B' ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ - 24 ΙΟΥΝΙΟΥ 2011 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ 180' (Σύνολο μονάδων 120)
|
|
- Γοργοφόνη Κωνσταντόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 B' ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ - 24 ΙΟΥΝΙΟΥ 2011 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ 10' (Σύνολο μονάδων 120) Επώνυμο ΑΜ Ονομα Τμήμα ΘΕΜΑ 1 (ΜΟΝΑΔΕΣ 3) Σε ποιες από τις πιο κάτω περιπτώσεις ο δείκτης n θα δείχνει σε θέση μνήμης στην οποία είναι αποθηκευμένη η τιμή ; int k,*n; n=&k; k=; int k,*n; k=; n=&k; int k,*n; *n=; k=; int k,*n; n=&k; k=3; *n= Α Β Γ Δ Στις 1, 2, 4 Στην 3 Σε καμία Σε όλες ΘΕΜΑ 2 (ΜΟΝΑΔΕΣ 3) Τι θα εκτυπώσει το πιο κάτω πρόγραμμα για numr=3; switch (numr){ cs 0: printf("too smll, sorry!"); rk; cs : printf( "Goo jo!\n"); cs 4: printf( "Nic Pick!\n"); cs 3: printf( "Excllnt!\n"); cs 2: printf( "Mstrful!\n"); cs 1: printf( "Incril!\n"); rk; fult: printf( "Too lrg!\n"); rk; Too lrg! Excllnt! Excllnt! Mstrful! Incril! Excllnt! Nic Pick! Goo jo! Too smll, sorry! ΘΕΜΑ 3 (ΜΟΝΑΔΕΣ ) Σε ποιες από τις πιο κάτω περιπτώσεις θα εμφανιστεί στην οθόνη " "; for (i=1;i<;i++) i=1; printf("% ",i); whil (i<=) printf("% ",++i); i=1; for (;;){ printf("% ",i++); if (i==) rk; i=1; o { printf("% ",++i); whil (i<=); for (i=1;i<=; printf("% ",i++));
2 Στις 1, 2 Στις 2, 4 Στις 3, Σε όλες Σε καμία ΘΕΜΑ 4 (ΜΟΝΑΔΕΣ ) Τι θα επιστρέψει το πιο κάτω πρόγραμμα για την κλήση: function ( nn ); int function(string wor) { int strln = wor.siz(); if ( wor[0]!= wor[strln - 1] ) rturn 0; ls if ( strln <= 1 ) ls rturn 1; rturn function(wor.sustr(1, strln - 2)); Θεωρείστε ότι οι συναρτήσεις.siz() και.sustr() είναι γνωστές και ότι εφαρμόζονται στη μεταβλητή της οποίας το όνομα προηγείται της τελείας. Π.χ. η κλήση wor.siz() επιστρέφει το μέγεθος της συμβολοσειράς "wor". Η.siz() κάνει το προφανές, και η.sustr() επιστρέφει το τμήμα (υπακολουθία) της συμβολοσειράς (πίνακα χαρακτήρων) επί της οποίας εκτελείται, από τη θέση της πρώτης παραμέτρου, και για τόσες θέσεις όσες καθορίζει η δεύτερη παράμετρος Τίποτα ΘΕΜΑ (ΜΟΝΑΔΕΣ 4) Έστω ότι έχουμε κλειδιά οκτώ ή λιγότερων χαρακτήρων. Γεμίζουμε κάθε κλειδί στα δεξιά με κενά μέχρι το μήκος των χαρακτήρων, και στη συνέχεια συνενώνουμε τους -it κώδικες των χαρακτήρων και ερμηνεύουμε το αποτέλεσμα ως ένας 4-it ακέραιο z. Η συνάρτηση κατακερματισμού που χρησιμοποιούμε είναι το υπόλοιπο της διαίρεσης του z με το 12. Ποια από τις τα παρακάτω επιλογές εκφράζει με τον καλύτερο τρόπο το λόγο για τον οποίο αυτή η συνάρτηση κατακερματισμού είναι μια κακή επιλογή; Α Β Γ Δ E Το αποτέλεσμα της συνάρτησης κατακερματισμού εξαρτάται μόνο από το άθροισμα των - it κωδικών του συμπληρωμένου με κενά κλειδιού Το αποτέλεσμα της συνάρτησης κατακερματισμού εξαρτάται μόνο από τον τελευταίο χαρακτήρα του συμπληρωμένου με κενά κλειδιού Με αυτή τη συνάρτηση κατακερματισμού χρειαζόμαστε έναν πίνακα κατακερματισμού με 212 θέσεις, ακόμη και αν είναι λίγα τα προς εισαγωγή κλειδιά Καμία συνάρτηση κατακερματισμού δεν μπορεί να σχεδιαστεί ώστε να λειτουργεί καλά όταν τα κλειδιά μπορεί να τερματίζονται με κενά Η προτεινόμενη συνάρτηση κατακερματισμού είναι καλή επιλογή
