Κατ οίκον Εργασία 3 Σκελετοί Λύσεων
|
|
- Ῥεβέκκα Ζαχαρίου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 (α) Έστω Α(n) και Κ(n) ο αριθμός των ακμών και ο αριθμός των κόμβων ενός αυστηρά δυαδικού δένδρου με n φύλλα. Θέλουμε να αποδείξουμε για κάθε n 1 την πρόταση Π(n) Α(n) = 2n 2 και Κ(n) = 2n 1 Η απόδειξη μπορεί να γίνει με μαθηματική επαγωγή. Βασική περίπτωση n=1 Προφανώς η περίπτωση αυτή αφορά το δένδρο που περιέχει μόνο μία ρίζα. Αυτό το δένδρο έχει Α(1) = 0 και Κ(1) = 1. Επομένως το ζητούμενο έπεται. Υπόθεση της επαγωγής: Έστω Π(k) για κάθε k < m για κάποιο m > 1. Βήμα της επαγωγής: Θα δείξουμε ότι η Π(m) αληθεύει. Έστω ένα αυστηρά δυαδικό δένδρο με m φύλλα. Όπως φαίνεται και στο σχήμα, το δένδρο αυτό αποτελείται από μια ρίζα και δύο μη κενά υπόδενδρα που ριζώνουν σ αυτή. Έστω ότι το αριστερό υπόδενδρο έχει m 1 φύλλα και το δεξί m 2 φύλλα. Τότε ισχύει ότι m = m 1 + m 2. Ο αριθμός των ακμών του δένδρου είναι ίσος με τον αριθμό των ακμών των δύο υποδένδρων και ακόμα δύο ακμές που συνδέουν τη ρίζα με τα δύο υπόδενδρα. Δηλαδή, Α(m) = A(m 1 ) + A(m 2 ) + 2 = 2m m από την υπόθεση της επαγωγής, αφού m 1, m 2 < m = 2(m 1 + m 2 ) 2 = 2m 2 Ο αριθμός των κόμβων του δένδρου είναι ίσος με τον αριθμό των κόμβων των δύο υποδένδρων και τη ρίζα, δηλαδή, Κ(m) = Κ(m 1 ) + Κ(m 2 ) + 1 = 2m m από την υπόθεση της επαγωγής, αφού m 1, m 2 < m = 2(m 1 + m 2 ) 1 = 2m 1 Αυτό συμπληρώνει την απόδειξη. Άσκηση 2 Χρησιμοποιούμε τις δομές typedef struct BSTnode{ int data; struct node *left; struct node *right; bstnode; 1
2 και typedef struct BSTree{ bstnode *root; tree; (i) Για να βρούμε και να αφαιρέσουμε τον κόμβο με το μέγιστο στοιχείο ενός ΔΔΑ πρέπει να κινηθούμε προς το δεξιότερο κόμβο του δένδρου και να τον εξάγουμε ενημερώνοντας κατάλληλα τον πατέρα του κόμβου (αναθέτοντας του ως δεξί του παιδί το αριστερό παιδί του κόμβου με το μέγιστο στοιχείο). Σημειώστε ότι σε περίπτωση που το μέγιστο στοιχείο βρίσκεται στη ρίζα του δένδρου, ρίζα του δένδρου πρέπει να γίνει το αριστερό παιδί του κόμβου προς εξαγωγή. RemoveMax(tree *t) { p = t->root; if (p == NULL) return; if (p->right == NULL) t->root = p->left; free(p); father = p; node = p->right; while (node->right!= NULL) father = node; node = node->right; father->right = node ->left; free(p); (ii) H διαδικασία που προτείνεται είναι αναδρομική και εντοπίζει τρεις περιπτώσεις. Αν το δένδρο που μας δίνεται είναι κενό (ή αν το στοιχείο που μας δίνεται ως παράμετρος είναι μικρότερο ή ίσο από τα στοιχεία του δένδρου) τότε το ζητούμενο στοιχείο δεν υπάρχει και επιστρέφεται η τιμή 1. Αν το δένδρο δεν είναι κενό, τότε: (1) Αν το στοιχείο της ρίζας είναι μεγαλύτερο ή ίσο από το στοιχείο k τότε ψάχνουμε το μεγαλύτερο στοιχείο μικρότερο του k στο αριστερό υπόδενδρο του δένδρου. (2) Αν το στοιχείο της ρίζας είναι μικρότερο από το k, τότε το μεγαλύτερο στοιχείο μικρότερο του k είναι το μέγιστο εκ των (ι) στοιχείο της ρίζας και (ιι) το μέγιστο στοιχείο μικρότερο του k στο δεξί υπόδενδρο της ρίζας. Predecessor(tree *t, int k) { RecPred(t->root, k); RecPred(bstnode *p, int k) { if (p == NULL) return 1 if (k < p->data) return RecPred (p->left, k) if (k > p->data) return max(p->data, RecPred (p->right,k)); 2
