ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
|
|
- Θεόδουλος Βλαχόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και 30 λεπτά Απαντήστε σε όλα τα θέµατα Θέµα Σύνολο: Βαθµός 1
2 ΘΕΜΑ 1 (12 µονάδες) Απαντήστε στις παρακάτω ερωτήσεις. Δεν χρειάζεται να δικαιολογήσετε την απάντησή σας. Απλώς κυκλώστε τις σωστές απαντήσεις (ενδέχεται να υπάρχει παραπάνω από µία σωστή απάντηση ή να µην υπάρχει καµία σωστή απάντηση). Δεν υπάρχει αρνητική βαθµολόγηση, για να πάρετε όµως όλες τις µονάδες πρέπει να κυκλώσετε όλες τις σωστές απαντήσεις. Όπου εµφανίζονται λογάριθµοι παρακάτω χωρίς να αναγράφεται ρητά η βάση τους, εννοείται ότι είναι το n 5 8n n 2 100n = a. O(n 2 ) b. O(n 5 ) c. O(n 8 ) d. O(n!) 2. Οι µέθοδοι ταξινόµησης Quicksort και Insertionsort έχουν a. τις ίδιες απαιτήσεις µνήµης b. την ίδια πολυπλοκότητα χειρότερης περίπτωσης c. την ίδια πολυπλοκότητα µέσης περίπτωσης 3. Σε ένα Β-δέντρο µε παράµετρο Μ, όπου Μ=Ο(1), και µε n αντικείµενα, ο χρόνος αναζήτησης στη χειρότερη περίπτωση είναι a. Ο(logn) b. O((log Μ n) 5 ) c. O(log 4 (log Μ n)) d. O(sqrt(logn)) 4. Το ύψος ενός δέντρου δυαδικής αναζήτησης µε n κόµβους, είναι πάντα a. τουλάχιστον logn 2 b. τουλάχιστον logn + 2 c. το πολύ n-2 d. το πολύ n+2 5. Η συνάρτηση n logn είναι a. O(n!) b. O(n 10 ) c. O(n n ) d. O(logn) 6. Έστω η αναδροµική σχέση f(n) = f(n-1) + n, για n 2, και f(1) = 1. Τότε f(n) = a. O(nlogn) b. O(n) c. O(n 2 ) d. O(n(logn) 2 ) Απαντήσεις: 1. b, c, d 2
3 2. a, b 3. a, b 4. a, d 5. a, c 6. c ΘΕΜΑ 2 (12 µονάδες) Δίνεται ο ακόλουθος ορισµός των κόµβων µίας απλά συνδεδεµένης λίστας. Κάθε κόµβος περιέχει ένα ακέραιο κλειδί key και ένα δείκτη next προς κάποιον άλλο κόµβο (ή είναι null). class Node{ int key; Node next; Node(int x){ key = x; next = null; } } Να γράψετε σε Java τη µέθοδο Node insert(node h, int x) η οποία υλοποιεί την εισαγωγή ενός κόµβου µε κλειδί x στην ταξινοµηµένη λίστα µονής σύνδεσης µε κεφαλή h. Η λίστα είναι ταξινοµηµένη σε αύξουσα σειρά και πρέπει να διατηρείται ταξινοµηµένη µετά την εισαγωγή. Αν το κλειδί υπάρχει ήδη στη λίστα, δεν γίνεται εισαγωγή και η µέθοδος επιστρέφει null, αλλιώς επιστρέφει τον κόµβο που εισήγαγε. Η λίστα δεν έχει κόµβους φρουρούς και τερµατίζεται µε null. Υπάρχουν πάρα πολλοί τρόποι για να υλοποιηθεί µια τέτοια µέθοδος. Ενδεικτικά: Node insert(node h, int x) { if (h==null) return new Node(x); //µην ξεχνάτε τον έλεγχο αυτό!! if (x==h.key) return null; if (x<h.key) { //εισαγωγή στην αρχή, την αντιµετωπίζουµε χωριστά Node t = new Node(x); t.next = h; h=t; return h; } //αν φτάσουµε εδώ η εισαγωγή πρέπει να γίνει µετά την κεφαλή Node t = h; while (t.next!=null) { if (x==t.next.key) return null; //αν υπάρχει επιστρέφει null if (x < t.next.key) //βρήκαµε πού πρέπει να µπει { Node s = new Node(x); s.next = t.next; t.next = s; return s; } else t = t.next; } // end of while Node s = new Node(x); //διαφορετικά, εισαγωγή στο τέλος t.next = s; return s; } 3
4 ΘΕΜΑ 3 (15 µονάδες) Έστω ότι έχουµε ένα σωρό που υποστηρίζει τις βασικές λειτουργίες insert και getmax, όπως τις είδαµε στο µάθηµα. Ο σωρός αρχικά έχει την ακόλουθη µορφή (το στοιχείο στη θέση 0 του πίνακα δεν χρησιµοποιείται, για αυτό και το στοιχείο 20 είναι στη θέση 1): α) Σχεδιάστε την αναπαράσταση του σωρού ως πλήρες δυαδικό δέντρο. β) Έστω ότι ξεκινώντας από το σωρό του ερωτήµατος (α), εισάγουµε διαδοχικά τα στοιχεία 25, 22, 28, σύµφωνα µε τη µέθοδο insert, η οποία όπως έχουµε δει, αρχικά εισάγει ένα στοιχείο στο τέλος και στη συνέχεια καλεί την µέθοδο της ανάδυσης (swim) για να αποκαταστήσει την ιδιότητα του σωρού. Να σχεδιάσετε τον πίνακα και το αντίστοιχο πλήρες δυαδικό δέντρο που προκύπτει για τον σωρό, όταν ολοκληρώνεται κάθε κλήση της insert. 4