3 ΘΕΜΑ (ΜΟΝΑΔΕΣ ) Θεωρήστε την ακόλουθη δήλωση ενός κόμβου σε ένα Δυαδικό Δένδρο: typf struct no { int vl; struct no *lft; struct no *right; NODE; Και την ακόλουθη συνάρτηση: int Fun(NODE *no) { int lvl, rvl; if (no == NULL) { rturn -1; ls { lvl = Fun(no->lft); rvl = Fun(no->right); if (lvl > rvl) { rturn (lvl + 1); ls { rturn (rvl + 1); Εστω ότι εφαρμόζουμε τη συνάρτηση στο παρακάτω δέντρο. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ M Ν Ποια από τις ακόλουθες προτάσεις είναι σωστή; Α Β Γ Δ E Υπολογίζει το πλήθος των στοιχείων του δέντρου και επιστρέφει την τιμή 13 Υπολογίζει τη μεγαλύτερη τιμή που είναι αποθηκευμένη στο δέντρο και επιστρέφει την τιμή "Ν" (ελληνικός χαρακτήρας) Υπολογίζει το ύψος του δεξιού υποδέντρου και επιστρέφει την τιμή 3 Υπολογίζει το ύψος του αριστερού υποδέντρου και επιστρέφει την τιμή 4 Καμία
4 ΘΕΜΑ (ΜΟΝΑΔΕΣ ) Θεωρήστε μια δομή δεδομένων ΟΥΡΑ με τις εξής πράξεις: ΑΡΧΙΚΟΠΟΙΗΣΗ(), ΠΡΟΣΘΗΚΗ(x:int), και ΑΦΑΙΡΕΣΗ():int. Η ΑΦΑΙΡΕΣΗ() και αφαιρεί το στοιχείο και το επιστρέφει. Θεωρήστε επίσης δομή δεδομένων ΣΤΟΙΒΑ με τις εξής πράξεις: ΑΡΧΙΚΟΠΟΙΗΣΗ(), ΑΠΟΘΕΣΗ(x:int) και ΑΝΑΛΗΨΗ():int. Η ΑΝΑΛΗΨΗ και αφαιρεί την κορυφή της στοίβας και την επιστρέφει ως αποτέλεσμα. Γράψτε την ακολουθία των τιμών που είναι αποθηκευμένες στην ουρά Α αφού εκτελεστεί το πρόγραμμα ΕΚΤΕΛΕΣΗ(Α). Η κεφαλή της ουράς είναι στα αριστερά. ΕΚΤΕΛΕΣΗ (Α: ΟΥΡΑ) 1. Β. ΣΤΟΙΒΑ 2. Β.ΑΡΧΙΚΟΠΟΙΗΣΗ() 3. Α.ΑΡΧΙΚΟΠΟΙΗΣΗ() 4. Α.ΠΡΟΣΘΗΚΗ(2). Α.ΠΡΟΣΘΗΚΗ(3). Α.ΠΡΟΣΘΗΚΗ(1). Α.ΠΡΟΣΘΗΚΗ(4). Β.ΑΠΟΘΕΣΗ(Α.ΑΦΑΙΡΕΣΗ()). Β.ΑΠΟΘΕΣΗ(Α.ΑΦΑΙΡΕΣΗ()) 10. Α.ΠΡΟΣΘΗΚΗ(Β.ΑΝΑΛΗΨΗ()) 11. Α.ΠΡΟΣΘΗΚΗ(Β.ΑΝΑΛΗΨΗ()) 12. Α.ΠΡΟΣΘΗΚΗ(Α.ΑΦΑΙΡΕΣΗ()) Α Β Γ Δ E 1, 2, 3, 4 1, 3, 2, 4 4, 2, 3, 1 3, 1, 4, 2 4, 3, 2, 1 ΘΕΜΑ (ΜΟΝΑΔΕΣ ) Αν έχουμε την προθεματική και την ενθεματική διάσχιση ενός δυαδικού δέντρου, μπορούμε να κατασκευάσουμε ακριβώς ένα δυαδικό δέντρο που να ικανοποιεί αυτές τις διασχίσεις. Αν έχουμε τις πιο κάτω διασχίσεις, επιλέξτε το δέντρο που κατασκευάζεται: Προθεματική:,, f,, g,, c, h Ενθεματική:, f,, g,, c,, h Α Β Γ f g c h f g c h c h f g
5 Δ Ε Κανένα από τα εικονιζόμενα f g c h ΘΕΜΑ (ΜΟΝΑΔΕΣ ) Θεωρήστε την εξής συστοιχία Α: Πρόκειται για ουρά ελαχίστου, με ένα πρόβλημα: Η τιμή στην κορυφή της (Α[1]=) είναι σε λάθος θέση. Α. Γράψτε τη συστοιχία Α μετά την κλήση της συνάρτησης ΑΠΟΚΑΤΑΣΤΑΣΗ ΣΩΡΟΥ ΕΛΑΧΙΣΤΟΥ(Α,1), που μετακινεί το Α[1] στη σωστή θέση στο σωρό ελαχίστου Α. Η ΑΠΟΚΑΤΑΣΤΑΣΗ ΣΩΡΟΥ ΕΛΑΧΙΣΤΟΥ είναι ανάλογη με την ΑΠΟΚΑΤΑΣΤΑΣΗ ΣΩΡΟΥ ΜΕΓΙΣΤΟΥ του βιβλίου. Β. Αν το κλειδί αυξηθεί σε 10, γράψτε τη συστοιχία Α μετά την κλήση της συνάρτησης ΑΥΞΗΣΗ ΚΛΕΙΔΙΟΥ ΣΩΡΟΥ ΑΠΑΝΤΗΣΕΙΣ (Απαντήστε στον ελεύθερο χώρο στο φύλο απαντήσεων) Α. 1,2,,3,,,,4 Β. *αναμενεται η απάντηση από ΒΒΑΣ* ΘΕΜΑ 10 (ΜΟΝΑΔΕΣ 3) Εστω το ακόλουθο απόσπασμα ενός διαγράμματος ροής δεδομένων (ΔΡΔ). Προσπαθήστε να διατυπώσετε την προδιαγραφή την οποία αποτυπώνει. ΑΞΙΟΛΟΓΗΤΗΣ ΓΡΑΠΤΩΝ ΜΑΘΗΜΑ, ΚΩΔ.ΓΡΑΠΤΟΥ, ΒΑΘΜΟΛΟΓΙΑ ΕΠΑΛΗΘΕΥΣΗ ΕΓΚΥΡΟΤΗΤΑΣ ΕΓΓΡΑΦΗ ΒΑΘΜΟΛΟΓΙΑΣ ΔΗΜΙΟΥΡΓΙΑ ΕΓΓΡΑΦΗΣ ΑΠΟΤΕΛΕΣΜΑ ΑΞΙΟΛΟΓΗΤΗΣ ΓΡΑΠΤΩΝ ΕΓΓΡΑΦΗ ΒΑΘΜΟΛΟΓΙΑΣ ΚΩΔ. ΓΡΑΠΤΟΥ ΒΑΘΜΟΛΟΓΙΑ ΑΠΑΝΤΗΣΕΙΣ (Σημειώστε τη σωστή απάντηση στο φύλο απαντήσεων)
