ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι είναι μια υπορουτίνα; με υπορουτίνα ΥΠΟΡΟΥΤΙΝΕΣ. Παράδειγμα #1: η πράξη SQ. Ποια η διαφορά συναρτήσεων και υπορουτίνων;
|
|
- Σωτήρης Σπηλιωτόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι είναι μια υπορουτίνα; ΥΠΟΡΟΥΤΙΝΕΣ Μια ομάδα εντολών, σχεδιασμένη να εκτελεί έναν ή περισσότερους υπολογισμούς Ιδανικές για περιπτώσεις που ο υπολογισμός επαναλαμβάνεται πολλές φορές μέσα στο πρόγραμμα Συντελούν σημαντικά στην καθαρότητα ενός προγράμματος Συντελούν σημαντικά στην μεταβατικότητα ενός προγράμματος 1 Ποια η διαφορά συναρτήσεων και υπορουτίνων; Είναι και οι δύο υποπρογράμματα Γράφονται και οι δύο μετά το τέλος του προγράμματος Μπορούμε να χρησιμοποιήσουμε όποια από τις δύο θέλουμε για οποιαδήποτε πράξη Συναρτήσεις είσοδος: λίστα μεταβλητών έξοδος: μεταβλητή εξόδου κλήση: ανάθεση σε μεταβλητή Υπορουτίνες είσοδος: λίστα μεταβλητών έξοδος: λίστα μεταβλητών κλήση: χωρίς ανάθεση (με CALL) δεν χρειάζεται να δηλώσουμε το όνομά της 3 Παράδειγμα #1: η πράξη SQ με συνάρτηση PROGRAM TEST_SQ, SQ WRITE(*,*) ΝΟΥΜΕΡΟ; READ(*,*) X WRITE(*,*) SQ(X) REAL*8 FUNCTION SQ(X) SQ = X** με υπορουτίνα PROGRAM TEST_SQ WRITE(*,*) ΝΟΥΜΕΡΟ; READ(*,*) X CALL SQ(X) WRITE(*,*) X SUBROUTINE SQ(X) X = X** 4
2 Παράδειγμα #1B: : η πράξη SQ με υπορουτίνα: : με ή χωρίς τροποποίηση Πότε να χρησιμοποιούμε συνάρτηση και πότε υπορουτίνα; με τροποποίηση PROGRAM TEST_SQ WRITE(*,*) ΝΟΥΜΕΡΟ; READ(*,*) X CALL SQ(X) WRITE(*,*) X SUBROUTINE SQ(X) X = X** χωρίς τροποποίηση PROGRAM TEST_SQ, Y WRITE(*,*) ΝΟΥΜΕΡΟ; READ(*,*) X CALL SQ(X,Y) WRITE(*,*) Y SUBROUTINE SQ(X, Y), Y Y = X** 5 Συνάρτηση όταν η πράξη είναι απλή με μία και μόνο έξοδο όταν δεν τροποποιούμε τις μεταβλητές εισόδου Υπορουτίνα όταν οι πράξεις είναι πολλές και οι έξοδοι επίσης πολλές όταν πρέπει να τροποποιήσουμε τις μεταβλητές εισόδου Καλές προγραμματιστικές συνήθειες: Συνάρτηση: μία πράξη, ένα αποτέλεσμα (ένα νούμερο) Υπορουτίνα: γενικευμένο σύνολο πράξεων, πολλά αποτελέσματα (π.χ. τροποποίηση ολόκληρου πίνακα) 6 Παράδειγμα #: τροποποίηση πίνακα Παράδειγμα #B: : τροποποίηση πίνακα Γράψτε υπορουτίνα που να δέχεται μονοδιάστατο πίνακα και να τροποποιεί το κάθε στοιχείο του στο τετράγωνό του SUBROUTINE SQΝ(X, N) (N) X(I) = X(I)** DO 7 Γράψτε πρόγραμμα που να διαβάζει μονοδιάστατο πίνακα και με την SQN να τροποποιεί το κάθε στοιχείο του στο τετράγωνό του PROGRAM TEST_SQN INTEGER NMAX, N, Ι PARAMETER(NMAX = 1000) (NMAX) WRITE(*,*) ΠΟΣΑ ΣΗΜΕΙΑ ΘΑ ΕΙΣΑΓΕΤΕ; READ(*,*) Ν IF (N.GT. NMAX.OR. N.LE. 0) STOP READ(*,*) (X(I), I = 1, N) CALL SQN(X, N) WRITE(*,*) ΤΑ ΝΕΑ ΣΤΟΙΧΕΙΑ ΤΟΥ ΠΙΝΑΚΑ WRITE(*,*) (Χ(Ι), Ι = 1, Ν) 8
3 Παράδειγμα #3: υπορουτίνα για ταξινόμηση με μέθοδο φυσαλίδας Παράδειγμα #3: υπορουτίνα SWAP SUBROUTINE BUBBLE_SORT(X, N), J (N) C...ΓΙΑ ΚΑΘΕ ΘΕΣΗ J DO J = N,, -1 C...ΒΡΙΣΚΟΥΜΕ ΤΟ ΑΝΤΙΣΤΟΙΧΟ ΜΕΓΙΣΤΟ DO I = 1, J-1 IF(X(I).GT. X(I+1))THEN CALL SWAP( X(I), X(I+1) ) IF DO DO SUBROUTINE SWAP (X, Y), Y, TEMP TEMP = X X = Y Y = TEMP 9 10 Παράδειγμα #4: πολλαπλασιασμός πινάκων Γράψτε υπορουτίνα που δέχεται 3 δισδιάστατους τετραγωνικούς πίνακες και τροποποιεί τον τρίτο ώστε να είναι το γινόμενο των δύο πρώτων SUBROUTINE MATRIX_PRODUCT(A, B, C, N), J, K DOUBLE PRECISION A(N,N), B(N,N), C(N,N) DO J = 1, N C(I,J) = 0 DO K = 1, N C(I,J) = C(I,J) + A(I,K) * B(K,J) DO DO DO Παράδειγμα #5: απόσταση διανυόμενη από σώμα με μεταβλητή ταχύτητα (ή με άλλα λόγια: αριθμητική ολοκλήρωση γραμμικής διαφορικής εξίσωσης) Έστω ένα σώμα ξεκινάει από την θέση x=0, και η ταχύτητά του δίνεται από την παρακάτω σχέση, όπου ο χρόνος t μετριέται σε δευτερόλεπτα v ( t ) = 0.03t 0.001t t Ποια απόσταση έχει διανύσει μετά από Μ δευτερόλεπτα; 11 1