5 γ) Εκτελέστε µία αφαίρεση µεγίστου (getmax) στο σωρό που έχει προκύψει από το ερώτηµα (β). Δείξτε όλες τις αλλαγές που γίνονται (µετακινήσεις στοιχείων) µέχρι να ολοκληρωθεί η κλήση της getmax. 5
6 ΘΕΜΑ 4 (12 µονάδες) (α) [8 µονάδες] Έστω ότι εφαρµόζετε κατακερµατισµό µε γραµµική διερεύνηση σε 6,000 αντικείµενα, και έχετε χρησιµοποιήσει πίνακα µεγέθους 12,000. Έστω ότι για τον ίδιο αριθµό αντικειµένων θέλετε να έχετε και ένα σύστηµα που χρησιµοποιεί χωριστή αλυσίδωση και έχει τον ίδιο µέσο όρο διερευνήσεων για ανεπιτυχείς αναζητήσεις µε το προηγούµενο. Ποιο θα πρέπει να είναι το µέγεθος του πίνακα στη χωριστή αλυσίδωση; Για ανεπιτυχείς αναζητήσεις, το µέσο πλήθος διερευνήσεων στη γραµµική διερεύνηση είναι (1 + 1/(1-α) 2 )/2, όπου α ο συντελεστής φορτίου. (β) [4 µονάδες] Να συγκρίνετε το µέσο πλήθος διερευνήσεων για επιτυχείς αναζητήσεις στα 2 παραπάνω συστήµατα. Για επιτυχείς αναζητήσεις, το µέσο πλήθος διερευνήσεων είναι (1 + 1/(1- α))/2, στη γραµµική διερεύνηση. (α) Έχουµε Ν = Για το σύστηµα της γραµµ. διερεύνησης έχουµε ότι α γδ = ½. Αυτό σηµαίνει ότι µε βάση τον τύπο, ο αριθµός διερευνήσεων για ανεπιτυχείς αναζητήσεις στο σύστηµα γραµµ. διερεύνησης είναι (1 + 1/(1-1/2) 2 )/2 = 5/2. Για να έχουµε τώρα ένα ισοδύναµο σύστηµα χωριστής αλυσίδωσης, ως προς τις διερευνήσεις για ανεπιτυχείς αναζητήσεις, έστω Μ χα το µέγεθος του πίνακα που θα χρησιµοποιήσουµε στο σύστηµα αυτό. Ο µέσος όρος διερευνήσεων για ανεπιτυχείς αναζητήσεις στη χωριστή αλυσίδωση είναι Ν/Μ χα. Άρα πρέπει να ισχύει ότι Ν/Μ χα = 5/2. Από αυτή τη σχέση προκύπτει ότι Μ χα = Άρα το µέγεθος του πίνακα πρέπει να είναι (β) Ο αριθµός διερευνήσεων για επιτυχείς αναζητήσεις στη χωριστή αλυσίδωση είναι Ν/(2Μ χα ), καθώς κατά µέσο όρο στις επιτυχείς αναζητήσεις, µέχρι τη µέση της λίστας έχουµε βρει το κλειδί που ψάχνουµε. Άρα στη χωριστή αλυσίδωση είναι 5/4. Για το σύστηµα γραµµικής διερεύνησης, εφαρµόζοντας τον τύπο παίρνουµε (1 + 1/(1-1/2))/2 = 3/2. Άρα µε βάση το κριτήριο του αριθµού διερευνήσεων για επιτυχείς αναζητήσεις, η χωριστή αλυσίδωση είναι καλύτερη. ΘΕΜΑ 5 (17 µονάδες) (α) [5 µονάδες] Θεωρήστε ένα ισορροπηµένο δέντρο µε n κλειδιά (ισορροπηµένο σηµαίνει ότι όλοι οι σύνδεσµοι ισαπέχουν από τη ρίζα). Έστω ότι το µετατρέπετε στην ισοδύναµη αναπαράσταση σε δέντρο κόκκινου-µαύρου. Πόσο αυξάνεται το ύψος του δέντρου στη χειρότερη περίπτωση κατά τη µετατροπή αυτή σε σχέση µε το αρχικό δέντρο 2-3-4; Περιγράψτε από πού προέρχεται η αύξηση αυτή στο ύψος του δέντρου. Μην χρησιµοποιήσετε κοµµάτια κώδικα για να απαντήσετε. Περιγράψτε απλά ποια είναι τα βήµατα που µπορεί να προκαλέσουν την αύξηση αυτή, και τι συνεπάγεται αυτό για το ύψος του τελικού δέντρου κόκκινου-µαύρου στη χειρότερη περίπτωση. 6
7 Απ: Στη χειρότερη περίπτωση το ύψος του δέντρου διπλασιάζεται. Η αύξηση του ύψους προκαλείται από τη µετατροπή των 3-κόµβων και 4-κόµβων σε απλούς κόµβους. Συγκεκριµένα, έχουµε δει ότι η µετατροπή από σε κόκκινο-µαύρο έχει ως αποτέλεσµα την αντικατάσταση ενός 3-κόµβου ή 4-κόµβου από υποδέντρα µε 2 επίπεδα. Συνεπώς το ύψος µπορεί να αυξηθεί κατά 1 για κάθε 3-κόµβο ή 4-κόµβο. Στη χειρότερη περιπτωση λοιπόν, αν έχουµε 3-κόµβους ή 4- κόµβους σε κάθε επίπεδο του δέντρου, το ύψος µπορεί µέχρι και να διπλασιαστεί. (β) [8 µονάδες] Διατάξτε τις ακόλουθες συναρτήσεις µε βάση τον αυξητικό τους χαρακτήρα, δηλαδή βρείτε µια διάταξη f 1,, f 8 των οκτώ συναρτήσεων παρακάτω, η οποία να ικανοποιεί τις σχέσεις f 1 = O(f 2 ), f 2 = O(f 3 ),, κ.ο.κ. (η λύση µπορεί να µην είναι µοναδική, εσείς απλά γράψτε µία διάταξη που να ικανοποιεί τις σχέσεις αυτές). Σε όσους λογαρίθµους παρακάτω δεν εµφανίζεται η βάση τους, θεωρήστε πως είναι ίση µε 2. n 3 n 1/4 log(n 4 ) n 3 logn n n log 4 (n 4 ) 4 nlogn n 2 sqrt(n) Απ: 1. log(n 4 ) ή log 4 (n 4 ) 2. log 4 (n 4 ) ή log(n 4 ) 3. n 1/4 4. n 2 sqrt(n) 5. n 3 6. n 3 logn 7. n n 8. 4 nlogn 7