3 Άσκηση 3 Χρησιμοποιούμε τις δομές typedef struct Node{ type key1; type key2; struct node *left; struct node *right; node; και typedef struct 2D-Tree{ bstnode *root; tree; (α) Η εισαγωγή στοιχείου είναι παρόμοια με την εισαγωγή σε ένα δυαδικό δένδρο αναζήτησης. Η μόνη διαφορά είναι ότι οι μετακινήσεις από κάθε κόμβο σε κάποιο παιδί του γίνονται βάσει διαφορετικού κλειδιού σε διαφορετικά επίπεδα, δηλαδή, σε περιττά επίπεδα βάσει του κλειδιού key1 και σε άρτια επίπεδα βάσει του κλειδιού key2. Η διαδικασία έχει ως εξής: Αν δεν έχεις φτάσει σε NULL δείκτη Αν βρίσκεσαι σε κόμβο περιττού επίπεδου, τότε σύγκρινε το πρώτο από τα κλειδιά σου με το πεδίο key1 του κόμβου και κάλεσε αναδρομικά τη διαδικασία αριστερά ή δεξιά ανάλογα. Αν βρίσκεσαι σε κόμβο άρτιου επίπεδου, τότε σύγκρινε το δεύτερο από τα κλειδιά σου με το πεδίο key2 του κόμβου και κάλεσε αναδρομικά τη διαδικασία αριστερά ή δεξιά ανάλογα. Και στις δύο περιπτώσεις οι αναδρομικές κλήσεις θα πρέπει η μεταβλητή επίπεδο να ενημερώνεται, δηλαδή να αυξάνεταικατά 1 Αν έχεις φτάσει σε NULL δείκτη, δέσμευσε μνήμη και εκτέλεσε την εισαγωγή στον καινούριο κόμβο Insert(tree *t, type x1, type x2){ p->root = RecInsert(p->root, x1, x2, 1) RecInsert(node *p, type x1, type x2, int epipedo) if (p == NULL) p=(node *)malloc(sizeof(node)); p->key1 = x1; p->key2 = x2; return p; if (epipedo mod 2 == 1) if (x1 < p->key1) p -> left = RecInsert(p->left, x1, x2, epipedo + 1); p -> right = RecInsert(p->right, x1, x2, epipedo + 1); if (x2 < p->key2) 3
4 p -> left = RecInsert(p->left, x1, x2, epipedo + 1); p -> right = RecInsert(p->right, x1, x2, epipedo + 1); (β) Η πιο κάτω αναδρομική διαδικασία πετυχαίνει το ζητούμενο. Παρατηρούμε ότι περιέχει την παράμετρο epipedo, η οποία συγκρατεί το επίπεδο στο οποίο βρισκόμαστε για τους σκοπούς μετακίνησης μέσα στο δένδρο. Κατά την πρώτη κλήση της διαδικασίας (από τη ρίζα του δένδρου) θα πρέπει να δώσουμε στην παράμετρο την τιμή 1. Find(tree *t, type l1, l2, h1, h2){ RecFind(p->root, l1, l2, h1, h2, 1) RecFind(node *p, type l1, l2, h1, h2, int epipedo){ if (p!= NULL) if (l1 p->key1 h1 AND l2 p->key2 h2) print(p->key1, p->key2); if (epipedo mod 2 == 1) if (h1 p->key1) if (l1 p->key1) { if (h2 p->key2) if l2 p->key2 { (γ) Το προτεινόμενο δένδρο πλεονεκτεί από άποψη αποδοτικότητας για το πρόβλημα της εύρεσης στοιχείων με συνθήκες σε δύο κλειδιά: όπως φαίνεται στο μέρος (β) πιο πάνω, στη συγκεκριμένη υλοποίηση το πρόβλημα μπορεί να λυθεί μέσω διαδικασίας η οποία επισκέπτεται μόνο υπόδενδρα του δένδρου με στοιχεία που βρίσκονται εντός των ορίων που δίνονται σαν παράμετροι. Ως εκ τούτου, μπορούμε να επιβεβαιώσουμε ότι, αν υπάρχουν m στοιχεία που ικανοποιούν τις προδιαγραφές του προβλήματος, η διαδικασία έχει χρόνο εκτέλεσηςο(m + h) όπου h το ύψος του δένδρου. Αντίθετα σε ΔΔΑ λύση του προβλήματος απαιτεί χρόνο εκτέλεσης Ο(n) όπου n το πλήθος των στοιχείων του δένδρου. Άσκηση 4 Για να τυπώσουμε αναδρομικά όλα τα άρτια στοιχεία ενός 2-3 δένδρου σε αύξουσα σειρά θα πρέπει για κάθε κόμβο να τυπώνουμε τα άρτια στοιχεία του αριστερού του υποδένδρου σε 4