4 Παράδειγμα #5: απόσταση διανυόμενη από σώμα με μεταβλητή ταχύτητα Μέθοδος του Euler Διαφορική εξίσωση: Διακριτοποίηση: Ολοκλήρωση στον χρόνο: Η σε μορφή αλγόριθμου (για Δt=1sec) dx ( t ) = v ( t ) dt x ( t + Δt ) x ( t ) = v ( t ) Δt x ( t + Δt ) = x ( t ) + Δt v ( t ) x = x + v i +1 i i 13 Παράδειγμα #5: απόσταση διανυόμενη από σώμα με μεταβλητή ταχύτητα (1/) Γράψτε πρόγραμμα που υπολογίζει την 0.03t 0.001t απόσταση σαν συνάρτηση του χρόνου, όταν v ( t ) = 3 η ταχύτητα δίνεται από (t σε δευτερόλεπτα): t PROGRAM DISTANCE1 INTEGER Μ, T, V, VELOCITY WRITE(*,*) ΠΟΣΑ ΒΗΜΑΤΑ ΘΕΛΕΤΕ; READ(*,*) M Χ = 0 DO T = 1, M V = VELOCITY(T) CALL DISTANCE(X, V) DO WRITE(*,*) Η ΑΠΟΣΤΑΣΗ ΕΙΝΑΙ, Χ 14 Παράδειγμα #5: απόσταση διανυόμενη από σώμα με μεταβλητή ταχύτητα (/) Παράδειγμα #6: απόσταση διανυόμενη από Ν σώματα με σταθερή ταχύτητα DOUBLE PRECISION FUNCTION VELOCITY ( T ) INTEGER T VELOCITY = (0.03*T * T**)/( * T**3) C SUBROUTINE DISTANCE (X, V), V X = X + V 15 Έστω N σώματα ξεκινάνε από την θέση x=0 με αρχική ταχύτητα (σε m/sec) που δίνεται από την σχέση (i=1, N) ( i ) v ( i ) = 100 cos 100 Εάν η κίνηση είναι με σταθερή ταχύτητα, μετά από M δευτερόλεπτα, ποιο είναι μακρύτερα και ποιο κοντύτερα στην αρχή, και ποιες θα είναι αυτές οι αποστάσεις; Τι θα χρειαστούμε; Δύο πίνακες για απόσταση και ταχύτητα Μια συνάρτηση για να δημιουργήσουμε αρχικές ταχύτητες Μια υπορουτίνα για να εκτελεί ένα βήμα Μια συνάρτηση που γυρνάει την θέση του μεγίστου ενός πίνακα Μια συνάρτηση που γυρνάει την θέση του ελαχίστου ενός πίνακα 16
5 Παράδειγμα #6: απόσταση διανυόμενη από Ν σώματα με σταθερή ταχύτητα (1/5) Παράδειγμα #6: απόσταση διανυόμενη από Ν σώματα με σταθερή ταχύτητα (/5) Συνάρτηση για την δημιουργία αρχικών ταχυτήτων DOUBLE PRECISION FUNCTION VELOCITY ( I ) INTEGER I VELOCITY = 100 * ABS ( COS (100 * I) ) ) Υπορουτίνα για εκτέλεση ενός βήματος SUBROUTINE RUN_DISTANCE (X, V, N) (N), V(N) X(I) = X(I) + V(I) DO Παράδειγμα #6: απόσταση διανυόμενη από Ν σώματα με σταθερή ταχύτητα (3/5) Παράδειγμα #6: απόσταση διανυόμενη από Ν σώματα με σταθερή ταχύτητα (4/5) Συνάρτηση για εύρεση θέσης μέγιστου πίνακα INTEGER FUNCTION IMAX (X, N) (N), XMAX XMAX = X(1) IMAX = 1 DO I =, N IF (X(I).GT.XMAX) THEN XMAX = X(I) IMAX = I IF DO 19 Συνολικό πρόγραμμα PROGRAM RACE INTEGER NMAX, M, N, I, IMIN, IMAX PARAMETER(NMAX=1000) DOUBLE PRECISION DIST(NMAX), VEL(NMAX), VELOCITY WRITE(*,*) ΠΟΣΑ ΣΩΜΑΤΑ ΤΡΕΧΟΥΝ ΚΑΙ ΓΙΑ ΠΟΣΑ ΒΗΜΑΤΑ; READ(*,*) Ν, Μ IF (N.GT. NMAX.OR. N.LE. 0) STOP DIST(I) = 0 VEL(I) = VELOCITY(I) DO ΣΥΝΕΧΙΖΕΤΑΙ... 0
6 Παράδειγμα #6: απόσταση διανυόμενη από Ν σώματα με σταθερή ταχύτητα (5/5) Συνολικό πρόγραμμα DO I = 1, Μ CALL RUN_DISTANCE(X, V, N) DO WRITE(*,*) ΠΡΩΤΟ ΤΟ, ΙΜΑΧ(DIST,N) WRITE(*,*) ΜΕ ΑΠΟΣΤΑΣΗ, DIST(IMAX(DIST,N)) WRITE(*,*) KAI TAXYTHTA, VEL(IMAX(DIST,N)) Παράδειγμα #7:# : απόσταση διανυόμενη από Ν σώματα, με κανόνες ταχύτητας Κίνηση Ν σωμάτων με κανόνες ταχύτητας: σε κάθε βήμα όποιο σώμα έχει ταχύτητα πάνω από τον μέσο όρο ταχυτήτων, πρέπει να την μειώσει κατά 10%, ενώ όποιο έχει ταχύτητα κάτω από τον μέσο όρο ταχυτήτων πρέπει να την αυξήσει κατά 10%. Τι θα χρειαστούμε; Μια