8 (γ) [4 µονάδες] Γιατί στα Β-δέντρα χρησιµοποιούµε κόµβους που περιέχουν σχετικά µεγάλο αριθµό κλειδιών; Απ: Γιατί τα Β-δεντρα τα χρησιµοποιούµε συνήθως για εξωτερική αναζήτηση, όπου το κύριο κόστος είναι το πόσες φορές διαβάζουµε/γράφουµε στο σκληρό δίσκο ή στη βάση δεδοµένων. Προσπαθούµε λοιπόν κάθε κόµβος να περιέχει περίπου όσα κλειδιά χωράνε σε µια σελίδα/µπλοκ του δίσκου, (η ανάγνωση από το δίσκο ούτως ή άλλως ένα µπλοκ θα επιστρέψει και όχι µεµονωµένα κλειδιά) και να ελαχιστοποιούµε έτσι το πόσες φορές θα διαβάσουµε από το δίσκο. 8
9 ΘΕΜΑ 6 (12 µονάδες) Έστω το εξής δέντρο 2-3-4: (α) Σχεδιάστε ένα ισοδύναµο δέντρο κόκκινου-µαύρου. (β) Να εισάγετε µε ανοδική εισαγωγή το κλειδί 45. Σχεδιάστε το νέο δέντρο που θα προκύψει καθώς και το ισοδύναµο δέντρο κόκκινου-µαύρου. 9
10 (γ) Στο δέντρο που προέκυψε από το ερώτηµα (β) κάντε ανοδική εισαγωγή του κλειδιού 11. Ξανασχεδιάστε το νέο δέντρο και το ισοδύναµο κόκκινου-µαύρου. 10
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και
Διαβάστε περισσότεραΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Εξωτερική Αναζήτηση και Β-δέντρα Κεφάλαιο 16. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Εξωτερική Αναζήτηση και Β-δέντρα Κεφάλαιο 16 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ακολουθιακή πρόσβαση Β-δέντρα Υλοποίηση πίνακα συµβόλων µε Β-δέντρα Αναζήτηση Εισαγωγή Δοµές Δεδοµένων
Διαβάστε περισσότεραΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ουρές προτεραιότητας Κεφάλαιο 9. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ουρές προτεραιότητας Κεφάλαιο 9 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ουρές προτεραιότητας Στοιχειώδεις υλοποιήσεις Δοµή δεδοµένων σωρού Αλγόριθµοι σε σωρούς Ο αλγόριθµος heapsort Δοµές
Διαβάστε περισσότεραΔοµές Δεδοµένων. 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης. Ε. Μαρκάκης
Δοµές Δεδοµένων 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης Ε. Μαρκάκης Περίληψη Δέντρα Δυαδικής Αναζήτησης Υλοποιήσεις εισαγωγής και αναζήτησης Χαρακτηριστικά επιδόσεων ΔΔΑ Εισαγωγή στη ρίζα ΔΔΑ Υλοποιήσεις
Διαβάστε περισσότεραΔοµές Δεδοµένων. 16η Διάλεξη Κατακερµατισµός. Ε. Μαρκάκης
Δοµές Δεδοµένων 16η Διάλεξη Κατακερµατισµός Ε. Μαρκάκης Περίληψη Συναρτήσεις κατακερµατισµού Χωριστή αλυσίδωση Γραµµική διερεύνηση Διπλός κατακερµατισµός Δυναµικός κατακερµατισµός Προοπτική Δοµές Δεδοµένων
Διαβάστε περισσότεραΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ουρές προτεραιότητας Κεφάλαιο 9. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ουρές προτεραιότητας Κεφάλαιο 9 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ουρές προτεραιότητας Στοιχειώδεις υλοποιήσεις Δοµή δεδοµένων σωρού Αλγόριθµοι σε σωρούς Ο αλγόριθµος heapsort Δοµές
Διαβάστε περισσότεραΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2 Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Εµπειρική ανάλυση αλγορίθµων Μαθηµατική ανάλυση αλγορίθµων Αύξηση συναρτήσεων Συµβολισµός µεγάλου όµικρον Παραδείγµατα
Διαβάστε περισσότεραΔιασυνδεδεμένες Δομές. Δυαδικά Δέντρα. Προγραμματισμός II 1
Διασυνδεδεμένες Δομές Δυαδικά Δέντρα Προγραμματισμός II 1 lalis@inf.uth.gr Δέντρα Τα δέντρα είναι κλασικές αναδρομικές δομές Ένα δέντρο αποτελείται από υποδέντρα, καθένα από τα οποία μπορεί να θεωρηθεί
Διαβάστε περισσότεραΔοµές Δεδοµένων. 18η Διάλεξη Ισορροπηµένα δέντρα. Ε. Μαρκάκης