5 αύξουσα σειρά, το πρώτο στοιχείο του κόμβου, αν είναι άρτιο, τα άρτια στοιχεία του μεσαίου υποδένδρου σε αύξουσα σειρά, και, αν υπάρχει και δεύτερο στοιχείο, το δεύτερο στοιχείο, αν είναι άρτιο, και τέλος τα άρτια στοιχεία του δεξιού υποδένδρου σε αύξουσα σειρά. Χρησιμοποιούμε τη δομή typedef struct 2-3node{ int numkeys; int key1; int key2; struct node *left; struct node *center; struct node *right; node; και υποθέτουμε πως ένα 2-3 δένδρο είναι υλοποιημένο ως δείκτης στη ρίζα του δένδρου, δηλαδή, έχει τύπο *node. Το ζητούμενο υλοποιείται με την πιο κάτω αναδρομική διαδικασία: PrintEvenInc(node *p){ if (p!= NULL) PrintEvenInc(p->left); if (p->key1 mod 2 == 0) print p->key1; PrintEvenInc(p>center); if (p->numkeys == 2) if (p->key2 mod 2 == 0) print p->key2; PrintEvenInc(P->right); Η αναδρομική διαδικασία καλείται μια φορά σε κάθε κόμβο, επομένως ο χρόνος εκτέλεσής της είναι Ο(n) όπου n είναι ο αριθμός των κόμβων του δένδρου. Η μη-αναδρομική εκδοχή της διαδικασία απαιτεί τη χρήση στοίβας. I. Έστω p δείκτης στον κόμβο του δένδρου όπου βρισκόμαστε. Τοποθετούμε στη στοίβα το ζεύγος (p->key2, p->right) (αν numkeys =2) και στη συνέχεια το ζεύγος (p->key1, p- >center). II. Εφόσον ο κόμβος έχει αριστερό παιδί προχωρούμε αριστερά και επαναλαμβάνουμε από το βήμα Ι. III. Διαφορετικά, εφόσον η στοίβα δεν είναι κενή, ανασύρουμε τον κόμβο κορυφής της που πρέπει να είναι ζεύγος της μορφής (int x, node *q). Αν το x είναι άρτιος αριθμός τον τυπώνουμε και προχωρούμε στο βήμα Ι με τον δείκτη q. PrintEvenInc(node *p){ stack S; MakeEmpty(S); while (p!= NULL AND!IsEmpty(S)) if (p!= NULL) if (p->numkeys == 2) Push((p->key2, p->right),s); Push((p->key1, p->center),s); 5
6 p = p ->left; (x,q) = Pop(S); if (x mod 2 == 0) print x p = q; Η διαδικασία επισκέπτεται κάθε κόμβο κάποιο σταθερό αριθμό φορών επομένως ο χρόνος εκτέλεσής της είναι Ο(n) όπου n είναι ο αριθμός των κόμβων του δένδρου. 6
Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:
Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
ΕΠΛ 3 Δομές Δεδομένων και Αλγόριθμοι Νοέμβριος 00 Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Έστω ο αριθμός φύλλων που βρίσκονται στο επίπεδο ενός δυαδικού δένδρου. Θέλουμε να αποδείξουμε την πρόταση: Η
Εργασία 3 Σκελετοί Λύσεων
Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 Χρησιμοποιούμε τη δομή typedef struct TNode{ int key; struct TNode *left; struct TNode *right; tnode; και υποθέτουμε πως ένα δυαδικό δένδρο είναι υλοποιημένο ως δείκτης
Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής
Αναδροµή Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής 1 Αναδροµή Βασική έννοια στα Μαθηµατικά και στην Πληροφορική.