συνάρτηση να υπολογίζει τον μέσο όρο Μια υπορουτίνα που να εφαρμόζει τον κανόνα 1 Παράδειγμα #7:# : απόσταση διανυόμενη από Ν σώματα, με κανόνες ταχύτητας (1/) Συνάρτηση για μέσο όρο DOUBLE PRECISION FUNCTION AVERAGE (X, N) (N) AVERAGE = 0 AVERAGE = AVERAGE + X(I) DO AVERAGE = AVERAGE / N 3 Παράδειγμα #7:# : απόσταση διανυόμενη από Ν σώματα, με κανόνες ταχύτητας (/) Υπορουτίνα για εφαρμογή κανόνα SUBROUTINE SCALE_VELOCITY (V, N) DOUBLE PRECISION V(N), AVERAGE, VM VM = AVERAGE(V, N) IF (V(I).GT. VM) THEN V(I) = V(I) * 0.9 ELSE IF (V(I).LT. VM) THEN V(I) = V(I) * 1.1 IF DO 4
7 H M k Γράψτε πρόγραμμα που να λύνει την χρονική εξέλιξη του γραμμικού συστήματος Ν ελατηρίων Συνθήκες: Αρχικές θέσεις τυχαίες Αρχικές ταχύτητες μηδέν Πρώτη και τελευταία είναι ακίνητες 1 3 I N Κάθε σφαίρα I(εκτός πρώτης και τελευταίας), περιγράφεται από: Την θέση της Την ταχύτητά της Την δύναμη πού νοιώθει εξαιτίας των δύο ελατηρίων της I N Αρχικές θέσεις: X(1) = 0 X(N) = H * (N - 1) Οι υπόλοιπες δίνονται από τον χρήστη Αρχικές ταχύτητες Όλες μηδέν 1 3 I N Δύναμη στη σφαίρα Ι Εάν το δεξί της ελατήριο είναι τεντωμένο, η δύναμη είναι πρός τα δεξιά (θετική): F = K * (X(I+1) X(I) H) Εάν το δεξί της ελατήριο είναι συμπιεσμένο, η δύναμη είναι προς τα αριστερά (αρνητική): F = K * (X(I+1) X(I) H) Εάν το αριστερό της ελατήριο είναι τεντωμένο, η δύναμη είναι προς τα αριστερά (αρνητική): F = K * (X(I-1) X(I) + H) Εάν το αριστερό της ελατήριο είναι συμπιεσμένο, η δύναμη είναι προς τα δεξιά (θετική): F = K * (X(I-1) X(I) + H) 7 8
8 1 3 I N Συνολική δύναμη στη σφαίρα Ι F = K * (X(I+1) X(I) H) + K * (X(I-1) X(I) + H) F = Κ * (Χ(Ι+1) + Χ(Ι-1) *Χ(Ι)) και η επιτάχυνση Α = Κ / Μ * (Χ(Ι+1) + Χ(Ι-1) *Χ(Ι)) H δύναμη στην πρώτη και τελευταία είναι μηδέν 9 Ολοκλήρωση Ανάπτυγμα Taylor για την απόσταση 1 x ( t + Δt ) = x ( t ) + v ( t ) Δt + a( t )( Δt ) Ανάπτυγμα για την ταχύτητα v ( t + Δt ) = v ( t ) + a( t ) Δt ΣΗΜΕΙΩΣΗ: εφαρμόζοντας αυτούς τους τύπους επιτυγχάνουμε λύση με ακρίβεια πρώτης τάξης, όχι ικανοποιητική. Με μικρή τροποποίηση μπορούμε να επιτύχουμε ακρίβεια δεύτερης τάξης, αλλά δεν είναι επί του παρόντος. 30 Υπορουτίνα για υπολογισμό επιτάχυνσης SUBROUTINE ACCELERATION (X, A, N, KM) (N), A(N), KM DO I =, N-1 A(I) = KM * (X(I+1) + X(I-1) * X(I)) DO Υπορουτίνα για υπολογισμό νέας ταχύτητας SUBROUTINE VELOCITY (V, A, N, DT) DOUBLE PRECISION V(N), A(N), DT DO I =, N-1 V(I) = V(I) + A(I) * DT DO 31 3
9 Υπορουτίνα για υπολογισμό νέας θέσης SUBROUTINE POSITION (X, V, A, N, DT) DOUBLE PRECISION Χ(Ν), V(N), A(N), DT DO I =, N-1 Χ(I) = Χ(Ι) + V(I) * DT * A(I) * DT** DO Πρόγραμμα PROGRAM SPRINGS INTEGER NMAX, N, I, J PARAMETER(NMAX=1000) (NMAX), V(NMAX), A(NMAX), KM, DT WRITE(*,*) ΠΟΣΑ ΣΩΜΑΤΑ ΤΡΕΧΟΥΝ ΚΑΙ ΓΙΑ ΠΟΣΑ ΒΗΜΑΤΑ; READ(*,*) Ν, Μ IF (N.GT. NMAX.OR. N.LE. 0) STOP WRITE(*,*) ΕΛΑΤΗΡΙΟ/ΜΑΖΑ, ΒΗΜΑ READ(*,*) KM, DT ΣΥΝΕΧΙΖΕΤΑΙ Πρόγραμμα WRITE(*,*) ΔΩΣΕ ΑΡΧΙΚΕΣ ΘΕΣΕΙΣ READ(*,*) (Χ(Ι), Ι = 1, Ν) V(I) = 0 DO DO J = 1, M CALL ACCELARATION(X, A, N, KM) CALL POSITION(X, V, A, N, DT) CALL VELOCITY(V, A, N, DT) DO WRITE(*,*) ΟΙ ΘΕΣΕΙΣ ΜΕΤΑ ΑΠΟ, Μ, ΒΗΜΑΤΑ ΕΙΝΑΙ WRITE(*,*) (X(I), I = 1, N) 35
Υπολογιστές Ι. Άδειες Χρήσης. Υποπρογράμματα. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Υποπρογράμματα Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι είναι μια συνάρτηση; ΣΥΝΑΡΤΗΣΕΙΣ. Δήλωση συνάρτησης sq. Παράδειγμα συνάρτησης: υπολογισμός τετραγώνου