Δοµές Δεδοµένων 18η Διάλεξη Ισορροπηµένα δέντρα Ε. Μαρκάκης Περίληψη Επανάληψη των Τυχαιοποιηµένων ΔΔΑ, Στρεβλών ΔΔΑ, Δέντρων 2-3-4 Δέντρα κόκκινου-µαύρου Λίστες Παράλειψης Χαρακτηριστικά επιδόσεων - συµπεράσµατα
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS)
ΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS) Ταχεία Αναζήτηση Σε πίνακα: δυαδική αναζήτηση (binary search) σε ταξινοµηµένο πίνακα O(log n) Σε δένδρο: αναζήτηση σε ισοζυγισµένο δένδρο O(log n) Σε λίστα: Μπορούµε
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα
Διαβάστε περισσότεραΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Πίνακες Συµβόλων Κεφάλαιο 12 ( ) Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Πίνακες Συµβόλων Κεφάλαιο 12 (12.1-12.4) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Πίνακες συµβόλων Διεπαφή πίνακα συµβόλων Αναζήτηση µε αριθµοδείκτη Ακολουθιακή αναζήτηση Δυαδική αναζήτηση
Διαβάστε περισσότεραΑλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι
Διαβάστε περισσότεραΔομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από
Διαβάστε περισσότεραΟικονοµικό Πανεπιστήµιο Αθηνών. Τµήµα Πληροφορικής. Φθινοπωρινό Εξάµηνο 2015. Δοµές Δεδοµένων - Εργασία 2. Διδάσκων: E. Μαρκάκης
Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Πληροφορικής Φθινοπωρινό Εξάµηνο 2015 Δοµές Δεδοµένων - Εργασία 2 Διδάσκων: E. Μαρκάκης Ταξινόµηση και Ουρές Προτεραιότητας Σκοπός της 2 ης εργασίας είναι η εξοικείωση
Διαβάστε περισσότερα#include <stdlib.h> Α. [-128,127] Β. [-127,128] Γ. [-128,128]
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Α Περιόδου 2017 (27/1/2017) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................
Διαβάστε περισσότεραΘεωρητικό Μέρος. int rec(int n) { int n1, n2; if (n <= 5) then return n; else { n1 = rec(n-5); n2 = rec(n-3); return (n1+n2); } }
Πανεπιστήµιο Ιωαννίνων, Τµήµα Πληροφορικής 2 Νοεµβρίου 2005 Η/Υ 432: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκού Έτους 2005-2006 Παναγιώτα Φατούρου Ηµεροµηνία Παράδοσης 1 ο Σετ Ασκήσεων Θεωρητικό Μέρος:
Διαβάστε περισσότερα8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων
Διαβάστε περισσότεραΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Κατακερµατισµός Κεφάλαιο 14. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Κατακερµατισµός Κεφάλαιο 14 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Εισαγωγή στον κατακερµατισµό Συναρτήσεις κατακερµατισµού Χωριστή αλυσίδωση Γραµµική διερεύνηση Διπλός κατακερµατισµός
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΑ. ΕΤΟΣ 2012-13 Ι ΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής, Τοµέας Τεχνολογίας
Διαβάστε περισσότεραΣτοιχειώδεις Δομές Δεδομένων
Στοιχειώδεις Δομές Δεδομένων Τύποι δεδομένων στη Java Ακέραιοι (int, long) Αριθμοί κινητής υποδιαστολής (float, double) Χαρακτήρες (char) Δυαδικοί (boolean) Από τους παραπάνω μπορούμε να φτιάξουμε σύνθετους
Διαβάστε περισσότεραΠΛΗ111. Ανοιξη Μάθηµα 8 ο. Αναζήτηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 8 ο Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Αναζήτηση Αναζήτηση σε ιατεταγµένο Πίνακα υαδική Αναζήτηση Κατακερµατισµός
Διαβάστε περισσότεραΔοµές Δεδοµένων. 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι. Ε. Μαρκάκης
Δοµές Δεδοµένων 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι Ε. Μαρκάκης Περίληψη Bubble Sort Selection Sort Insertion Sort Χαρακτηριστικά επιδόσεων Shellsort Ταξινόµηση συνδεδεµένων λιστών Δοµές Δεδοµένων
Διαβάστε περισσότεραΔοµές Δεδοµένων. 5η Διάλεξη Λίστες και αρχές ανάλυσης αλγορίθµων. Ε. Μαρκάκης
Δοµές Δεδοµένων 5η Διάλεξη Λίστες και αρχές ανάλυσης αλγορίθµων Ε. Μαρκάκης Περίληψη Διπλά συνδεδεµένες λίστες Αναπαράσταση γράφων µε λίστες Εµπειρική ανάλυση αλγορίθµων Μαθηµατική ανάλυση αλγορίθµων Αύξηση