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Άσκηση 1 Ο ζητούμενος ΑΤΔ μπορεί να υλοποιηθεί ως μια ακολουθία από στοιχεία τύπου window συνοδευόμενη από τις πράξεις: MakeNewWindow(L,w) Destroy(L,w) SwitchTo(L,w)
Διδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 3 Δέντρα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΑΣΚΗΣΗ 3 Δέντρα Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής: 19/03/2013 Ημερομηνία Παράδοσης:
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου
Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:
Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, ορισμοί, πράξεις και αναπαράσταση στη μνήμη ΔυαδικάΔένδρακαιΔυαδικάΔένδραΑναζήτησης ΕΠΛ 231 Δομές
Φροντιστήριο 4 Σκελετοί Λύσεων
Φροντιστήριο 4 Σκελετοί Λύσεων 1. Ο ζητούμενος ΑΤΔ μπορεί να υλοποιηθεί ως εξής: (i) Διαδοχική χορήγηση μνήμης Υποθέτουμε ότι οι λίστες μας έχουν μέγιστο μέγεθος max και χρησιμοποιούμε τη δομή type elements[max];
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων
Άσκηση 1 Χρησιµοποιούµε τη δοµή Κατ οίκον Εργασία 3 Σκελετοί Λύσεων typedef struct Node int data; struct node *lchild; struct node *rbro; node; και υποθέτουµε πως ένα τυχαίο δένδρο είναι υλοποιηµένο ως
Δένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών :
Δένδρα Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών : Ανάλυση αλγορίθμων (π.χ. δένδρα αναδρομής) Δομές δεδομένων (π.χ. δένδρα αναζήτησης) ακμή Κατηγορίες (αύξουσα
Διάλεξη 18: B-Δένδρα
Διάλεξη 18: B-Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή & Ισοζυγισμένα Δένδρα 2-3 Δένδρα, Περιγραφή Πράξεων της Εισαγωγής και άλλες πράξεις Β-δένδρα Διδάσκων: Κωνσταντίνος
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του
Διάλεξη 11: Φροντιστήριο για Στοίβες. Διδάσκων: Παναγιώτης Ανδρέου. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ.
Διάλεξη 11: Φροντιστήριο για Στοίβες Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 1 ΑΤΔ Στοίβα- Πράξεις Θυμηθείτε τον ΑΤΔ στοίβα με τις πράξεις του: MakeEmptyStack()
Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ
Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά
Φροντιστήριο 4 Σκελετοί Λύσεων
Φροντιστήριο 4 Σκελετοί Λύσεων Άσκηση 1 Υποθέτουμε πως οι λίστες είναι υλοποιημένες χρησιμοποιώντας τις πιο κάτω δομές. typedef struct Node{ type data; struct node *next; node; node *top; list; Υλοποιούμε
ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 8-1
B-Δένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: 2-3 Δένδρα, Υλοποίηση και πράξεις Β-δένδρα ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 8-1 2-3 Δένδρα Γενίκευση των δυαδικών δένδρων αναζήτησης.
Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά
EPL231: Δομές Δεδομένων και Αλγόριθμοι Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά Αναδρομή Η αναδρομή εμφανίζεται όταν μία διεργασία καλεί τον εαυτό της Υπάρχουν
Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231
ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,
B- ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: 2-3 ένδρα, Υλοποίηση και πράξεις Β-δένδρα ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 8-1 2-3 ένδρα Γενίκευση των δυαδικών
Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 9: Στοίβες:Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθεί η χρήση στοιβών στις εξής εφαρμογές: Υλοποίηση Στοιβών με Δυναμική Δέσμευση Μνήμης Εφαρμογή Στοιβών 1: Αναδρομικές συναρτήσεις Εφαρμογή
Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου
Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με
ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα
Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή
Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 20: Δυαδικό Δέντρο Αναζήτησης Δυαδικό δέντρο Κάθε κόμβος «γονέας» περιέχει δύο δείκτες που δείχνουν σε δύο κόμβους «παιδιά» του ιδίου τύπου. Αν οι δείκτες προς αυτούς
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Άσκηση 1 Ξεκινούμε με τον αριθμό μας, n, και αρχίζουμε να τον διαιρούμε με ακέραιους ξεκινώντας με το 2 και προχωρώντας στο 3, 4, 5,. Όταν εντοπίσουμε πως ένας αριθμός
Διάλεξη 14: Δέντρα IV - B-Δένδρα
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 14: Δέντρα IV - B-Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - 2-3 Δένδρα, Εισαγωγή και άλλες πράξεις - Άλλα Δέντρα: Β-δένδρα, Β+-δέντρα,
Διάλεξη 13: Δέντρα ΙΙΙ - Ισοζυγισμένα Δέντρα, AVL Δέντρα
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 13: Δέντρα ΙΙΙ - Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ισοζυγισμένα Δέντρα - Υλοποίηση AVL-δέντρων
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και
Συγκρίσιμα Αντικείμενα (comparable)
Συγκρίσιμα Αντικείμενα (comparable) public class Student implements Comparable{ public String lastname; public String firstname; public int am; public int compareto(object s) throws ClassCastException{
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης 3-4 Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητες 3 & 4: ένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε
Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)
Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή
ένδρα (tail, head) Γονέας Παιδί (ancestor, descendant) Φύλλο Εσωτερικός Κόµβος (leaf, non-leaf) που αποτελεί το γονέα του v.
ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ΗΥ240 - Παναγιώτα Φατούρου 1 ένδρα Κόµβοι (nodes) Ακµές (edges) Ουρά και κεφαλή ακµής (tail, head) Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) Μονοπάτι (path) Πρόγονος απόγονος
Διάλεξη 24: B-Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 24: B-Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Εισαγωγή & Ισοζυγισμένα Δένδρα - 2-3 Δένδρα, Εισαγωγή και άλλες πράξεις -Β-δένδρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές
Διάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 26: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας -Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 10: Λίστες Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εύρεση, εισαγωγή, διαγραφή) Σύγκριση Συνδεδεμένων Λιστών με Πίνακες
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 10: Στοίβες:Υλοποίηση& Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση Στοιβών με Δυναμική Δέσμευση Μνήμης - Εφαρμογή Στοιβών 1: Αναδρομικές συναρτήσεις - Εφαρμογή
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 23: Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ισοζυγισμένα Δέντρα - Υλοποίηση AVL-δέντρων - Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα Διδάσκων:
Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)
Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα
Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα
Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ισοζυγισμένα Δέντρα Υλοποίηση AVL δέντρων Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα
Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL
Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL Υλικό από τις σηµειώσεις Ν. Παπασπύρου, 2006 Δέντρα δυαδικής αναζήτησης Δενδρικές δοµές δεδοµένων στις οποίες Όλα τα στοιχεία στο αριστερό υποδέντρο της ρίζας είναι
Δομές Δεδομένων (Εργ.) Ακ. Έτος Διδάσκων: Ευάγγελος Σπύρου. Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Δομές Δεδομένων (Εργ.) Ακ. Έτος 2017-18 Διδάσκων: Ευάγγελος Σπύρου Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης 1. Στόχος του εργαστηρίου Στόχος του δέκατου εργαστηρίου
1 η ΑΣΚΗΣΗ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Ακ. έτος , 5ο Εξάμηνο, Σχολή ΗΜ&ΜΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr 1 η ΑΣΚΗΣΗ ΣΤΗΝ
Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ισοζυγισμένα Δέντρα Υλοποίηση AVL δέντρων Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Άσκηση 1 Υπάρχουν διάφοροι τρόποι για να υλοποιήσουμε πράξεις ουράς για την προτεινόμενη εγγραφή. To πρόβλημα που δημιουργείται με οποιαδήποτε από αυτές είναι ότι είναι
Δομές Δεδομένων & Αλγόριθμοι
- Δυαδικά Δένδρα (binary trees) - Δυαδικά Δένδρα Αναζήτησης (binary search trees) 1 Δυαδικά Δένδρα Ορισμοί Λειτουργίες Υλοποιήσεις ΑΤΔ Εφαρμογές 2 Ορισμοί (αναδρομικός ορισμός) Ένα δένδρο t είναι ένα πεπερασμένο
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων 1. (α) Αλγόριθµος: ηµιούργησε το σύνολο P που αποτελείται από τα άκρα όλων των ευθυγράµµων τµηµάτων. Βρες το κυρτό περίβληµα του P µε τον αλγόριθµο του Graham. Ορθότητα:
Βασικές Δομές Δεδομένων
Βασικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Διαδοχική και Δυναμική Χορήγηση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ
ΠΝΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΣ ΔΔΟΜΝΩΝ ΚΙ ΛΓΟΡΙΘΜΟΙ ΗΜΡΟΜΗΝΙ: 14/11/2018 ΔΙΓΝΩΣΤΙΚΟ ΠΝΩ Σ ΔΝΔΡΙΚΣ ΔΟΜΣ ΚΙ ΓΡΦΟΥΣ Διάρκεια: 45 λεπτά Ονοματεπώνυμο:. ρ. Ταυτότητας:. ΒΘΜΟΛΟΓΙ ΣΚΗΣΗ ΒΘΜΟΣ
ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 4-1
Εφαρμογές στοιβών Στην ενότητα αυτή θα μελετηθεί η χρήση στοιβών στις εξής εφαρμογές: Αναδρομικές συναρτήσεις Ισοζυγισμός Παρενθέσεων Αντίστροφος Πολωνικός Συμβολισμός ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι
Στοίβες με Δυναμική Δέσμευση Μνήμης
ΕΠΛ 231 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ 10/02/10 Παύλος Αντωνίου Στοίβες με Δυναμική Δέσμευση Μνήμης Στοίβα: Στοίβα είναι μια λίστα που έχει ένα επιπλέον περιορισμό. Ο περιορισμός είναι ότι οι εισαγωγές
Διασυνδεδεμένες Δομές. Δυαδικά Δέντρα. Προγραμματισμός II 1
Διασυνδεδεμένες Δομές Δυαδικά Δέντρα Προγραμματισμός II 1 lalis@inf.uth.gr Δέντρα Τα δέντρα είναι κλασικές αναδρομικές δομές Ένα δέντρο αποτελείται από υποδέντρα, καθένα από τα οποία μπορεί να θεωρηθεί
Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα
Ασκήσεις στους Γράφους 2 ο Σετ Ασκήσεων Δέντρα Ασκηση 1 η Ένας γράφος G είναι δέντρο αν και μόνο αν κάθε δυο κορυφές του συνδέονται με ένα μοναδικό μονοπάτι. Υποθέτουμε ότι ο γράφος G είναι δέντρο. Έστω
Μάθημα 22: Δυαδικά δέντρα (Binary Trees)
Trees Page 1 Μάθημα 22: Δυαδικά δέντρα (Binary Trees) Ένα δένδρο είναι δυαδικό αν όλοι οι κόμβοι του έχουν βαθμό (degree)
Υλοποίηση Λιστών. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:
Υλοποίηση Λιστών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμές Απλά και Διπλά Συνδεδεμένες Λίστες Κυκλικές Απλά και Διπλά Συνδεδεμένες Λίστες Τεχνικές Μείωσης Μνήμης ΕΠΛ 231 Δομές
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Άσκηση 1 Χρησιμοποιούμε τις δομές: struct hashtable { struct node array[maxsize]; int maxsize; int size; struct node{ int data; int status; Στο πεδίο status σημειώνουμε
Κατ οίκον Εργασία 4 Σκελετοί Λύσεων
Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Αναδρομική διαδικασία Η αναδρομική διαδικασία RecIsheap παίρνει ως παραμέτρους τον πίνακα, το μέγεθός του καθώς και το στοιχείο το οποίο θα τύχει επεξεργασίας.
