. να ορίσουμε και σώσουμε τις τιμές μιας συνάρτησης
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα: ΠΛΗΡΟΦΟΡΙΚΗ Ημερομηνία και ώρα εξέτασης: Παρασκευή, 8 Ιουνίου 2007 07:30
πινάκων Σύγχρονα Προγραματιστικά Περιβάλλοντα ΠΕΡΙΕΧΟΜΕΝΑ
Κεφάλαιο 7 Βασικές Έννοιες Προγραμματισμού Κεφάλαιο 8 Επιλογή και Επανάληψη Εντολές επιλογής Εντολές επανάληψης Κεφάλαιο 9 Πίνακες Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Ενότητα 6 Πίνακες Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Τύπος πίνακα (array) Σύνθετος τύπος δεδομένων Αναπαριστά ένα σύνολο ομοειδών
Κεφάλαιο 5ο: Εντολές Επανάληψης
Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-9) ΜΕΡΟΣ 7: ΙΔΙΟΤΙΜΕΣ & ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΔΙΑΓΩΝΙΟΠΟΙΗΣΗ ΠΙΝΑΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ
8 FORTRAN 77/90/95/2003
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: Εισαγωγή... 17 1.1. Ανασκόπηση της ιστορίας των υπολογιστών... 18 1.2. Πληροφορία και δεδομένα... 24 1.3. Ο Υπολογιστής... 26 1.4. Δομή και λειτουργία του υπολογιστή... 28 1.5.
Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C
Εισαγωγή στην C Μορφή Προγράµµατος σε γλώσσα C Τµήµα Α Με την εντολή include συµπεριλαµβάνω στο πρόγραµµα τα πρότυπα των συναρτήσεων εισόδου/εξόδου της C.Το αρχείο κεφαλίδας stdio.h είναι ένας κατάλογος
ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ
ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΟΔΗΓΙΕΣ: ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΣΕ ΟΛΕΣ ΤΙΣ ΕΡΩΤΗΣΕΙΣ. Το εξεταστικό δοκίμιο αποτελείται από δύο Ενότητες Α και Β. ΕΝΟΤΗΤΑ Α - Αποτελείται από δέκα (10) ερωτήσεις. Κάθε ορθή απάντηση
Διαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 7 η Πίνακες Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην Εφαρμογή Σωτήρης Χριστοδούλου
Ινστιτούτο Επαγγελµατική Κατάρτιση Κορυδαλλού "ΤΕΧΝΙΚΟΣ ΣΥΣΤΗΜΑΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ" (Ερωτήσεις Πιστοποίησης στην γλώσσα προγραµµατισµού C)
Ινστιτούτο Επαγγελµατική Κατάρτιση Κορυδαλλού "ΤΕΧΝΙΚΟΣ ΣΥΣΤΗΜΑΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ" (Ερωτήσεις Πιστοποίησης στην γλώσσα προγραµµατισµού C) ΚΑΤΑΛΟΓΟΣ ΕΡΩΤΗΣΕΩΝ ΕΡΩΤΗΣΕΙΣ ΕΙ ΙΚΩΝ ΓΝΩΣΕΩΝ (γλώσσα προγραµµατισµού
διανύσματα - Πίνακες - Struct Στατικό διάνυσμα Είσοδος Έξοδος δεδομένων Συναρτήσεις Χειρισμός σφαλμάτων ΤΕΤΑΡΤΗ ΔΙΑΛΕΞΗ
ΤΕΤΑΡΤΗ ΔΙΑΛΕΞΗ Σύνολο στοιχείων ίδιου τύπου (1/2) Ένα σύνολο στοιχείων ίδιου τύπου διακρίνεται σε δύο κατηγορίες με βάση τη διάσταση: Μονοδιάστατο Αν μπορούμε να θεωρούμε ότι τα στοιχεία είναι συνεχόμενα
ΦΥΛΛΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ 1
Γλώσσα Προγραμματισμού C++ ΦΥΛΛΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ 1 Τα δεδομένα Οι σταθερές Τα δεδομένα (πληροφορίες-data) είναι απαραίτητα στοιχεία ενός προγράμματος, καθώς οι βασικές λειτουργίες ενός προγράμματος είναι
I (JAVA) Ονοματεπώνυμο: Α. Μ.: Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην.