6 Α Β Γ Δ Ε Εισάγεται ο κωδικός μαθήματος και το σύστημα υπολογίζει το μέσο όρο της βαθμολογίας σε αυτό Ενα εξωτερικό σύστημα λογισμικού μεταφέρει δεδομένα βαθμολογίας προς τον αξιολογητή γραπτών Εισάγεται ο κωδικός ενός μαθητή και το σύστημα επιστρέφει τη βαθμολογία του Εισάγεται και αποθηκεύεται η βαθμολογία γραπτών εξετάσεων Ελέγχεται η εγκυρότητα των στοιχείων "μάθημα, κωδ.γραπτού, βαθμολογία" ΘΕΜΑ 11 (ΜΟΝΑΔΕΣ ) Παρακάτω δίνονται τέσσερα λεπτομερή σχέδια μονάδων λογισμικού σε ψευδοκώδικα. Από ποια Διαγράμματα Ροής Δεδομένων (ΔΡΔ) μπορούν να προκύψουν οι παρακάτω ψευδοκώδικες, αν εφαρμοστούν οι κανόνες της τεχνολογίας λογισμικού; Αναφέρετε σε κάθε Διάγραμμα Ροής Δεδομένων τον ψευδοκώδικα που αντιστοιχεί Procur EXEC_XXX Procur EXEC_XXX Procur EXEC_XXX Procur EXEC_XXX GET() GET() clcm3(,, f) clcm(,) clcm1(, c, ) cll xcm2(c) cll xcm4(f) END GET() cll xcm1(c) clcm3(,, f) clcm(,) clcm2(c,,h) cll xcm4(f) WHILE (f>0) PUT(h) f := f -1 END WHILE END ΑΠΑΝΤΗΣΕΙΣ (Σημειώστε την αντιστοίχιση στο φύλλο απαντήσεων) GET() cll xcm1(c) clcm2(c, h) clcm3(,, f) clcm(,) clcm4(f,,g) IF (h>0) PUT(h) END IF PUT(g) END GET() cll xcm1(c) clcm2(c, h) clcm3(,, f) clcm(,) clcm4(f,g) PUT(h) PUT(g) PUT() END M1 c M2 h M Α 2 M3 f g M4
7 M1 c M2 h Β 1 M g M3 f M4 M1 c M2 h M Γ 3 g M3 f M4 M1 c M2 h M Δ 4 g M3 f M4 ΘΕΜΑ 12 (ΜΟΝΑΔΕΣ ) Έστω η παρακάτω συνάρτηση oomthing : struct no { int vl;
8 ; struct no *nxt; int oomthing(struct no *n) { struct no *s = n; if (!(s->nxt) ) rturn(s->vl); int t = oomthing(s->nxt); rturn( s->vl <= t? s->vl : t ); Με ποια από τα παρακάτω ορίσματα θα καλούσατε την συνάρτηση oomthing, προκειμένου αυτή να ελεγχθεί σύμφωνα με τη μέθοδο των συνοριακών τιμών; Arg1 Arg2 Arg3 Arg4 Arg {->3->2->-> {4 {10->4->4->1->1 {10->1->3->4-> {43->->2->31->4 ΑΠΑΝΤΗΣΕΙΣ (Σημειώστε τη σωστή απάντηση στο φύλο απαντήσεων) Arg1, Arg Arg2, Arg3, Arg4 Arg3, Arg4 Arg Κανένα ΘΕΜΑ 13 (ΜΟΝΑΔΕΣ ) Δίνεται η παρακάτω συνάρτηση chop, η οποία διαχωρίζει («σπάει») τη συμβολοσειρά που δίνεται ως είσοδος s σε διαδοχικά τμήματα μήκους ακριβώς ίσα με M και τα εμφανίζει στην οθόνη. Τμήματα με μήκος μικρότερο από Μ δεν εμφανίζονται καθόλου. Πόσες είναι οι ελάχιστες δοκιμές που πρέπει να γίνουν αν πρόκειται η συνάρτηση chop να ελεγχθεί με τη μέθοδο των κλάσεων ισοδύναμων τιμών; int chop(chr *s, int M) { chr *t; t=(chr*)mlloc(sizof(chr)*(m+1)); if(t==null) xit(1); if (M<=0) rturn(-1); int l = strln(s); if (l < M ) rturn(-1); ls if (l == M){ printf("%s\n", s); rturn(0); strncpy(t, s, M); *(t+m) = '\0'; printf("%s\n", t); rturn( chop(s+m, M) );
9 ΘΕΜΑ 14 (ΜΟΝΑΔΕΣ ) Για το ακόλουθο ΔΡΔ κατασκευάστε το αντίστοιχο ΔΔΠ. T2 2 1 c g T1 T3 f T4 Απαντήστε στο χώρο που διατίθεται στο φύλλο απαντήσεων t ΘΕΜΑ 1 (ΜΟΝΑΔΕΣ 3) Ποια είναι η χρονική πολυπλοκότητα του παρακάτω κώδικα: for ( int i = 0; i < n/2; i++) { for ( int j = 0; j < i; j++) sum++; for ( int j = 0; j < i; j++) sum++; O(logn) O(n 2 ) O(n 3 ) O(nlogn) O(2 n ) ΘΕΜΑ 1 (ΜΟΝΑΔΕΣ ) Δίνεται ένας σωρός ελαχίστου (min hp) n ακέραιων αριθμών. Ποια είναι η χρονική πολυπλοκότητα εύρεσης του ου μικρότερου μεταξύ των αριθμών αυτών; O(nlogn) O(n) O(logn) O(1) O(n ) ΘΕΜΑ 1 (ΜΟΝΑΔΕΣ ) Στην ακόλουθη συνάρτηση clcult, η sqrt επιστρέφει την τετραγωνική ρίζα του αριθμού που δίδεται ως όρισμα. Θεωρώντας οτι η χρονική πολυπλοκότητα της ίδιας της συνάρτησης sqrt είναι O(1), ποια είναι η χρονική πολυπλοκότητα της συνάρτησης clcult; voi clcult(int n) { whil ( n > 1)