Δομές δεδομένων. Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 8 Ξένα Σύνολα
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 21: Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Εισαγωγή σε δενδρικές δομές δεδομένων, -Ορισμοί και πράξεις - Αναπαράσταση δενδρικών δομών δεδομένων
Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1
Διακριτά Μαθηματικά [Rosen, κεφ. 5] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Νοέμβριος 2018 Επαγωγή και Αναδρομή [Rosen, κεφ. 5] Μαθηματική επαγωγή [Rosen 5.1] Μέθοδος απόδειξης μιας μαθηματικής
Βασικές οµές εδοµένων
Βασικές οµές εδοµένων Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Αφηρηµένοι Τύποι εδοµένων Οι ΑΤ Στοίβα και Ουρά Υλοποίηση των ΑΤ Στοίβα και Ουρά µε ιαδοχική και υναµική Χορήγηση Μνήµης
Δέντρα (Trees) - Ιεραρχική Δομή
Δέντρα (Trees) - Ιεραρχική Δομή Εφαρμογές Δομή Οργάνωση Αρχείων Οργανογράμματα Ορισμός (αναδρομικός ορισμός): Ένα δέντρο είναι ένα πεπερασμένο σύνολο κόμβων το οποίο είτε είναι κενό είτε μη κενό σύνολο
Δομές δεδομένων (2) Αλγόριθμοι
Δομές δεδομένων (2) Αλγόριθμοι Παράγωγοι τύποι (struct) σύνοψη προηγουμένων Πίνακες: πολλές μεταβλητές ίδιου τύπου Παράγωγοι τύποι ή Δομές (struct): ομαδοποίηση μεταβλητών διαφορετικού τύπου struct Student
Κατ οίκον Εργασία 4 Σκελετοί Λύσεων
Κατ οίκον Εργασία 4 Σκελετοί Λύσεων Άσκηση 1 α) Εφαρμογή της BuildHeap στον πίνακα [-,, 3, 5, 10, 17, 8, 1, 11,, 15] έχει τις εξής ενδιάμεσες καταστάσεις. Αρχική Κατάσταση: 10 17 8 1 11 15 Μετά από εφαρμογή
Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 (5.1-5.2 και 5.4-5.6) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Βασικοί ορισµοί Μαθηµατικές ιδιότητες Διάσχιση δέντρων Preorder, postorder,
Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου
Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 8: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Στατική Δέσμευση
ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ. ΗΥ240 - Παναγιώτα Φατούρου 1
ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ΗΥ240 - Παναγιώτα Φατούρου 1 ένδρα Κόµβοι (nodes) Ακµές (edges) Ουρά και κεφαλή ακµής (tail, head) Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) Μονοπάτι (path) Πρόγονος απόγονος
Δοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης
Δοµές Δεδοµένων 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων Ε. Μαρκάκης Περίληψη Quicksort Χαρακτηριστικά επιδόσεων Μη αναδροµική υλοποίηση Δέντρα Μαθηµατικές ιδιότητες Δοµές Δεδοµένων 11-2
Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή
Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y
Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες
Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Πρατικάκης (CSD) Απλές Λίστες CS100, 2015-2016 1 / 10 Δομές δεδομένων Ορισμός:
οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ
ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ 1 ένδρα εσωτερικός κόµβος u το δένδρο έχει ύψος 4 u έχει ύψος 3 w έχει βάθος 2 κόµβος ένδρο: γράφηµα χωρίς κύκλους o Ρίζα (root) o Κόµβος (node) o Ακµή (edge) o Γονέας (parent) Παιδί (child)
Εργαστήριο 2 Δυναμικές Δομές Δεδομένων Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι
Μεταγλωττιστές Εργαστήριο 2 Δυναμικές Δομές Δεδομένων Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι 2015-1016 Δομές Δεδομένων Μια δομή δεδομένων είναι μια συλλογή δεδομένων με κάποιες ιδιότητες