Διαβάστε περισσότεραΣτοιχεία Αλγορίθµων και Πολυπλοκότητας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις
Διαβάστε περισσότεραΔιάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:
Διαβάστε περισσότεραΟργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο
Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών
Διαβάστε περισσότεραΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο
Διαβάστε περισσότεραΔοµές Δεδοµένων. 17η Διάλεξη Ισορροπηµένα δέντρα. Ε. Μαρκάκης
Δοµές Δεδοµένων 17η Διάλεξη Ισορροπηµένα δέντρα Ε. Μαρκάκης Περίληψη Εισαγωγή Τυχαιοποιηµένα ΔΔΑ (Randomized Binary Search trees) Στρεβλά ΔΔΑ (Splay trees) Καθοδικά δέντρα 2-3-4 (Top-Down 2-3-4 trees)
Διαβάστε περισσότεραΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Δέντρα Δυαδικής Αναζήτησης Κεφάλαιο 12 ( ) Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Δέντρα Δυαδικής Αναζήτησης Κεφάλαιο 12 (12.6 12.9) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Δυαδικής Αναζήτησης (ΔΔΑ) Υλοποιήσεις εισαγωγής και αναζήτησης Χαρακτηριστικά επιδόσεων
Διαβάστε περισσότεραΆσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Διαβάστε περισσότεραΕνότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του
Διαβάστε περισσότεραΤο εσωτερικό ενός Σ Β
Επεξεργασία Ερωτήσεων 1 Εισαγωγή ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL) ηµιουργία/κατασκευή Εισαγωγή εδοµένων
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ
ΠΝΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΣ ΔΔΟΜΝΩΝ ΚΙ ΛΓΟΡΙΘΜΟΙ ΗΜΡΟΜΗΝΙ: 14/11/2018 ΔΙΓΝΩΣΤΙΚΟ ΠΝΩ Σ ΔΝΔΡΙΚΣ ΔΟΜΣ ΚΙ ΓΡΦΟΥΣ Διάρκεια: 45 λεπτά Ονοματεπώνυμο:. ρ. Ταυτότητας:. ΒΘΜΟΛΟΓΙ ΣΚΗΣΗ ΒΘΜΟΣ
Διαβάστε περισσότεραΔοµές Δεδοµένων. 4η Διάλεξη Στοιχειώδεις Δοµές Δεδοµένων: Πίνακες και Λίστες. Ε. Μαρκάκης
Δοµές Δεδοµένων 4η Διάλεξη Στοιχειώδεις Δοµές Δεδοµένων: Πίνακες και Λίστες Ε. Μαρκάκης Εργαστήρια Ώρες εργαστηρίων Τέσσερα τµήµατα εργαστηρίων XXXX001-XXXX060, Δευτέρα 09:00-11:00 (CSLAB II) XXXX061-XXXX120,
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί
Διαβάστε περισσότεραΔοµές Δεδοµένων. 12η Διάλεξη Διάσχιση Δέντρων και Ουρές Προτεραιότητας. Ε. Μαρκάκης
Δοµές Δεδοµένων 12η Διάλεξη Διάσχιση Δέντρων και Ουρές Προτεραιότητας Ε. Μαρκάκης Περίληψη Διάσχιση δέντρων Ουρές προτεραιότητας Στοιχειώδεις υλοποιήσεις Δοµή δεδοµένων σωρού Αλγόριθµοι σε σωρούς Ο αλγόριθµος
Διαβάστε περισσότεραΕισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας Τα βασικά βήματα στην επεξεργασία
Διαβάστε περισσότεραΠΛΗ111. Ανοιξη 2005. Μάθηµα 3 ο. Συνδεδεµένες Λίστες. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 3 ο Συνδεδεµένες Λίστες Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ανασκόπηση ΟΑΤ λίστα Ακολουθιακή λίστα Συνδεδεµένη λίστα
Διαβάστε περισσότεραΔοµές Δεδοµένων. 15η Διάλεξη Δέντρα Δυαδικής Αναζήτησης και Κατακερµατισµός. Ε. Μαρκάκης
Δοµές Δεδοµένων 15η Διάλεξη Δέντρα Δυαδικής Αναζήτησης και Κατακερµατισµός Ε. Μαρκάκης Περίληψη Υλοποιήσεις άλλων λειτουργιών σε ΔΔΑ: Επιλογή k-οστού µικρότερου Διαµέριση Αφαίρεση στοιχείου Ένωση 2 δέντρων
Διαβάστε περισσότεραΑλγόριθμοι Ταξινόμησης Μέρος 2
Αλγόριθμοι Ταξινόμησης Μέρος 2 Μανόλης Κουμπαράκης 1 Προχωρημένοι Αλγόριθμοι Ταξινόμησης Στη συνέχεια θα παρουσιάσουμε τρείς προχωρημένους αλγόριθμους ταξινόμησης: treesort, quicksort και mergesort. 2
Διαβάστε περισσότεραΔιάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
Διαβάστε περισσότεραΑ Β Γ static; printf("%c\n", putchar( A +1)+2); B DB BD. int i = 0; while (++i); printf("*");
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Α Περιόδου 2016 (1/2/2016) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................