I (JAVA) Ονοματεπώνυμο: Α. Μ.: + ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην. + 1 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 2/3) 2 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 3/3)
Δείκτες & Πίνακες Δείκτες, Πίνακες
Δείκτες & Πίνακες Δείκτες, Πίνακες Δείκτες Δείκτης είναι μια μεταβλητή που ως δεδομένο περιέχει τη θέση μνήμης (διεύθυνση) μιας άλλης μεταβλητής. Μεταβλητές Τιμές. (*) Δείκτης p Μεταβλητή v Δ1. Δ2. τιμή
Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN:
Άσκηση 1 Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του J στα παρακάτω κομμάτια κώδικα FORTRAN: INTEGER J J = 5 J = J + 1 J = J + 1 INTEGER X, Y, J X = 2 Y =
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Προγραμματισμός Ι. Ενότητα 7 : Πίνακες I. Αλέξανδρος Τζάλλας
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Προγραμματισμός Ι Ενότητα 7 : Πίνακες I Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής Τ.Ε Προγραμματισμός
int array[10]; double arr[5]; char pin[20]; Προγραµµατισµός Ι
Εισαγωγή Στον Προγραµµατισµό «C» Πίνακες Πανεπιστήµιο Πελοποννήσου Τµήµα Πληροφορικής & Τηλεπικοινωνιών Νικόλαος Δ. Τσελίκας Νικόλαος Προγραµµατισµός Δ. Τσελίκας Ι Πίνακες στη C Ένας πίνακας στη C είναι
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai208/lai208html Παρασκευή 2 Οκτωβρίου 208 Ασκηση Να γράψετε
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Ένα πρώτο πρόγραμμα ΔΟΜΗ TOY ΠΡΟΓΡΑΜΜΑΤΟΣ. Τι σημαίνουν οι εντολές. Από τι αποτελείται ένα πρόγραμμα
ΥΠΟΛΟΓΙΣΤΕΣ Ι ΔΟΜΗ TOY ΠΡΟΓΡΑΜΜΑΤΟΣ Ένα πρώτο πρόγραμμα Κατασκευάστε πρόγραμμα που θα εμφανίζει στην οθόνη τη λέξη: PROGRAM FIRST C Αυτό είναι ένα απλό υπόδειγμα προγράμματος. 1 2 Από τι αποτελείται ένα
Τυπικές χρήσεις της Matlab
Matlab Μάθημα 1 Τι είναι η Matlab Ολοκληρωμένο Περιβάλλον Περιβάλλον ανάπτυξης Διερμηνευμένη γλώσσα Υψηλή επίδοση Ευρύτητα εφαρμογών Ευκολία διατύπωσης Cross platform (Wintel, Unix, Mac) Τυπικές χρήσεις
ΙΑΓΩΝΙΣΜΑ ΑΝΑΠΤΥΞΗΣ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ Κυριακή 19 Φεβρουαρίου 2012
ΙΑΓΩΝΙΣΜΑ ΑΝΑΠΤΥΞΗΣ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ Κυριακή 19 Φεβρουαρίου 2012 ΘΕΜΑ 1 ο : Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα
ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ. Τι περιλαμβάνει μια μεταβλητή; ΔΕΙΚΤΕΣ. Διεύθυνση μεταβλητής. Δείκτης
ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ Τι περιλαμβάνει μια μεταβλητή; ΔΕΙΚΤΕΣ Πρώτα να δούμε τι ακριβώς συμπεριλαμβάνει μια μεταβλητή τύπος Καθορίζει το μέγεθος στην μνήμη σε Bytes τιμή Η αριθμητική τιμή που αποθηκεύεται στην
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ. Παράδειγμα #1. Πράξεις μεταξύ ακεραίων αριθμών
ΥΠΟΛΟΓΙΣΤΕΣ Ι ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ Τύποι δεδομένων Οι παρακάτω τύποι δεδομένων υποστηρίζονται από τη γλώσσα προγραμματισμού Fortran: 1) Ακέραιοι αριθμοί (INTEGER). 2) Πραγματικοί αριθμοί απλής ακρίβειας
2009 :, :30 10: (10) . - (3) . . (10)
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 Μάθηµα: ΠΛΗΡΟΦΟΡΙΚΗ Ηµεροµηνία και ώρα εξέτασης: Πέµπτη, 28 Μαΐου 2009 07:30 10:30
Στήλες:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ : ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΥ ΕΞΑΜΗΝΟ : Α' ΦΥΛΛΟ ΑΣΚΗΣΕΩΝ : 5 Πίνακες ΥΠΕΥΘΥΝΟΣ ΜΑΘΗΜΑΤΟΣ : Μάγια Σατρατζέµη Παρατηρήσεις: 1. Τα δεδοµένα εισόδου διαβάζονται
ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική. Πρόοδος 26 Μαρτίου 2007 Ομάδα 1 η
ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική Πρόοδος 26 Μαρτίου 2007 Ομάδα 1 η Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας. Πρέπει να απαντήσετε και στα 6 προβλήματα