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 7: Διαχείριση Μνήμης,Δυναμικές Δομές Δεδομένων, Αναδρομή Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: - Δυναμικές Δομές Δεδομένων Γενικά - Δυναμική Δέσμευση/Αποδέσμευση
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 15: Αναδρομή (Recursion) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η έννοια της αναδρομής Μη αναδρομικός / Αναδρομικός Ορισμός Συναρτήσεων Παραδείγματα Ανάδρομης Αφαίρεση της Αναδρομής
υναµικές οµές εδοµένων (συν.) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα:
υναµικές οµές εδοµένων (συν.) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ταξινοµηµένες Λίστες µε δυναµική δέσµευση µνήµης Αναδροµκές συναρτήσεις ΕΠΛ 12 Αρχές Προγραµµατισµού ΙΙ 1 Λίστες
υναµική έσµευση Μνήµης (συν.) ΕΠΛ 132 Αρχές Προγραµµατισµού ΙΙ 2 Εφαρµογή
υναµική έσµευση Μνήµης (συν.) Στην ενότητα αυτή θα µελετηθούν: Μια εφαρµογή συνδεδεµένων λιστών ιπλά συνδεδεµένες Λίστες ΕΠΛ 132 Αρχές Προγραµµατισµού ΙΙ 1 Εφαρµογή Ζητούµενο: Πρόγραµµα που παίρνει σαν
Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί
Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με
ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,
Εφαρµογές στοιβών Στην ενότητα αυτή θα µελετηθεί η χρήση στοιβών στις εξής εφαρµογές: Αναδροµικές συναρτήσεις Ισοζυγισµός Παρενθέσεων Αντίστροφος Πολωνικός Συµβολισµός ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
ΗΥ240: Δομές Δεδομένων Εαρινό Εξάμηνο Ακαδημαϊκό Έτος 2018 Διδάσκουσα: Παναγιώτα Φατούρου Προγραμματιστική Εργασία - 2o Μέρος
ΗΥ240: Δομές Δεδομένων Εαρινό Εξάμηνο Ακαδημαϊκό Έτος 2018 Διδάσκουσα: Παναγιώτα Φατούρου Προγραμματιστική Εργασία - 2o Μέρος Ημερομηνία Παράδοσης: Δευτέρα, 14 Μαΐου 2018, ώρα 23:59 Τρόπος Παράδοσης: Χρησιμοποιώντας
Ενότητα 2: Στοίβες Ουρές - Λίστες Ασκήσεις και Λύσεις
Ενότητα 2: Στοίβες Ουρές - Λίστες Ασκήσεις και Λύσεις Άσκηση 1 Έστω ότι µια βιβλιοθήκη σας παρέχει πρόσβαση σε στοίβες ακεραίων. Η βιβλιοθήκη σας επιτρέπει να ορίσετε µια στοίβα και να καλέσετε τις 5 βασικές
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 16 Δένδρα (Trees) 1 / 42 Δένδρα (Trees) Ένα δένδρο είναι ένα συνδεδεμένο γράφημα χωρίς κύκλους Για κάθε
υαδικά έντρα Αναζήτησης
ηµήτρης Φωτάκης Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων Πανεπιστήµιο Αιγαίου υαδικά έντρα µε ρίζα. Κάθε εσωτερικός κόµβος περιέχει στοιχείο (αριθµό) και έχει δύο παιδιά. NULL-φύλλα
Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή
Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y
Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή
Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 7 Ουρές Προτεραιότητας ΗΥ240 - Παναγιώτα Φατούρου 2 Ουρές
Οντοκεντρικός Προγραμματισμός
Οντοκεντρικός Προγραμματισμός Ενότητα 8: C++ ΒΙΒΛΙΟΗΚΗ STL, ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Δομές Δεδομένων ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δομές
Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε:
Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόμενα στο αριστερό υποδέντρο του t είναι
ΑΛΓΟΡΙΘΜΟΙ ΜΕ C. ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής. CMOR Lab. Computational Methodologies and Operations Research
ΑΛΓΟΡΙΘΜΟΙ ΜΕ C ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής CMOR Lab Computational Methodologies and Operations Research Δέντρα (5) Τ ένα δέντρο i ένας κόμβος στο επίπεδο k j ένας κόμβος στο επίπεδο k+1 } :