Διαβάστε περισσότεραΕιδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
Διαβάστε περισσότεραΔοµές Δεδοµένων. 6η Διάλεξη Αναδροµικές Εξισώσεις και Αφηρηµένοι Τύποι Δεδοµένων. Ε. Μαρκάκης
Δοµές Δεδοµένων 6η Διάλεξη Αναδροµικές Εξισώσεις και Αφηρηµένοι Τύποι Δεδοµένων Ε. Μαρκάκης Περίληψη Χρήση αναδροµικών εξισώσεων στην ανάλυση αλγορίθµων Αφηρηµένοι τύποι δεδοµένων Συλλογές στοιχείων Στοίβα
Διαβάστε περισσότεραRed-Black Δέντρα. Red-Black Δέντρα
Red-Black Δέντρα v 6 3 8 4 z Red-Black Δέντρα Περίληψη Από τα (2,4) δέντρα στα red-black δέντρα Red-black δέντρο Ορισμός Ύψος Εισαγωγή αναδόμηση επαναχρωματισμός Διαγραφή αναδόμηση επαναχρωματισμός προσαρμογή
Διαβάστε περισσότεραΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Mergesort Κεφάλαιο 8 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική ταξινόµηση
Διαβάστε περισσότεραΕπεξεργασία Ερωτήσεων
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή ΣΔΒΔ Σύνολο από προγράµµατα για τη διαχείριση της ΒΔ Αρχεία ευρετηρίου Κατάλογος ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ Αρχεία δεδοµένων συστήµατος Σύστηµα Βάσεων Δεδοµένων (ΣΒΔ)
Διαβάστε περισσότεραΒασικές Έννοιες Δοµών Δεδοµένων
Δοµές Δεδοµένων Δοµές Δεδοµένων Στην ενότητα αυτή θα γνωρίσουµε ορισµένες Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε για την αποδοτική επίλυση του προβλήµατος του ευσταθούς ταιριάσµατος Βασικές Έννοιες
Διαβάστε περισσότεραΠρογραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 20: Δυαδικό Δέντρο Αναζήτησης Δυαδικό δέντρο Κάθε κόμβος «γονέας» περιέχει δύο δείκτες που δείχνουν σε δύο κόμβους «παιδιά» του ιδίου τύπου. Αν οι δείκτες προς αυτούς
Διαβάστε περισσότεραΕισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις
Διαβάστε περισσότεραΆσκηση 3 (ανακοινώθηκε στις 24 Απριλίου 2017, προθεσμία παράδοσης: 2 Ιουνίου 2017, 12 τα μεσάνυχτα).
Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 3 (ανακοινώθηκε στις 24 Απριλίου 2017, προθεσμία παράδοσης: 2 Ιουνίου 2017, 12 τα μεσάνυχτα).