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων Πληροφορικής 2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών 3. Ο αλγόριθμος
Υπολογιστές Ι. Άδειες Χρήσης. Μεταβλητές και πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Μεταβλητές και πράξεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται
3 ο Εργαστήριο Μεταβλητές, Τελεστές
3 ο Εργαστήριο Μεταβλητές, Τελεστές Μια μεταβλητή έχει ένα όνομα και ουσιαστικά είναι ένας δείκτης σε μια συγκεκριμένη θέση στη μνήμη του υπολογιστή. Στη θέση μνήμης στην οποία δείχνει μια μεταβλητή αποθηκεύονται
Προγραμματισμός με FORTRAN Συνοπτικός Οδηγός Α. Σπυρόπουλος Α. Μπουντουβής
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός με FORTRAN Συνοπτικός Οδηγός Α Σπυρόπουλος Α Μπουντουβής Αθήνα, 2015 v13_061015 Στον οδηγό αυτό θα χρησιμοποιηθούν
ΜΕΡΟΣ Α - Αποτελείται από δέκα (10) ερωτήσεις. Κάθε ερώτηση βαθμολογείται με έξι μονάδες.
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 Μάθημα: ΠΛΗΡΟΦΟΡΙΚΗ Ημερομηνία και ώρα εξέτασης: Τετάρτη, 4 Ιουνίου 2008 07:30
επιστρέφει αριθµό που προκύπτει µε αντιστροφή των στοιχείων του πρώτου
ΑΕσΠΠ-Κεφ.10 Υποπρογράµµατα 1 1. Να γραφεί µία συνάρτηση για κάθε ένα από τα παρακάτω: i. Να δέχεται την ακτίνα ενός κύκλου και να επιστρέφει το εµβαδόν του. ii. Να δέχεται την ακτίνα ενός κύκλου και να
Υπολογιστές Ι. Άδειες Χρήσης. Μονοδιάστατοι πίνακες. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Μονοδιάστατοι πίνακες Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται
Η γλώσσα προγραμματισμού C
Η γλώσσα προγραμματισμού C Πίνακες 2 διαστάσεων Δήλωση δισδιάστατου πινακα Οι δισδιάστατοι πίνακες χαρακτηρίζονται από τις γραμμές και τις στήλες (οι διαστάσεις) τους. Πίνακας 2 διαστάσεων: 3 γραμών και
Μεθόδων Επίλυσης Προβλημάτων
ΕΠΛ 032.3: 3: Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 12 Πολυδιάστατοι Πίνακες Πολυδιάστατοι πίνακες
ΦΥΣ-151. Ηλεκτρονικοί Υπολογιστές Ι (FORTRAN 77) (Άνοιξη 2004)
32 ΦΥΣ-151. Ηλεκτρονικοί Υπολογιστές Ι (FORTRAN 77) (Άνοιξη 2004) ιάλεξη 5 5.1 Ι ΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Εκτός από τους µονοδιάστατους πίνακες ή διανυσµατα που συζητήσαµε στην παράγραφο 4.1, µπορούµε να αποθηκεύσουµε
ΕΞΕΤΑΣΗ ΙΑΝΟΥΑΡΙΟΥ (28/1/2011)
Φτιάξε ένα πρόγραµµα FORTRAN που θα βρίσκει αν ο ακέραιος N που θα εισάγει ο χρήστης είναι άρτιος ή περιττός. Φτιάξε ένα πρόγραµµα FORTRAN που να προσδιορίζει και να τυπώνει την θέση των στοιχείων ενός
Άσκηση 1. O υπολογισμός να γίνει: α) με την τεχνική αθροίσματος σε μεταβλητή
Άσκηση 1 Να γραφεί κώδικας FORTRAN που θα υπολογίζει το άθροισμα όλων των στοιχείων ενός διανύσματος a (μονοδιάστατη array) διάστασης Ν. Τα στοιχεία του διανύσματος a δίνονται από τη σχέση: a(i) = 2*i
ΦΥΣ-151. Ηλεκτρονικοί Υπολογιστές Ι (FORTRAN 77) (Άνοιξη 2004)
1 ΦΥΣ-151. Ηλεκτρονικοί Υπολογιστές Ι (FORTRAN 77) (Άνοιξη 2004) ιάλεξη 1 1.1 ΕΙΣΑΓΩΓΗ ΣΤΗ FORTRAN 77 Ένα πρόγραµµα σε οποιαδήποτε γλώσσα προγραµµατισµού δεν τίποτα άλλο από µια σειρά εντολών που πρέπει
ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014
ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι
Αντικειμενοστρεφής Προγραμματισμός -Python. Κ.Π. Γιαλούρης
Κ.Π. Γιαλούρης Στόχοι του σημερινού μαθήματος Εξοικείωση με τα περιβάλλοντα της Python Κατανόηση βασικών εννοιών & τεχνικών Τύπος δεδομένων Μεταβλητή Εντολή ανάθεση τιμής / εντολή αντικατάστασης Εισαγωγή
Στο κεφάλαιο αυτό θα μάθεις να χρησιμοποιείς στα προγράμματα σου τους πίνακες για την αποθήκευση μεγάλου αριθμού δεδομένων ιδίου τύπου.