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι είναι μια συνάρτηση; ΣΥΝΑΡΤΗΣΕΙΣ Μια ομάδα εντολών, σχεδιασμένη να εκτελεί έναν υπολογισμό και να γυρνάει το αποτέλεσμα Ιδανικές για περιπτώσεις που ο υπολογισμός επαναλαμβάνεται πολλές
Διαβάστε περισσότεραΥπολογιστές Ι. Άδειες Χρήσης. Συναρτήσεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Συναρτήσεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΥπολογιστές Ι. Άδειες Χρήσης. Πολυδιάστατοι πίνακες. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Πολυδιάστατοι πίνακες Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΕΣ Ι. Γιατί χρειαζόμαστε πίνακες; ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ. Παράδειγμα #1B (με πίνακες) Παράδειγμα #1Α (χωρίς πίνακες)
ΥΠΟΛΟΓΙΣΤΕΣ Ι ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Γιατί χρειαζόμαστε πίνακες; Σε πολλά προγράμματα μπορεί να χρειαστεί να ορίσουμε πολλές μεταβλητές παρόμοιου τύπου π.χ. να ορίσουμε και σώσουμε τις τιμές μιας συνάρτησης
Διαβάστε περισσότεραΥπολογιστές Ι. Άδειες Χρήσης. Μονοδιάστατοι πίνακες. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Μονοδιάστατοι πίνακες Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΕΣ Ι. Γιατί πολυδιάστατους πίνακες; ΠΟΛΥΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ. Δήλωση πολυδιάστατων πινάκων. Δήλωση πολυδιάστατων πινάκων
ΥΠΟΛΟΓΙΣΤΕΣ Ι ΠΟΛΥΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Γιατί πολυδιάστατους πίνακες; Αναλόγως με τις ανάγκες του προγράμματος, μπορεί να είναι πιο εύχρηστοι Προβλήματα γραμμικής άλγεβρας Παράδειγμα: δηλώστε σε πρόγραμμα
Διαβάστε περισσότεραΆσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN:
Άσκηση 1 Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του J στα παρακάτω κομμάτια κώδικα FORTRAN: INTEGER J J = 5 J = J + 1 J = J + 1 INTEGER X, Y, J X = 2 Y =
Διαβάστε περισσότεραΤμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016. ΦΥΣ145 Υπολογιστικές Μέθοδοι στην Φυσική
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016 Διδάσκoντες: Χαράλαμπος Παναγόπουλος, Μάριος Κώστα Βαθμός: Όνομα: Α.Δ.Τ.:... ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 24/03/2016 Άσκηση 1 (1 μονάδα) Ποιο είναι το αποτέλεσμα
Διαβάστε περισσότεραΠίνακες. FORTRAN και Αντικειμενοστραφής Προγραμματισμός
Πίνακες (i) Δομημένη μεταβλητή: αποθηκεύει μια συλλογή από τιμές δεδομένων Πίνακας (array): δομημένη μεταβλητή που αποθηκεύει πολλές τιμές του ίδιου τύπου INTEGER:: pinakas(100)ή INTEGER, DIMENSION(100)::pinakas
Διαβάστε περισσότεραΥπο-προγράμματα στη Fortran
ΦΥΣ 145 - Διαλ.05 1 Υπο-προγράμματα στη Fortran q Mέχρι τώρα τα προβλήματα και τα προγράμματα που έχουμε δεί ήταν αρκετά απλά και επομένως ένα και μόνο πρόγραμμα ήταν αρκετό για να τα λύσουμε q Όταν τα
Διαβάστε περισσότεραΠίνακες. (i) FORTRAN και Αντικειµενοστραφής Προγραµµατισµός
Πίνακες (i) οµηµένη µεταβλητή: αποθηκεύει µια συλλογή από τιµές δεδοµένων Πίνακας (array): δοµηµένη µεταβλητή που αποθηκεύει πολλές τιµές του ίδιου τύπου INTEGER:: pinakas(100)ή INTEGER, DIMENSION(100)::pinakas
Διαβάστε περισσότεραΣκοπός. Εργαστήριο 6 Εντολές Επανάληψης
Εργαστήριο 6 Εντολές Επανάληψης Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL. Ρεύμα Εισόδου / Εξόδου.. Ρεύμα Εισόδου / Εξόδου. To πρόγραμμα γραφικών gnuplot. Γραφικά στη PASCAL. Σκοπός 6.1 ΕΠΙΔΙΩΞΗ
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO. Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος.