10 n = sqrt(n); Απαντήστε στο χώρο που διατίθεται στο φύλλο απαντήσεων Λαμβάνοντας διαδοχικά τις τετραγωνικές ρίζες του αριθμού n, θα υπολογίζονται οι ακόλουθες εκφράσεις 1η φορά : sqrt(n) = n^(1/2) 2η φορά: sqrt( sqrt(n)) = n^(1/4) 3η φορά: sqrt(sqrt( sqrt(n))) = n^(1/) k-φορά: sqrt(...(sqrt( sqrt(n)))...) = n^(1/2k) k-φορές---- Το ζήτημα είναι να βρεθεί το k που υποδεικνύει και τις φορές που θα εκτελεστεί η τετραγωνική ρίζα και θα καθορίσει την πολυπλοκότητα. Η συνάρτηση θα τερματίσει όταν: n^(1/2k) = p, με p <=2 => n = p^(2k) => logn = (2k)logp => log(logn) = klog2 + log(logp) => k ~= log(logn) ΘΕΜΑ 1 (ΜΟΝΑΔΕΣ ) Γράψτε μια τοπολογική διάταξη (topologicl sorting) για τις κορυφές του κατευθυνόμενου γράφου του παρακάτω σχήματος (υπάρχουν περισσότερες από μια τοπολογικές διατάξεις για τον γράφο αυτό) : Απαντήστε στο χώρο που διατίθεται στο φύλλο απαντήσεων mnpoqsryutvwzx pmnqovxwzsruyt ΘΕΜΑ 1 (ΜΟΝΑΔΕΣ ) Μας δίνεται ένα σύνολο από πραγματικούς αριθμούς. Βρείτε το ελάχιστο πλήθος κλειστών μοναδιαίων διαστημάτων
11 που περιέχει όλους τους δοθέντες πραγματικούς αριθμούς. Για παράδειγμα, εάν μας έχουν δοθεί οι τρεις πραγματικοί αριθμοί 3, π και 3., τότε το κλειστό μοναδιαίο διάστημα [3,4] περιέχει και τους τρεις αριθμούς, όπως το ίδιο συμβαίνει και με το διάστημα [2., 3.] (η τελεία χρησιμοποιείται ως υποδιαστολή). Οι πραγματικοί αριθμοί που σας δίνονται (σε αύξουσα σειρά) είναι οι: Ποιο είναι το ελάχιστο πλήθος μοναδιαίων διαστημάτων που περιέχουν όλους τους παραπάνω αριθμούς; Υπόδειξη: θα χρειαστεί να εφαρμόσετε κάποιον άπληστο αλγόριθμο ΘΕΜΑ 20 (ΜΟΝΑΔΕΣ ) Στον παρακάτω γράφο υπολογίστε τις αποστάσεις όλων των κορυφών από την κορυφή z χρησιμοποιώντας τον αλγόριθμο Bllmn-For. Δείξτε αναλυτικά τη διαδικασία, δηλαδή τις τρέχουσες αποστάσεις των κορυφών από την z μετά από κάθε πέρασμα του αλγορίθμου από όλες τις ακμές. s t -2 x 2 y z Απαντήστε στο χώρο που διατίθεται στο φύλλο απαντήσεων Αρχικοποίηση: s= t= -2 x= 1ο πέρασμα: 2 y= z=0
12 s=2 t= -2 x= 2 y= z=0 2 ο πέρασμα: s=2 t= -2 x= 2 y= z=0 3ο πέρασμα: s=2 t= -2 x= 2 y= z=0 4ο πέρασμα: s=2 t=4-2 x= 2 y= z=0
13 ο πέρασμα: s=2 t=4-2 x= 2 y= z=0 Δεν άλλαξε τίποτα, αλλά η διαδικασία μπορεί να τερματιστεί. Παρατηρούμε ότι υπάρχει ένας κύκλος μηδενικού κόστους, ο zsyxtz. Ωστόσο ο αλγόριθμος Bllmn For τερματίζει κανονικά, μιας και δεν υπάρχει αρνητικός κύκλος
#include <stdlib.h> Α. [-128,127] Β. [-127,128] Γ. [-128,128]
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Α Περιόδου 2017 (27/1/2017) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης 09.07.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και
Α Β Γ static; printf("%c\n", putchar( A +1)+2); B DB BD. int i = 0; while (++i); printf("*");
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Α Περιόδου 2016 (1/2/2016) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................