9.1. Ðñïóäïêþìåíá áðïôåëýóìáôá Στο κεφάλαιο αυτό θα μάθεις να χρησιμοποιείς στα προγράμματα σου τους πίνακες για την αποθήκευση μεγάλου αριθμού δεδομένων ιδίου τύπου. Αρχικά πρέπει να αποφασίζεις, αν η
Παράλληλη Επεξεργασία Κεφάλαιο 2 Παραλληλισμός Δεδομένων
Παράλληλη Επεξεργασία Κεφάλαιο 2 Παραλληλισμός Δεδομένων Κωνσταντίνος Μαργαρίτης Καθηγητής Τμήμα Εφαρμοσμένης Πληροφορικής Πανεπιστήμιο Μακεδονίας kmarg@uom.gr http://eos.uom.gr/~kmarg Αρετή Καπτάν Υποψήφια
Το πλήθος των δεικτών και οι µεγαλύτερες τιµές που µπορούν να πάρουν ορίζεται µε µία δηλωτική εντολή που λέγεται Dimension.
Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 6ο: Πίνακες Στο κεφάλαιο αυτό θα ασχοληθούµε µε µια από πιο ενδιαφέρουσες δοµές δεδοµένων, τους πίνακες. Οι πίνακες είναι σύνθετες
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 07, 2 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Συμμετρικοί και θετικά ορισμένοι πίνακες. Η ανάλυση Cholesky 2. Νόρμες
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2016
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2016 M7 Δομές δεδομένων: Πίνακες Δρ. Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr ΕΜΠ/ΣΝΜΜ
Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν.
Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν. Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές
Κεφάλαιο 8.7. Πολυδιάστατοι Πίνακες ( ιάλεξη 18) ιδάσκων: ηµήτρης Ζεϊναλιπούρ
Κεφάλαιο 8.7 Πολυδιάστατοι Πίνακες ( ιάλεξη 18) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Πολυδιάστατοι πίνακες Μέχρι τώρα µιλούσαµε για Μονοδιάστατους Πίνακες. ή π.χ. int age[5]= {31,28,31,30,31; για Παράλληλους πίνακες,
ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης
ΚΕΦΑΛΑΙΟ 1ο 3ο 1. Συμπληρώστε τα κενά με τη λέξη που λείπει. α. Ένα πρόβλημα το χωρίζουμε σε άλλα απλούστερα, όταν είναι ή όταν έχει τρόπο επίλυσης. β. Η επίλυση ενός προβλήματος προϋποθέτει την του. γ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 2 ο ΣΕΤ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα παρακάτω θέματα: Συναρτήσεις (κεφάλαιο Functions)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 1 ΙΟΥΛΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ
Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ
Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Σκοπός του μαθήματος Σκοπός του παρόντος μαθήματος είναι να μάθετε να κάνετε εισαγωγή δεδομένων σε πίνακες και περαιτέρω επεξεργασία
Η ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ Εντολές Επανάληψης REPEAT UNTIL, FOR, WHILE
ΕΡΓΑΣΤΗΡΙΟ 7 Ο Η ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ Εντολές Επανάληψης REPEAT UNTIL, FOR, WHILE Βασικές Έννοιες: Δομή Επανάληψης, Εντολές Επανάληψης (For, While do, Repeat until), Αλγόριθμος, Αθροιστής, Μετρητής, Παράσταση
ΕΠΛ 034: Εισαγωγή στον Προγραμματισμό για ΗΜΥ
ΕΠΛ 034: Εισαγωγή στον Προγραμματισμό για ΗΜΥ Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 9 Πολυδιάστατοι Πίνακες Θέματα Διάλεξης Στην ενότητα αυτή
Διάλεξη 2η: Αλγόριθμοι και Προγράμματα
Διάλεξη 2η: Αλγόριθμοι και Προγράμματα Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Αλγόριθμοι και Προγράμματα
I (JAVA) Ονοματεπώνυμο: Α. Μ.: Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην.