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος. Τετριμμένο παράδειγμα: Κατασκευάστε πρόγραμμα που θα εμφανίζει
Διαβάστε περισσότεραΕνότητα 1 Διάλεξη 3. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 1 Διάλεξη 3 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν
Διαβάστε περισσότεραΣυναρτήσεις και Υπορουτίνες
Συναρτήσεις και Υπορουτίνες (i) Ομάδες εντολών που εκτελούν μια συγκεκριμένη εργασία (μια σειρά υπολογισμών) ή που επαναλαμβάνονται συχνά και αποτελούν ανεξάρτητες προγραμματιστικές οντότητες μπορούν να
Διαβάστε περισσότεραTO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ
Μάθημα 7 - Υποπρογράμματα Εργαστήριο 11 Ο TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Βασικές Έννοιες: Υποπρόγραμμα, Ανάλυση προβλήματος, top down σχεδίαση, Συνάρτηση, Διαδικασία, Παράμετρος, Κλήση συνάρτησης, Μετάβαση
Διαβάστε περισσότεραΚεφάλαιο 5ο: Εντολές Επανάληψης
Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες
Διαβάστε περισσότεραΠαράλληλη Επεξεργασία Κεφάλαιο 2 Παραλληλισμός Δεδομένων
Παράλληλη Επεξεργασία Κεφάλαιο 2 Παραλληλισμός Δεδομένων Κωνσταντίνος Μαργαρίτης Καθηγητής Τμήμα Εφαρμοσμένης Πληροφορικής Πανεπιστήμιο Μακεδονίας kmarg@uom.gr http://eos.uom.gr/~kmarg Αρετή Καπτάν Υποψήφια
Διαβάστε περισσότεραΠρογραμματισμός με FORTRAN Συνοπτικός Οδηγός Α. Σπυρόπουλος Α. Μπουντουβής
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός με FORTRAN Συνοπτικός Οδηγός Α Σπυρόπουλος Α Μπουντουβής Αθήνα, 2015 v13_061015 Στον οδηγό αυτό θα χρησιμοποιηθούν
Διαβάστε περισσότεραΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική. Πρόοδος 26 Μαρτίου 2007 Ομάδα 1 η
ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική Πρόοδος 26 Μαρτίου 2007 Ομάδα 1 η Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας. Πρέπει να απαντήσετε και στα 6 προβλήματα
Διαβάστε περισσότεραΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική. Πρόοδος 26 Μαρτίου 2007 Ομάδα 1 η
ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική Πρόοδος 6 Μαρτίου 007 Ομάδα 1 η Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας. Πρέπει να απαντήσετε και στα 6 προβλήματα
Διαβάστε περισσότεραΣυμβολικά ονόματα που δίνονται σε θέσεις μνήμης όπου αποθηκεύονται αριθμοί. ιεύθυνση
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι είναι οι μεταβλητές ΕΣ ΤΑΒΛΗΤ - ΜΕΤ ΙΣΤΕΣ Ι ΠΟΛΟΓΙ ΥΠ ΜΕΤΑΒΛΗΤΕΣ Συμβολικά ονόματα που δίνονται σε θέσεις μνήμης όπου αποθηκεύονται αριθμοί. ιεύθυνση 0 1 2 3 4 MNHMH 5 6 7 8 9 Κ Α 1..
Διαβάστε περισσότεραΕργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός
Εργαστήριο 9 Συναρτήσεις στη PASCAL Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός 7.1 ΕΠΙΔΙΩΞΗ ΤΗΣ ΕΡΓΑΣΙΑΣ Η έννοια της συνάρτησης ως υποπρογράμματος είναι τόσο βασική σε όλες τις γλώσσες προγραμματισμού,
Διαβάστε περισσότεραFORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 M7 Δομές δεδομένων: Πίνακες - Ασκήσεις Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr ΕΜΠ/ΣΝΜΜ
Διαβάστε περισσότεραΤμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επανάληψης. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Δομή Επανάληψης Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Δομή Επανάληψης Επανάληψη με αρίθμηση DO = ,
Διαβάστε περισσότεραFORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2016
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2016 M7 Δομές δεδομένων: Πίνακες Δρ. Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr ΕΜΠ/ΣΝΜΜ
Διαβάστε περισσότεραΚεφάλαιο 7: Υπορουτίνες
Κεφάλαιο 7: Υπορουτίνες Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών Ορισμός Αφαίρεση με χρήση υπορουτινών (subroutine abstraction) είναι η αντιστοίχιση ενός συνόλου εισόδων σε ένα σύνολο εξόδων που μπορεί
Διαβάστε περισσότεραΔομές Δεδομένων & Αλγόριθμοι
- Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται
Διαβάστε περισσότεραΥπολογιστές Ι. Άδειες Χρήσης. Μεταβλητές και πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Μεταβλητές και πράξεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΦύλλο εργασίας 9 - Αυτόνομο ρομποτικό όχημα αποφυγής εμποδίων
Φύλλο εργασίας 9 - Αυτόνομο ρομποτικό όχημα αποφυγής εμποδίων Σε αυτήν τη δραστηριότητα θα κατασκευάσουμε ένα αυτόνομο ρομποτικό όχημα αποφυγής εμποδίων. Εκτός από τον μικροελεγκτή Arduino, το breadboard,
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
Διαβάστε περισσότεραΚίνηση σε μία διάσταση
Κίνηση σε μία διάσταση ΦΥΣ 131 - Διαλ.5 1 q Ανακεφαλαιώνοντας θέσης τροχιάς μετατόπισης Δx = x f - x i, χρονικού διαστήματος Δ = f i, μέση ταχύτητα v = x x στιγμιαία ταχύτητα x v = lim " = d x d παράγωγος
Διαβάστε περισσότεραΕργαστηριακή Άσκηση 1
Εργαστηριακή Άσκηση 1 Επανάληψη προγραμματισμού Βασικοί Αλγόριθμοι Είσοδος τιμών από το πληκτρολόγιο Σε όλα τα προγράμματα που θα γράψουμε στην συνέχεια του εξαμήνου θα χρειαστεί να εισάγουμε τιμές σε
Διαβάστε περισσότεραΜονοδιάστατοι πίνακες
Μονοδιάστατοι πίνακες Επικ. Καθ. Ν. Καραµπετάκης Τµήµα Μαθηµατικών, Α.Π.Θ. Τι είναι οι πίνακες και που χρειάζονται ; Να γραφεί πρόγραµµα τοοποίο, εφόσον διαβάσει Ν αριθµούς, στη συνέχεια θα υπολογίζει
Διαβάστε περισσότερα8 FORTRAN 77/90/95/2003
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: Εισαγωγή... 17 1.1. Ανασκόπηση της ιστορίας των υπολογιστών... 18 1.2. Πληροφορία και δεδομένα... 24 1.3. Ο Υπολογιστής... 26 1.4. Δομή και λειτουργία του υπολογιστή... 28 1.5.