Α. unsigned int Β. double. Γ. int. unsigned char x = 1; x = x + x ; x = x * x ; x = x ^ x ; printf("%u\n", x); Β. unsigned char
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Β Περιόδου 2015 (8/9/2015) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: ΣΕΠΤΕΜΒΡΙΟΥ 6 Ι ΑΣΚΩΝ: Ε. ΚΟΦΙ ΗΣ Όλα τα ερωτήµατα είναι ισοδύναµα. Καλή επιτυχία! ΘΕΜΑ ο a) Βρείτε την αναπαράσταση
Θεωρητικό Μέρος. int rec(int n) { int n1, n2; if (n <= 5) then return n; else { n1 = rec(n-5); n2 = rec(n-3); return (n1+n2); } }
Πανεπιστήµιο Ιωαννίνων, Τµήµα Πληροφορικής 2 Νοεµβρίου 2005 Η/Υ 432: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκού Έτους 2005-2006 Παναγιώτα Φατούρου Ηµεροµηνία Παράδοσης 1 ο Σετ Ασκήσεων Θεωρητικό Μέρος:
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. Για i από 1 μέχρι Μ Εμφάνισε A[4,i] Τέλος_επανάληψης. (μονάδες 6) ΤΕΛΟΣ 1ης ΑΠΟ 7 ΣΕΛΙΔΕΣ
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΔΕΚΕΜΒΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 (ΕΠΤΑ) ΘΕΜΑ Α : A1. Να γράψετε στο φύλλο απαντήσεων τον αριθμό
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #4 2 Γενικά Στο Τετράδιο #4 του Εργαστηρίου θα αναφερθούμε σε θέματα διαχείρισης πινάκων
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 (α) Έστω Α(n) και Κ(n) ο αριθμός των ακμών και ο αριθμός των κόμβων ενός αυστηρά δυαδικού δένδρου με n φύλλα. Θέλουμε να αποδείξουμε για κάθε n 1 την πρόταση
ΑΣΚΗΣΕΙΣ ΣΤΗ ΟΜΗ ΕΠΙΛΟΓΗΣ (ΑΝΑΦΕΡΟΝΤΑΙ ΟΣΑ ΠΡΟΕΡΧΟΝΤΑΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ)
ΑΣΚΗΣΕΙΣ ΣΤΗ ΟΜΗ ΕΠΙΛΟΓΗΣ (ΑΝΑΦΕΡΟΝΤΑΙ ΟΣΑ ΠΡΟΕΡΧΟΝΤΑΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) ΑΣΚΗΣΗ 1 (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) Δίνεται ο παρακάτω αλγόριθμος : Αλγόριθμος Παράδειγμα_1 Διάβασε α Αν α < 0 τότε α α * 5 Τέλος_αν
ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο
Δημιουργία Δυαδικών Δέντρων Αναζήτησης
Δημιουργία Δυαδικών Δέντρων Αναζήτησης Τα Δυαδικά δέντρα αναζήτησης είναι διατεταγμένα δυαδικά δέντρα όπου έχει σημασία η διάταξη των παιδιών κάθε κόμβου. Συγκεκριμένα για τα Δυαδικά δέντρα αναζήτησης,
Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n
Διασυνδεδεμένες Δομές. Δυαδικά Δέντρα. Προγραμματισμός II 1
Διασυνδεδεμένες Δομές Δυαδικά Δέντρα Προγραμματισμός II 1 lalis@inf.uth.gr Δέντρα Τα δέντρα είναι κλασικές αναδρομικές δομές Ένα δέντρο αποτελείται από υποδέντρα, καθένα από τα οποία μπορεί να θεωρηθεί
Κεφάλαιο 2. Η δομή δεδομένων Σωρός και η Ταξινόμηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.3, 14/11/2014
Κεφάλαιο 2 Η δομή δεδομένων Σωρός και η Ταξινόμηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.3, 14/11/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Σωρός και Ταξινόμηση
53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η
53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η ΠΑΓΚΡΑΤΙ: Φιλολάου & Εκφαντίδου 26 : 210/76.01.470 210/76.00.179 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς
Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 4 ο ΣΕΤ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα παρακάτω θέματα: Δείκτες Δομές Το τέταρτο σύνολο
Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων
Κ Σ Ι Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων Παναγιώτα Παναγοπούλου Άσκηση 1. Υποθέστε ότι οι διεργασίες ενός σύγχρονου κατανεμημένου συστήματος έχουν μοναδικές ταυτότητες (UIDs), γνωρίζουν ότι είναι συνδεδεμένες
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΟΔΗΓΙΕΣ: ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ - ΠΛΗ10 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ - 14 ΙΟΥΝΙΟΥ 2015 Τα θέματα που έχετε στα χέρια σας είναι σε τρεις (3) σελίδες. Επιβεβαιώστε το και αν λείπει κάποια σελίδα
Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Εντολές Επανάληψης. int sum = 0, i=1; sum += i++ ; sum += i++ ; Η πράξη αυτή θα πρέπει να επαναληφθεί Ν φορές!
Εντολές Επανάληψης Πολλές φορές χρειάζεται να επαναλάβουμε τις ίδιες εντολές Πχ. Έστω ότι θέλουμε να υπολογίσουμε το άθροισμα όρων μιας ακολουθίας διαδοχικών ακεραίων. Δηλαδή αν ο χρήστης δώσει τον αριθμό
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΕΡΩΤΗΣΕΙΣ 1. Τι καλείται ψευδοκώδικας; 2. Τι καλείται λογικό διάγραμμα; 3. Για ποιο λόγο είναι απαραίτητη η τυποποίηση του αλγόριθμου; 4. Ποιες είναι οι βασικές αλγοριθμικές δομές; 5. Να περιγράψετε τις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 2 ο ΣΕΤ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα παρακάτω θέματα: Συναρτήσεις (κεφάλαιο Functions)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ ΕΠΛ 035 - ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΓΙΑ ΗΛΕΚΤΡΟΛΟΓΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΚΑΙ ΜΗΧΑΝΙΚΟΥΣ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδηµαϊκό έτος 2017-2018 Υπεύθυνος εργαστηρίου: Γεώργιος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Πέμπτη 27 Ιουνίου 2013 10:003:00 Έστω το πάζλ των οκτώ πλακιδίων (8-puzzle)
Διάγραμμα Ροής. Σελίδα 1 από 10