Διαβάστε περισσότεραΔιάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης 3-4 Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητες 3 & 4: ένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: ΣΕΠΤΕΜΒΡΙΟΥ 6 Ι ΑΣΚΩΝ: Ε. ΚΟΦΙ ΗΣ Όλα τα ερωτήµατα είναι ισοδύναµα. Καλή επιτυχία! ΘΕΜΑ ο a) Βρείτε την αναπαράσταση
Διαβάστε περισσότεραΔιάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 26: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας -Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι
Διαβάστε περισσότεραΤαξινόμηση με συγχώνευση Merge Sort
Ταξινόμηση με συγχώνευση Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Πληροφορικής 1 Διαίρει και Βασίλευε Η μέθοδος του «Διαίρει και Βασίλευε» είναι μια γενική αρχή σχεδιασμού αλγορίθμων
Διαβάστε περισσότεραΔοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης
Δοµές Δεδοµένων 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων Ε. Μαρκάκης Περίληψη Quicksort Χαρακτηριστικά επιδόσεων Μη αναδροµική υλοποίηση Δέντρα Μαθηµατικές ιδιότητες Δοµές Δεδοµένων 11-2
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 12. Ανασκόπηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 13/01/2017 Εξεταστέα Ύλη
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ
Διαβάστε περισσότεραΚεφάλαιο 8 Ισορροπημένα Δένδρα Αναζήτησης
Κεφάλαιο 8 Ισορροπημένα Δένδρα Αναζήτησης Περιεχόμενα 8.1 Κατηγορίες ισορροπημένων δένδρων αναζήτησης... 155 8.1.1 Περιστροφές... 156 8.2 Δένδρα AVL... 157 8.2.1 Αποκατάσταση συνθήκης ισορροπίας... 158
Διαβάστε περισσότεραΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Στοιχειώδεις Δοµές Δεδοµένων Λίστες Κεφάλαιο 3 (3.3, 3.4, 3.7) Ε. Μαρκάκης Επικ. Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Στοιχειώδεις Δοµές Δεδοµένων Λίστες Κεφάλαιο 3 (3.3, 3.4, 3.7) Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Συνδεδεµένες λίστες είδη λιστών Παραδείγµατα µε επεξεργασία λιστών Συµβάσεις αρχής και
Διαβάστε περισσότεραΔυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή
Διαβάστε περισσότεραCuckoo Hashing. Αλγόριθμοι και Πολυπλοκότητα. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Cuckoo Hashing Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο β Πολυτεχνείο Πρόβλημα (ADT) Λεξικού υναμικά μεταβαλλόμενη συλλογή αντικειμένων που αναγνωρίζονται με «κλειδί» (π.χ.
Διαβάστε περισσότεραΚεφάλαιο 2. Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.1, 12/05/2010
Κεφάλαιο 2 Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση., 2/05/200 Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Σωρός και Ταξινόµηση
Διαβάστε περισσότεραΔιάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231
Διαβάστε περισσότερα1. Η χειρότερη περίπτωση είναι όταν γίνου 10 επαναλήψεις, δηλαδή για n = 0.
ΦΥΛΛΑΔΙΟ ΚΑΤΑΝΟΗΣΗΣ 6 ΛΥΣΕΙΣ 1. Η χειρότερη περίπτωση είναι όταν γίνου 10 επαναλήψεις, δηλαδή για n = 0. 2. Εντολή Αλγορίθμου Αριθμός Πράξεων Ανάθεση τιμών στα x,y 2 έλεγχος i 6 αύξηση i 5 εκτύπωση i 5
Διαβάστε περισσότεραΑναδρομικοί Αλγόριθμοι
Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας
Διαβάστε περισσότεραΔιδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή
Διαβάστε περισσότεραΚεφάλαιο 6 Ουρές Προτεραιότητας
Κεφάλαιο 6 Ουρές Προτεραιότητας Περιεχόμενα 6.1 Ο αφηρημένος τύπος δεδομένων ουράς προτεραιότητας... 114 6.2 Ουρές προτεραιότητας με στοιχειώδεις δομές δεδομένων... 115 6.3 Δυαδικός σωρός... 116 6.3.1
Διαβάστε περισσότεραΠρογραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωμύλος Κορακίτης
Διαβάστε περισσότεραΠρόβληµα (ADT) Λεξικού. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Λεξικό, Union - Find 2
Πρόβληµα (ADT) Λεξικού Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Λεξικό, Union - Find 2 Πρόβληµα (ADT) Λεξικού Δυναµικά µεταβαλλόµενη συλλογή αντικειµένων που αναγνωρίζονται µε κλειδί (π.χ. κατάλογοι,
Διαβάστε περισσότεραΔιάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα
Διαβάστε περισσότερα9. Κόκκινα-Μαύρα Δέντρα
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 9. Κόκκινα-Μαύρα Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 9/12/2016 Δέντρα,
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ
ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ Ουρές Προτεραιότητας (Priority Queues) Θεωρούµε ότι τα προς αποθήκευση στοιχεία έχουν κάποια διάταξη (καθένα έχει µια προτεραιότητα). Τα προς αποθήκευση στοιχεία είναι
Διαβάστε περισσότεραΔομές δεδομένων (2) Αλγόριθμοι
Δομές δεδομένων (2) Αλγόριθμοι Παράγωγοι τύποι (struct) σύνοψη προηγουμένων Πίνακες: πολλές μεταβλητές ίδιου τύπου Παράγωγοι τύποι ή Δομές (struct): ομαδοποίηση μεταβλητών διαφορετικού τύπου struct Student
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος
Διαβάστε περισσότεραΕισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων
Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Επεξεργασία Ερωτήσεων Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL)
Διαβάστε περισσότεραΕπεξεργασία Ερωτήσεων
Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων
Διαβάστε περισσότεραd k 10 k + d k 1 10 k d d = k i=0 d i 10 i.