Διαβάστε περισσότεραΚεφάλαιο 7: Υποπρογράμματα. Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών
Κεφάλαιο 7: Υποπρογράμματα Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών Ορισμός Αφαίρεση με χρήση υποπρογραμμάτων (subprogram abstraction) είναι η αντιστοίχιση ενός συνόλου εισόδων σε ένα σύνολο εξόδων
Διαβάστε περισσότεραΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.
Διαβάστε περισσότεραΠληροφορική 2. Αλγόριθμοι
Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ
Θέμα Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2016-2017 Πάτρα 3/5/2017 Ονοματεπώνυμο:.. Α1. Να γράψετε στην κόλλα σας τον αριθμό
Διαβάστε περισσότεραΠροβλήματα, αλγόριθμοι, ψευδοκώδικας
Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι
Διαβάστε περισσότεραΕισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς
για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 6. Πίνακες Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the Creative
Διαβάστε περισσότεραΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ. ΚΑΤΕΥΘΥΝΣΗ ΔΙΟΙΚΗΣΗΣ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ Πληροφορική I "Προγραμματισμός" B. Φερεντίνος
Διαβάστε περισσότεραΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΔΟΜΗΜΕΝΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΕΠΑΛ
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΔΟΜΗΜΕΝΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΕΠΑΛ ΘΕΜΑ Α Α.1 Να χαρακτηρίσετε σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις (Μονάδες 10) 1. Ένας αλγόριθμος μπορεί να έχει άπειρα βήματα
Διαβάστε περισσότεραΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου
ΦΥΣ 131 - Διάλ. 4 1 Άλγεβρα a 1 a a ( ± y) a a ± y log a a 10 log a ± logb log( ab ± 1 ) log( a n ) n log( a) ln a a e ln a ± ln b ln( ab ± 1 ) ln( a n ) nln( a) Άσκηση για το σπίτι: Διαβάστε το παράρτημα
Διαβάστε περισσότεραΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:
ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα
Διαβάστε περισσότεραE = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,
Μαθηματική Μοντελοποίηση Ι 1. Φυλλάδιο ασκήσεων Ι - Λύσεις ορισμένων ασκήσεων 1.1. Άσκηση. Ενα σωμάτιο μάζας m βρίσκεται σε παραβολικό δυναμικό V (x) = 1/2x 2. Γράψτε την θέση του σαν συνάρτηση του χρόνου,
Διαβάστε περισσότεραΔείκτες & Πίνακες Δείκτες, Πίνακες
Δείκτες & Πίνακες Δείκτες, Πίνακες Δείκτες Δείκτης είναι μια μεταβλητή που ως δεδομένο περιέχει τη θέση μνήμης (διεύθυνση) μιας άλλης μεταβλητής. Μεταβλητές Τιμές. (*) Δείκτης p Μεταβλητή v Δ1. Δ2. τιμή
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Συναρτήσεις II Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Συναρτήσεις II Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2010-2011 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 3 η Σειρά Ασκήσεων 07.12.2010 Άσκηση 1. Δίνονται τα
Διαβάστε περισσότεραΣυναρτήσεις και Πίνακες
Συναρτήσεις και Πίνακες Συναρτήσεις καθιερωμένης βιβλιοθήκης της C++ Συναρτήσεις οριζόμενες από τον χρήστη Μεταβίβαση κατ αξία Συναρτήσεις void και λογικές συναρτήσεις Μεταβίβαση κατ αναφορά Επιστροφή
Διαβάστε περισσότεραΚεφάλαιο 7ο: Συναρτήσεις και Υπορουτίνες
Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 7ο: Συναρτήσεις και Υπορουτίνες 7.1 Ο Τµηµατικός Προγραµµατισµός Η επίλυση ενός προβλήµατος πολλές φορές ανάγεται στην επίλυση
Διαβάστε περισσότεραΣυνήθεις διαφορικές εξισώσεις O.D.E.
Συνήθεις διαφορικές εξισώσεις O.D.E. ΦΥΣ 145 - Διαλ.07 1 Παράδειγμα αριθμητικής λύσης φυσικού προβλήματος: Πολλοί πυρήνες είναι ασταθείς π.χ. U 35 διασπάται σε δύο πυρήνες εκπέμποντας ακτινοβολία. Η σχάση
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ. Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. ΑΡΧΗ Εντολές ΤΕΛΟΣ_ΔΙΑΔΙΚΑΣΙΑΣ
Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. Οι διαδικασίες μπορούν να εκτελέσουν οποιαδήποτε λειτουργία και δεν επιστρέφουν μια τιμή όπως οι συναρτήσεις. Κάθε διαδικασία έχει
Διαβάστε περισσότεραFortran και Αντικειμενοστραφής προγραμματισμός.