Θεωρία επισκόπηση 3 Επανάληψη Σημείωση: Οι εντολές που συγκροτούν μια εντολή επανάληψης αποκαλούνται βρόχος 1. Εντολή Όσο.επανάλαβε Σύνταξη Όσο συνθήκη επανάλαβε εντολές Πώς Λειτουργεί. Αρχικά ελέγχεται
ΣΤΗΛΗ Β ΑΠΟΤΕΛΕΣΜΑ 1. float(10) α pow(2,3) β abs(-10) γ int(5.6) δ. 10 ε. 5.6 Μονάδες 8 ΣΤΗΛΗ Α ΣΥΝΑΡΤΗΣΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ KAI ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΕΜΠΤΗ 26 ΣΕΠΤΕΜΒΡΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7)
Δομές Δεδομένων & Αλγόριθμοι
Σωροί 1 Ορισμοί Ένα δέντρο μεγίστων (δένδρο ελαχίστων) είναι ένα δένδρο, όπου η τιμή κάθε κόμβου είναι μεγαλύτερη (μικρότερη) ή ίση με των τιμών των παιδιών του Ένας σωρός μεγίστων (σωρός ελαχίστων) είναι
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΟΔΗΓΙΕΣ: ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ - ΠΛΗ10 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ - 15 ΙΟΥΝΙΟΥ 2014 Τα θέματα που έχετε στα χέρια σας είναι τρεις (3) σελίδες. Επιβεβαιώστε το και αν λείπει κάποια σελίδα ή
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. i. Η συνθήκη α > β ή α <= β α) είναι πάντα Αληθής β) είναι πάντα Ψευδής γ) δεν υπολογίζεται δ) τίποτα από τα προηγούμενα
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΟΚΤΩΒΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 (ΕΞΙ) ΘΕΜΑ Α : A1. Να γράψετε στο φύλλο απαντήσεων τον αριθμό καθεμιάς
ΘΕΜΑ Α. Α2. Να αναφέρετε από τι εξαρτάται η επιλογή του καλύτερου αλγορίθμου ταξινόμησης. Μονάδες 4. Σελίδα 1 από 8
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2013 Γ Λυκείου Τεχνολογική Κατεύθυνση ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΟΥΣ
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΟΥΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: ΙΟΥΝΙΟΥ 5 Ι ΑΣΚΩΝ: Ε. ΚΟΦΙ ΗΣ Όλα τα ερωτήµατα είναι ισοδύναµα. Καλή επιτυχία! ΘΕΜΑ ο a) Βρείτε την αναπαράσταση
ΕΠΛ232 Προγραμματιστικές Τεχνικές και Εργαλεία Δυναμική Δέσμευση Μνήμης και Δομές Δεδομένων (Φροντιστήριο)
ΕΠΛ232 Προγραμματιστικές Τεχνικές και Εργαλεία Δυναμική Δέσμευση Μνήμης και Δομές Δεδομένων (Φροντιστήριο) Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου http://www.cs.ucy.ac.cy/courses/epl232 Το μάθημα αυτό
Γλώσσα Προγραμματισμού C. Προγραμματισμός HY: Γλώσσα Προγραμματισμού C. Γρήγορος Πίνακας Αναφοράς Σύνταξης. Εισήγηση #4. Επαναληπτικές δομές:
Προγραμματισμός HY: Γλώσσα Προγραμματισμού C Δρ. Ηλίας Κ. Σάββας, Αναπληρωτής Καθηγητής, Τμήμα Μηχανικών Πληροφορικής Τ.Ε., T.E.I. Θεσσαλίας Email: savvas@teilar.gr URL: http://teilar.academia.edu/iliassavvas
σωροί ταξινόμηση σωρού οόροςheap σωρός (heap) συστοιχία Α για έναν σωρό μια δομή δεδομένων που πχ.
Παύλος Εφραιμίδης άλλος ένας αλγόριθμος ταξινόμησης πολυπλοκότητας O(n lgn) Ιδιαίτερα χαρακτηριστικά: χρησιμοποιεί μια δομή δεδομένων που ονομάζεται «σωρός» είναι επιτόπια: το πλήθος των στοιχείων της
ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 4-1
Εφαρμογές στοιβών Στην ενότητα αυτή θα μελετηθεί η χρήση στοιβών στις εξής εφαρμογές: Αναδρομικές συναρτήσεις Ισοζυγισμός Παρενθέσεων Αντίστροφος Πολωνικός Συμβολισμός ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ 23/04/2012. Α. Να απαντήσετε με Σ ή Λ στις παρακάτω προτάσεις:
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ 23/04/2012 ΘΕΜΑ Α Α. Να απαντήσετε με Σ ή Λ στις παρακάτω προτάσεις: 1. Κάθε βρόγχος που υλοποιείται με την εντολή Για μπορεί να
Άσκηση 3 (ανακοινώθηκε στις 24 Απριλίου 2017, προθεσμία παράδοσης: 2 Ιουνίου 2017, 12 τα μεσάνυχτα).
Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 3 (ανακοινώθηκε στις 24 Απριλίου 2017, προθεσμία παράδοσης: 2 Ιουνίου 2017, 12 τα μεσάνυχτα).
ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012
ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΘΕΜΑ Α Α1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν είναι
Ακρότατα πίνακα, χωρίς min, max, μόνο με pos
Ακρότατα πίνακα, χωρίς min, max, μόνο με pos Θέμα εξετάσεων / 2010 Θέμα εξετάσεων / 2011 Θέμα εξετάσεων / 2013 Θέμα εξετάσεων / 2014 Θέμα εξετάσεων / 2014 ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης 3-4 Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητες 3 & 4: ένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε
3ο σετ σημειώσεων - Πίνακες, συμβολοσειρές, συναρτήσεις
3ο σετ σημειώσεων - Πίνακες, συμβολοσειρές, συναρτήσεις 5 Απριλίου 01 1 Πίνακες Είδαμε ότι δηλώνοντας μία μεταβλητή κάποιου συγκεκριμένου τύπου δεσμεύουμε μνήμη κατάλληλη για να αποθηκευτεί μία οντότητα
Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο
Ουρές προτεραιότητας Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο αριθμός είναι μεγάλος, τόσο οι πελάτες
ΑΕΠΠ 6o Επαναληπτικό Διαγώνισμα
ΑΕΠΠ 6o Επαναληπτικό Διαγώνισμα Ονοματεπώνυμο: ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω προτάσεις 1-5 και, δίπλα, τη λέξη ΣΩΣΤΟ, αν η πρόταση είναι σωστή, ή τη λέξη ΛΑΘΟΣ,
Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής
Αναδροµή Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής 1 Αναδροµή Βασική έννοια στα Μαθηµατικά και στην Πληροφορική.