I (JAVA) Ονοματεπώνυμο: Α. Μ.: + ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην. + 1 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 2/3) 2 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 3/3)
ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Τελεστές - Κατηγορίες Εκφράσεις - Κατηγορίες Υπολογισμός εκφράσεων Προτάσεις - Κατηγορίες
Pascal, απλοί τύποι, τελεστές και εκφράσεις
Pascal, απλοί τύποι, τελεστές και εκφράσεις 15 Νοεμβρίου 2011 1 Γενικά Στην standard Pascal ορίζονται τέσσερις βασικοί τύποι μεταβλητών: integer: Παριστάνει ακέραιους αριθμούς από το -32768 μέχρι και το
1. Να συμπληρώσετε τις τιμές του παρακάτω πίνακα Α (εκτελώντας τις εντολές με την σειρά)
ΑΕσΠΠ-Δισδιάστατοι πίνακες 1 1. Να συμπληρώσετε τις τιμές του παρακάτω πίνακα Α (εκτελώντας τις εντολές με την σειρά) 1 2 3 4 5 1 2 7 567 3-7 4 i. Α[4,5] Α_Μ(Α[2,3]/3) ii. Α[1,Α[4,5]] 10 iii. ΓΙΑ κ ΑΠΟ
Δομημένος Προγραμματισμός. Τμήμα Επιχειρηματικού Σχεδιασμού και Πληροφοριακών Συστημάτων
Δομημένος Προγραμματισμός Τμήμα Επιχειρηματικού Σχεδιασμού και Πληροφοριακών Συστημάτων www.bpis.teicrete.gr Τμήμα Επιχειρηματικού Σχεδιασμού και Πληροφοριακών Συστημάτων www.bpis.teicrete.gr 2 Κανόνες
TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ
Μάθημα 7 - Υποπρογράμματα Εργαστήριο 11 Ο TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Βασικές Έννοιες: Υποπρόγραμμα, Ανάλυση προβλήματος, top down σχεδίαση, Συνάρτηση, Διαδικασία, Παράμετρος, Κλήση συνάρτησης, Μετάβαση
Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58
Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων Τηλ. 26410741964196 E-mail fkoutel@cc.uoi.gr ΜΑΘΗΜΑΤΙΚΑ Ι ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Γραµµική άλγεβρα...... είναι τοµέας
ΦΥΣ 145 Μαθηματικές Μέθοδοι στη Φυσική. Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας.
ΦΥΣ 145 Μαθηματικές Μέθοδοι στη Φυσική Πρόοδος 13 Μαρτίου 006 Ομάδα 1 η Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας. Πρέπει να απαντήσετε και στα 6 προβλήματα
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΘΕΜΑ 1 Α.
ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΘΕΜΑ 1 Α. 1. Αν το Α έχει την τιµή 10 και το Β την τιµή 20 τότε η έκφραση (Α > 8 ΚΑΙ Β < 20) Ή (Α > 10 Ή Β = 10) είναι αληθής 2. Σε περίπτωση εµφωλευµένων βρόχων, ο εσωτερικός
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΗ IOYNIOY 2018 ΘΕΜΑΤΑ Α ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΑΕΜ: ΕΞΑΜΗΝΟ:
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΗ IOYNIOY 2018 ΘΕΜΑΤΑ Α ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΑΕΜ: ΕΞΑΜΗΝΟ: ΘΕΜΑ 1: 2.5 μονάδες Τι εκτυπώνουν τα παρακάτω κομμάτια κώδικα θεωρώντας ότι πληκτρολογούμε
ΕΙ ΑΓΩΓΉ ΣΗΝ FORTRAN
ΕΙΑΓΩΓΉ ΣΗΝ FORTRAN ΕΙΑΓΩΓΙΚΑ ΣΟΙΧΕΙΑ FORTRAN (FORmula TRANslator) -είναι από τις πρώτες γλώσσες υψηλού επιπέδου -σχεδιάστηκε αρχικά για μαθηματικούς σκοπούς -κάνει δυνατή την υπολογιστική επίλυση προβλημάτων