Fortran και Αντικειμενοστραφής προγραμματισμός www.corelab.ntua.gr/courses/fortran_naval/naval Δδάσκοντες: Άρης Παγουρτζής (pagour@cs.ntua.gr) (Επίκουρος Καθηγητής ΣΗΜΜΥ ) Δώρα Σούλιου (dsouliou@mail.ntua.gr)
Διαβάστε περισσότεραOι εντολές COMMON και PARAMETER
ΦΥΣ 145 - Διαλ.06 1 Oι εντολές COMMON και PARAMETER q Oι εντολές αυτές είναι μή εκτελέσιμες και δεν είναι απαραίτητες σε διάφορα προγράμματα. q Η ανάγκη τους όμως παρουσιάζεται σε μεγάλα και πολύπλοκα
Διαβάστε περισσότεραΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ
F ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά
Διαβάστε περισσότεραΑρχές Γλωσσών Προγραμματισμού και Μεταφραστών
Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών Ενότητα 7: Υπορουτίνες Καθ. Γιάννης Γαροφαλάκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Ορισμός Αφαίρεση με χρήση υπορουτινών (subroutine abstraction)
Διαβάστε περισσότεραΘέματα Προγραμματισμού Η/Υ
Πρόγραμμα Μεταπτυχιακών Σπουδών Πληροφορική και Υπολογιστική Βιοϊατρική Θέματα Προγραμματισμού Η/Υ Ενότητα 1: Εισαγωγή Θεματική Ενότητα: Εισαγωγή στον Προγραμματισμό ΘΕΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ Θεματική
Διαβάστε περισσότεραΕισαγωγή στο Προγραμματισμό για Μηχανολόγους Οδηγός Προετοιμασίας για τη Τελική Εξέταση
Σκοπός Εισαγωγή στο Προγραμματισμό για Μηχανολόγους Οδηγός Προετοιμασίας για τη Τελική Εξέταση. Επανάληψη των βασικών εννοιών της PASCAL και του προγραμματισμού οι έννοιες της μεταβλητής, του τύπου δεδομένων,
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ FORTRAN 77
ΣΗΜΕIΩΣΕΙΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ FORTRAN 77 Ν. ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Α.Π.Θ. Μάρτιος 2012 ΕΓΚΑΤΑΣΤΑΣΗ Εγκαθιστούμε τον μεταγλωττιστή από το αρχείο http://www.lepsch.com/downloads/force209g77setup.exe Δημιουργούμε
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 2 ο ΣΕΤ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα παρακάτω θέματα: Συναρτήσεις (κεφάλαιο Functions)
Διαβάστε περισσότερα7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.
ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου
Διαβάστε περισσότεραΜονοδιάστατοι πίνακες (συνέχεια)
Μονοδιάστατοι πίνακες (συνέχεια) Άσκηση Να γράψετε πρόγραμμα που θα διαβάζει 5 πραγματικούς αριθμούς και θα τους τοποθετεί σε ένα μονοδιάστατο πίνακα 5 θέσεων και στη συνέχεια θα εκτυπώνει το ελάχιστο
Διαβάστε περισσότεραΚεφάλαιο 12 : ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 12 : ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ 1. Συναρτήσεις ΣΥΝΑΡΤΗΣΕΙΣ 1.1. Ο λόγος ύπαρξης των συναρτήσεων Όπως είδαµε µία διαδικασία µπορεί να υπολογίζει περισσότερα από ένα αποτελέσµατα τα
Διαβάστε περισσότερα1. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου.
ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΚΡΟΥΣΗ.. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. Σώμα μάζας = g κινείται σε λείο οριζόντιο επίπεδο με ταχύτητα υ μέτρου υ = 5 /s συγκρούεται
Διαβάστε περισσότερα1. Κίνηση Υλικού Σημείου
1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η
Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2016-2017 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Διαβάστε περισσότεραauth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Αλγόριθμοι Ωμή Βία http://delab.csd.auth.gr/courses/algorithms/ auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Ωμή Βία Είναι μία άμεση προσέγγιση που βασίζεται στην εκφώνηση του προβλήματος και
Διαβάστε περισσότεραFORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 Μ4. Συναρτήσεις, Υπορουτίνες, Ενότητες - Ασκήσεις Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Πίνακες (Arrays) [1/2] Δομές δεδομένων για την αποθήκευση δεδομένων υπό
Διαβάστε περισσότεραΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ
ii ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. Εντολές εκχώρησης (αντικατάστασης)....1 1.1 Εισαγωγή...4 1.1.1 Χρήση ΛΣ και IDE της Turbo Pascal....4 1.1.2 Αίνιγμα...6 1.2 Με REAL...7 1.2.1 Ερώτηση...9 1.2.2 Επίλυση δευτεροβάθμιας
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΕΣ Ι. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ. Παράδειγμα #1. Πράξεις μεταξύ ακεραίων αριθμών
ΥΠΟΛΟΓΙΣΤΕΣ Ι ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ Τύποι δεδομένων Οι παρακάτω τύποι δεδομένων υποστηρίζονται από τη γλώσσα προγραμματισμού Fortran: 1) Ακέραιοι αριθμοί (INTEGER). 2) Πραγματικοί αριθμοί απλής ακρίβειας
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/6 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Διαβάστε περισσότεραΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. Πρόοδος 28 Μαρτίου 2009 Οµάδα 1 η
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική Πρόοδος 28 Μαρτίου 2009 Οµάδα 1 η Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. Πρέπει να απαντήσετε σε όλα τα προβλήµατα
Διαβάστε περισσότεραΑλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι
Διαβάστε περισσότεραΜέθοδοι πολυδιάστατης ελαχιστοποίησης
Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo
Διαβάστε περισσότεραΑ. unsigned int Β. double. Γ. int. unsigned char x = 1; x = x + x ; x = x * x ; x = x ^ x ; printf("%u\n", x); Β. unsigned char
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Β Περιόδου 2015 (8/9/2015) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................
Διαβάστε περισσότεραΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα
Διαβάστε περισσότεραΠροβλήματα που αφορούν εντολές ελέγχου της ροής ενός προγράμματος.