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΑΞΗ: ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ημερομηνία: Σάββατο 20 Απριλίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
Σημειώσεις του εργαστηριακού μαθήματος Πληροφορική ΙΙ. Εισαγωγή στην γλώσσα προγραμματισμού
Σημειώσεις του εργαστηριακού μαθήματος Πληροφορική ΙΙ Εισαγωγή στην γλώσσα προγραμματισμού Ακαδημαϊκό έτος 2016-2017, Εαρινό εξάμηνο Οι σημειώσεις βασίζονται στα συγγράμματα: A byte of Python (ελληνική
Πανεπιστήµιο Θεσσαλίας, THMMY HY120, Σεπτέµβριος 2015 ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: AEM: ΜΕΡΟΣ Α: ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ [15 µονάδες] ΣΗΜΑΝΤΙΚΕΣ ΔΙΕΥΚΡΙΝΙΣΕΙΣ: Επιλέξτε ΜΙΑ σωστή απάντηση για κάθε ερώτηση. Λάθος απαντήσεις βαθµολογούνται αρνητικά Σε ερωτήσεις που
Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
lab13grades Άσκηση 2 -Σωστά απελευθερώνετε ολόκληρη τη λίστα και την κεφαλή
ΑΕΜ ΒΑΘΜΟΣ ΣΧΟΛΙΑ 00497 -Δεν ελέγχετε αν η createlist εκτελλέστικε σωστά και δεν τερµατίζετε το πρόγραµµα σε διαφορετική -Σωστά βρίσκετε το σηµείο στο οποίο πρέπει να προστεθεί ο κόµβος. -Σωστά τερµατίζετε
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 2 η
Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2017-2018 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ ΠΡΩΤΗ ΠΡΟΟΔΟΣ ΣΤΗΝ «ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Y»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ ΠΡΩΤΗ ΠΡΟΟΔΟΣ ΣΤΗΝ «ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Y» Σάββατο, 31 Οκτωβρίου 2015 ΔΙΑΡΚΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ 150 ΛΕΠΤΑ ΘΕΜΑ 1.
ΣΕΤ ΑΣΚΗΣΕΩΝ 3. Προθεσµία: 7/1/2014, 22:00
ΣΕΤ ΑΣΚΗΣΕΩΝ 3 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 Προθεσµία: 7/1/2014, 22:00 Περιεχόµενα Διαβάστε πριν ξεκινήσετε Εκφώνηση άσκησης 1 Οδηγίες αποστολής άσκησης Πριν ξεκινήσετε (ΔΙΑΒΑΣΤΕ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ
Θέμα Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2016-2017 Πάτρα 3/5/2017 Ονοματεπώνυμο:.. Α1. Να γράψετε στην κόλλα σας τον αριθμό
Υπολογισμός - Εντολές Επανάληψης
Προγραμματισμός Η/Υ Ι Υπολογισμός - Εντολές Επανάληψης ΕΛΕΥΘΕΡΙΟΣ ΚΟΣΜΑΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2018-2019 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. 1 Περίληψη Σήμερα... θα συνεχίσουμε τη συζήτησή μας για τα βασικά στοιχεία
Μη γράφετε στο πίσω μέρος της σελίδας
Εισαγωγή στο Σχεδιασμό & την Ανάλυση Αλγορίθμων Εξέταση Ιουνίου 2015 Σελ. 1 από 7 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 1: Εισαγωγή Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Δομές Δεδομένων & Αλγόριθμοι
- Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΕΠΠ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ / Γ3 Γ4 ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : ΕΞΙ (6)
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ A : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΕΠΠ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ / Γ3 Γ4 ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : ΕΞΙ (6) A1. Να γράψετε στο φύλλο απαντήσεων τον αριθμό καθεμιάς
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 05/01/2010 ΘΕΜΑ 1 ο Α) Δίνεται η παρακάτω ακολουθία εντολών αλγορίθμου: ΑΛΓΟΡΙΘΜΟΣ Θέμα1 ΔΙΑΒΑΣΕ Ν Σ 0 π 0 ΓΙΑ ψ ΑΠΟ -1 ΜΕΧΡΙ
Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες
Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 12 16 2 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 13 1 με τις ακόλουθες ιδιότητες 4 14 9 7 4 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση
ταξινόμηση σωρού Παύλος Εφραιμίδης Δομές Δεδομένων και
ταξινόμηση σωρού Παύλος Εφραιμίδης ταξινόμηση σωρού ταξινόμηση σωρού άλλος ένας αλγόριθμος ταξινόμησης πολυπλοκότητας O(n lgn) Ιδιαίτερα χαρακτηριστικά: χρησιμοποιεί μια δομή δεδομένων που ονομάζεται «σωρός»
Εισαγωγή στην Ανάλυση Αλγορίθμων (1) Διαφάνειες του Γ. Χ. Στεφανίδη
Εισαγωγή στην Ανάλυση Αλγορίθμων (1) Διαφάνειες του Γ. Χ. Στεφανίδη 0. Εισαγωγή Αντικείμενο μαθήματος: Η θεωρητική μελέτη ανάλυσης των αλγορίθμων. Στόχος: επιδόσεις των επαναληπτικών και αναδρομικών αλγορίθμων.
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα
Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΪΟΥ
ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΪΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α : Α1. Να
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { n 3 } (α) H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την επτάδα Q,
Προγραμματισμός Ι. Δείκτες. Δημήτρης Μιχαήλ. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Προγραμματισμός Ι Δείκτες Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Τι είναι ο δείκτης Ένας δείκτης είναι μια μεταβλητή που περιέχει μια διεύθυνση μνήμης. Θυμηθείτε πως
Στην εντολή while η επανάληψη συνεχίζεται όσο η λογική έκφραση έχει τιμή false.