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΕπεξεργασία Ερωτήσεων
Εισαγωγή Επεξεργασία Ερωτήσεων Σ Β Βάση εδομένων Η ομή ενός ΣΒ Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 1 Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 2 Εισαγωγή Εισαγωγή ΜΕΡΟΣ 1 (Χρήση Σ Β ) Γενική
Διαβάστε περισσότεραΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Στοιχειώδεις Δοµές Δεδοµένων Λίστες Κεφάλαιο 3 (3.3, 3.4, 3.7) Ε. Μαρκάκης Επικ. Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Στοιχειώδεις Δοµές Δεδοµένων Λίστες Κεφάλαιο 3 (3.3, 3.4, 3.7) Ε. Μαρκάκης Επικ. Καθηγητής Ενηµέρωση 5ο τµήµα Εργαστηρίων Τετάρτη 11-1 Δοµές Δεδοµένων 04-2 Περίληψη Συνδεδεµένες λίστες
Διαβάστε περισσότεραΔομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου
Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με
Διαβάστε περισσότεραΔιάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές
Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εισαγωγή, εύρεση, διαγραφή) Ευθύγραμμες Διπλά Συνδεδεμένες Λίστες
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΟΥΣ Η/Υ (ΟΜΑΔΑ ΘΕΜΑΤΩΝ A)
ΑΣΚΗΣΗ 1 Δίνεται η λογική συνάρτηση: F = ((A AND B) OR (B AND C) OR (A AND C)) ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ Η/Υ (ΟΜΑΔΑ ΘΕΜΑΤΩΝ A) α) Σχεδιάστε το λογικό κύκλωμα που υλοποιεί τη συνάρτηση F. β) Σχηματίστε τον πίνακα
Διαβάστε περισσότεραInitialize each person to be free. while (some man is free and hasn't proposed to every woman) { Choose such a man m w = 1 st woman on m's list to
Κεφάλαιο 2 Δοµές Δεδοµένων Ι Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Δοµές Δεδοµένων Ι Στην ενότητα αυτή θα γνωρίσουµε ορισµένες Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε
Διαβάστε περισσότεραΑ. unsigned int Β. double. Γ. int. unsigned char x = 1; x = x + x ; x = x * x ; x = x ^ x ; printf("%u\n", x); Β. unsigned char
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Β Περιόδου 2015 (8/9/2015) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................
Διαβάστε περισσότεραΕπεξεργασία Ερωτήσεων
Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008
Διαβάστε περισσότεραΔομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 17 Σωροί (Heaps) έκδοση 10 1 / 19 Heap Σωρός Ο σωρός είναι μια μερικά ταξινομημένη δομή δεδομένων που υποστηρίζει
Διαβάστε περισσότεραHY240 : Δομές Δεδομένων. Φροντιστήριο Προγραμματιστικής Εργασίας 2 ο και 3 ο Μέρος
HY240 : Δομές Δεδομένων Φροντιστήριο Προγραμματιστικής Εργασίας 2 ο και 3 ο Μέρος Εισαγωγή Στο 2 ο μέρος της εργασίας θα πρέπει να γίνουν τροποποιήσεις στο πρόγραμμα που προέκυψε κατά την υλοποίηση του
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016
Διαβάστε περισσότεραΑλγόριθμοι Ταξινόμησης Μέρος 4
Αλγόριθμοι Ταξινόμησης Μέρος 4 Μανόλης Κουμπαράκης Δομές Δεδομένων και Τεχνικές 1 Μέθοδοι Ταξινόμησης Βασισμένοι σε Συγκρίσεις Κλειδιών Οι αλγόριθμοι ταξινόμησης που είδαμε μέχρι τώρα αποφασίζουν πώς να
Διαβάστε περισσότεραΔομές Δεδομένων & Αλγόριθμοι
Σωροί 1 Ορισμοί Ένα δέντρο μεγίστων (δένδρο ελαχίστων) είναι ένα δένδρο, όπου η τιμή κάθε κόμβου είναι μεγαλύτερη (μικρότερη) ή ίση με των τιμών των παιδιών του Ένας σωρός μεγίστων (σωρός ελαχίστων) είναι
Διαβάστε περισσότεραUnion Find, Λεξικό. Δημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Union Find, Λεξικό Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Διαμερίσεων Συνόλου Στοιχεία σύμπαντος διαμερίζονται σε κλάσεις ισοδυναμίας
Διαβάστε περισσότεραΠρογραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ Επικ. Καθηγητής ΕΜΠ v.vescoukis@cs.ntua.gr
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΑΣΚΗΣΗ ΔΕΥΤΕΡΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΑΣΚΗΣΗ ΔΕΥΤΕΡΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΚΑΔ. ΕΤΟΣ 2007-2008 14.02.2008 EΠΙΣΤΡΕΦΕΤΑΙ ΔΙΔΑΣΚΩΝ Ιωάννης Βασιλείου, Καθηγητής,
Διαβάστε περισσότεραΕνότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)
Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή
Διαβάστε περισσότεραΔιάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου
Διαβάστε περισσότεραΑλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Συγχωνευτική Ταξινόμηση (Merge Sort) 7 2 9 4 2 4 7 9 7 2 2 7 9 4
Διαβάστε περισσότεραΘεωρήµατα Ιεραρχίας Ειδικά Θέµατα Υπολογισµού και Πολυπλοκότητας, Μάθηµα Βασικής Επιλογής Εαρινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων
Θεωρήµατα Ιεραρχίας Ειδικά Θέµατα Υπολογισµού και Πολυπλοκότητας, Μάθηµα Βασικής Επιλογής Εαρινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Απόστολος Φίλιππας Τµήµα Μηχανικών Η/Υ και Πληροφορικής 19 Μαΐου,
Διαβάστε περισσότερα