Κεφάλαιο ΙΙ Προβλήματα που αφορούν εντολές ελέγχου της ροής ενός προγράμματος. Στο παρόν κεφάλαιο παρουσιάζονται προβλήματα τα οποία αφορούν κυρίως τις εντολές της C οι οποίες ελέγχουν την ροή εκτέλεσης
Διαβάστε περισσότεραΠοιο είναι το πλάτος της ταλάντωσης ;
Ποιο είναι το πλάτος της ταλάντωσης ; 1. Ένα σώμα είναι δεμένο στο δεξιό άκρο οριζόντιου ιδανικού ελατηρίου και στο αριστερό άκρο οριζόντιου νήματος και ηρεμεί σε ισορροπία όπως δείχνει το σχήμα. Το ελατήριο
Διαβάστε περισσότεραF Στεφάνου Μ. 1 Φυσικός
F 1 ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά
Διαβάστε περισσότεραΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. Πρόοδος 20 Μαρτίου 2011 Οµάδα
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική Πρόοδος 20 Μαρτίου 2011 Οµάδα Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. Πρέπει να απαντήσετε σε όλα τα προβλήµατα που
Διαβάστε περισσότεραFORTRAN και Αντικειμενοστραφής Προγραμματισμός
FORTRAN και Αντικειμενοστραφής Προγραμματισμός Παραδόσεις Μαθήματος 2016 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών
Διαβάστε περισσότεραΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ
ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του.
Διαβάστε περισσότεραΜεταγλωττιστές Βελτιστοποίηση
Μεταγλωττιστές Βελτιστοποίηση Νίκος Παπασπύρου nickie@softlab.ntua.gr Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Εργαστήριο Τεχνολογίας Λογισμικού Πολυτεχνειούπολη, 15780
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2011-2012 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 1 η Σειρά Ασκήσεων 26.10.2011 Άσκηση 1. Να μετατραπεί
Διαβάστε περισσότεραιαφάνειες παρουσίασης #6
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης
Διαβάστε περισσότεραπινάκων Σύγχρονα Προγραματιστικά Περιβάλλοντα ΠΕΡΙΕΧΟΜΕΝΑ
Κεφάλαιο 7 Βασικές Έννοιες Προγραμματισμού Κεφάλαιο 8 Επιλογή και Επανάληψη Εντολές επιλογής Εντολές επανάληψης Κεφάλαιο 9 Πίνακες Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 24/09/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 017-018 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΠ / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 4/09/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς
Διαβάστε περισσότεραΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ PASCAL
ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ PASCAL ΓΕΝΙΚΗ ΔΟΜΗ ΠΡΟΓΡΑΜΜΑΤΟΣ Program Ονομα_προγραμματος; «πρόγραμμα» Πρόγραμμα 1 Program Lesson1_Program1; Write('Hello World!!!'); {σχόλια} Επεξήγηση Προγράμματος Program Lesson1_Program1;
Διαβάστε περισσότεραFortran και Αντικειμενοστραφής προγραμματισμός.
Fortran και Αντικειμενοστραφής προγραμματισμός www.corelab.ntua.gr/courses/fortran_naval/naval Δδάσκοντες: Άρης Παγουρτζής (pagour@cs.ntua.gr) (Επίκουρος Καθηγητής ΣΗΜΜΥ ) Δώρα Σούλιου (dsouliou@mail.ntua.gr)
Διαβάστε περισσότεραΦΥΣ 145 Μαθηματικές Μέθοδοι στη Φυσική. Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας.
ΦΥΣ 145 Μαθηματικές Μέθοδοι στη Φυσική Πρόοδος 13 Μαρτίου 2006 Ομάδα 2 η Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας. Πρέπει να απαντήσετε και στα 6 προβλήματα
Διαβάστε περισσότεραΦΥΣ 145 Μαθηματικές Μέθοδοι στη Φυσική. Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας.
ΦΥΣ 145 Μαθηματικές Μέθοδοι στη Φυσική Πρόοδος 13 Μαρτίου 006 Ομάδα 1 η Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας. Πρέπει να απαντήσετε και στα 6 προβλήματα
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
Διαβάστε περισσότεραΜορφοποίηση της εξόδου
Μορφοποίηση της εξόδου (i) Όταν θέλουμε τα αποτελέσματα μιάς εντολής WRITE(*, *) να εμφανίζονται με συγκεκριμένο τρόπο τροποποιούμε τον δεύτερο αστερίσκο. 2 τρόποι μορφοποίησης WRITE(*, '(format εξόδου)')
Διαβάστε περισσότεραFortran και Αντικειμενοστραφής προγραμματισμός.
Fortran και Αντικειμενοστραφής προγραμματισμός www.corelab.ntua.gr/courses/fortran_naval/naval Διδάσκοντες: Άρης Παγουρτζής (pagour@cs.ntua.gr) (Επίκουρος Καθηγητής ΣΗΜΜΥ ) Δώρα Σούλιου (dsouliou@mail.ntua.gr)
Διαβάστε περισσότεραΤμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD ΕΙΣΑΓΩΓΗ Οι πίνακες είναι συλλογές δεδομένων που μοιράζονται τα ίδια χαρακτηριστικά.
Διαβάστε περισσότεραΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ
ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΟΔΗΓΙΕΣ: ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΣΕ ΟΛΕΣ ΤΙΣ ΕΡΩΤΗΣΕΙΣ. Το εξεταστικό δοκίμιο αποτελείται από δύο Ενότητες Α και Β. ΕΝΟΤΗΤΑ Α - Αποτελείται από δέκα (10) ερωτήσεις. Κάθε ορθή απάντηση
Διαβάστε περισσότεραΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μάθημα 5ο Τμήμα Διοίκησης Επιχειρήσεων α εξάμηνο Β. Φερεντίνος Πίνακες 77 Στατική δομή αποθήκευσης δεδομένων (το μέγεθος ορίζεται εξαρχής και δεν αλλάζει) Αποθήκευση πολλών μεταβλητών
Διαβάστε περισσότερα