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 08/04/2015 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων Τι θα κάνουμε σήμερα Εισαγωγή Πολυταινιακές Μηχανές Turing (3.2.1) Μη Ντετερμινιστικές Μηχανές
1 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ - ΑΛΓΟΡΙΘΜΟΙ
Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2017-2018 Τομέας Συστημάτων Παραγωγής Εξάμηνο A Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης 03 ΟΚΤ 2017 ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΗΝ
! ΘΕΜΑ A Α2. ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΛΥΚΕΙΟΥ. Ονοµατεπώνυµο:
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ Ονοµατεπώνυµο: Καθηγητής: ΒΛΙΣΙΔΗΣ Γ.! ΘΕΜΑ A Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη
Περιεχόμενα. Περιεχόμενα
Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java... 1 1.1 Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα... 2 1.1.1 Βασικοί Τύποι... 5 1.1.2 Αντικείμενα... 7 1.1.3 Τύποι Enum... 14 1.2 Μέθοδοι... 15 1.3 Εκφράσεις...
Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Δένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών :
Δένδρα Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών : Ανάλυση αλγορίθμων (π.χ. δένδρα αναδρομής) Δομές δεδομένων (π.χ. δένδρα αναζήτησης) ακμή Κατηγορίες (αύξουσα
ΗΥ240: Δομές Δεδομένων Εαρινό Εξάμηνο Ακαδημαϊκό Έτος Προγραμματιστική Εργασία - 2o Μέρος
Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών, 4 Μαρτίου 2019 ΗΥ240: Δομές Δεδομένων Εαρινό Εξάμηνο Ακαδημαϊκό Έτος 2018-2019 Προγραμματιστική Εργασία - 2o Μέρος Ημερομηνία Παράδοσης: Δευτέρα, 13 Μαϊου
1 η ΑΣΚΗΣΗ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Ακ. έτος , 5ο Εξάμηνο, Σχολή ΗΜ&ΜΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr 1 η ΑΣΚΗΣΗ ΣΤΗΝ
Αναφορά (1/2) Μπορούμε να ορίσουμε μια άλλη, ισοδύναμη αλλά ίσως πιο σύντομη, ονομασία για ποσότητα (μεταβλητή, σταθερή, συνάρτηση, κλπ.
ΤΡΙΤΗ ΔΙΑΛΕΞΗ Αναφορά (1/2) Μπορούμε να ορίσουμε μια άλλη, ισοδύναμη αλλά ίσως πιο σύντομη, ονομασία για ποσότητα (μεταβλητή, σταθερή, συνάρτηση, κλπ.): Σύνταξη τύπος όνομαα; τύπος όνομαβ{όνομαα}; όνομαβ
Η πρώτη παράμετρος είναι ένα αλφαριθμητικό μορφοποίησης
Η συνάρτηση printf() Η συνάρτηση printf() χρησιμοποιείται για την εμφάνιση δεδομένων στο αρχείο εξόδου stdout (standard output stream), το οποίο εξ ορισμού συνδέεται με την οθόνη Η συνάρτηση printf() δέχεται
2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ
2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ Προκειμένου να επιτευχθεί η «ακριβής περιγραφή» ενός αλγορίθμου, χρησιμοποιείται κάποια γλώσσα που μπορεί να περιγράφει σειρές ενεργειών με τρόπο αυστηρό,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ «ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ «ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ» ΗΜΕΡ.ΑΝΑΘΕΣΗΣ: Δευτέρα 21 Δεκεμβρίου 2015 ΗΜΕΡ.ΠΑΡΑΔΟΣΗΣ: Δευτέρα 25 Ιανουαρίου 2016 Διδάσκοντες:
Τυπικές χρήσεις της Matlab
Matlab Μάθημα 1 Τι είναι η Matlab Ολοκληρωμένο Περιβάλλον Περιβάλλον ανάπτυξης Διερμηνευμένη γλώσσα Υψηλή επίδοση Ευρύτητα εφαρμογών Ευκολία διατύπωσης Cross platform (Wintel, Unix, Mac) Τυπικές χρήσεις
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μάθημα 7ο Τμήμα Διοίκησης Επιχειρήσεων Παλαιό ΕΠΔΟ α εξάμηνο Β. Φερεντίνος Δείκτες (Pointers) (1) 142 Κάθε μεταβλητή, εκτός από την τιμή της, έχει και μία συγκεκριμένη διεύθυνση
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου
Α2. Να αναφέρετε ονομαστικά τις βασικές λειτουργίες που εκτελεί ένας υπολογιστής (Μονάδες 3)
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΘΕΜΑ Α Α1. Να χαρακτηρίσετε σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις: 1. Ένα επιλύσιμο πρόβλημα είναι και δομημένο. 2. Ένας από τους
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων
Άσκηση 1 Χρησιµοποιούµε τη δοµή Κατ οίκον Εργασία 3 Σκελετοί Λύσεων typedef struct Node int data; struct node *lchild; struct node *rbro; node; και υποθέτουµε πως ένα τυχαίο δένδρο είναι υλοποιηµένο ως
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη
Διάλεξη 3η: Τύποι Μεταβλητών, Τελεστές, Είσοδος/Έξοδος
Διάλεξη 3η: Τύποι Μεταβλητών, Τελεστές, Είσοδος/Έξοδος Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Μεταβλητές,
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ
Θέμα Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2014-2015 Πάτρα 5/5/2015 Ονοματεπώνυμο:.. Α1. α. Να γράψετε στο τετράδιό σας τον
Ασκή σεις στή δομή επανα λήψής
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 1 Ασκή σεις στή δομή επανα λήψής Ανάγνωση Στοιχείων Εύρεση Πλήθους 1. Να γραφεί αλγόριθμος ο οποίος να διαβάζει Ν πραγματικούς αριθμούς. Αλγόριθμος Άσκηση1
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΛ ΤΡΙΤΗ 11 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΛ ΤΡΙΤΗ 11 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο
Προγραμματισμός Η/Υ (ΤΛ2007 )
Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε.Ι. Κρήτης Προγραμματισμός Η/Υ (ΤΛ2007 ) Δρ. Μηχ. Νικόλαος Πετράκης (npet@chania.teicrete.gr) Ιστοσελίδα Μαθήματος: https://eclass.chania.teicrete.gr/ Εξάμηνο: Εαρινό 2015-16