Περιεχόμενα. Περιεχόμενα
|
|
- Ê Αλεβίζος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα Βασικοί Τύποι Αντικείμενα Τύποι Enum Μέθοδοι Εκφράσεις Λεκτικά Τελεστές Μετατροπή Τύπου και Autoboxing/Unboxing Έλεγχος Ροής Οι Εντολές If και Switch Βρόχοι Επανάληψης Ρητές Εντολές Ελέγχου της Ροής Πίνακες Δήλωση Πινάκων Οι Πίνακες είναι Αντικείμενα Απλή Είσοδος και Έξοδος Ένα Παράδειγμα Προγράμματος Εμφωλευμένες Κλάσεις και Πακέτα Γράψιμο ενός Java Προγράμματος Σχεδιασμός Ψευδο-Κώδικας Κωδικοποίηση Έλεγχος και Εύρεση Σφαλμάτων Ασκήσεις Αντικειμενοστραφής Σχεδιασμός Στόχοι, Αρχές και Πρότυπα Αντικειμενοστραφείς Σχεδιαστικοί Στόχοι Αντικειμενοστραφείς Αρχές Σχεδιασμού Σχεδιαστικά Πρότυπα... 64
2 xvi Δομές δεδομένων & Αλγόριθμοι σε Java 2.2 Κληρονομικότητα και Πολυμορφισμός Κληρονομικότητα Πολυμορφισμός Χρήση της Κληρονομικότητας στην Java Εξαιρέσεις Μεταβίβαση Εξαιρέσεων Σύλληψη Εξαιρέσεων Διασυνδέσεις και Αφηρημένες Κλάσεις Υλοποίηση Διασυνδέσεων Πολλαπλή Κληρονομικότητα σε Διασυνδέσεις Αφηρημένες Κλάσεις και Strong Typing Μετατροπή Τύπου και Γενικοί Τύποι Μετατροπή Τύπου Γενικευμένοι Ορισμοί (Generics) Ασκήσεις Δείκτες, Κόμβοι και Αναδρομή Χρήση Πινάκων Αποθήκευση Καταχωρήσεων Παιγνιδιού σε έναν Πίνακα Ταξινόμηση ενός Πίνακα Μέθοδοι της java.util για Πίνακες και Τυχαίους Αριθμούς Απλή Κρυπτογραφία με Συμβολοσειρές και Πίνακες Χαρακτήρων Πίνακες Δύο Διαστάσεων και Παιγνίδια Θέσης Απλά Συνδεδεμένες Λίστες Εισαγωγή σε μια Απλά Συνδεδεμένη Λίστα Διαγραφή ενός Στοιχείου από μια Απλά Συνδεδεμένη Λίστα Διπλά Συνδεδεμένες Λίστες Εισαγωγή στο Μέσον μιας Διπλά Συνδεδεμένης Λίστας Διαγραφή από το Μέσον μιας Διπλά συνδεδεμένης Λίστας Μια Υλοποίηση μιας Διπλά Συνδεδεμένης Λίστας Κυκλικά Συνδεδεμένες Λίστες και Ταξινόμηση Συνδεδεμένης Λίστας Κυκλικά Συνδεδεμένες Λίστες και το Παιδικό Παιγνίδι Duck, Duck, Goose Ταξινόμηση μιας Συνδεδεμένης Λίστας Αναδρομή Γραμμική Αναδρομή Δυαδική Αναδρομή Πολλαπλή Αναδρομή Ασκήσεις
3 Περιεχόμενα xvii 4 Εργαλεία Ανάλυσης Οι Επτά Συναρτήσεις που Χρησιμοποιούνται στο Παρόν Βιβλίο Η Σταθερά Συνάρτηση Η Λογαριθμική Συνάρτηση Η Γραμμική Συνάρτηση Η Συνάρτηση N-Log-N Η Τετραγωνική Συνάρτηση Η Κυβική Συνάρτηση και Άλλα Πολυώνυμα Η Εκθετική Συνάρτηση Σύγκριση Ρυθμών Αύξησης Ανάλυση Αλγορίθμων Πειραματικές Μελέτες Πρωταρχικές Πράξεις Ασυμπτωτικός Συμβολισμός Ασυμπτωτική Ανάλυση Χρήση του Συμβολισμού Big-Oh Ένας Αναδρομικός Αλγόριθμος για τον Υπολογισμό Δυνάμεων Περισσότερα Παραδείγματα Ανάλυσης Αλγορίθμων Απλές Τεχνικές Αιτιολόγησης Με Παράδειγμα Η Αντίθεση Επαγωγή και Μεταβλητές Επανάληψης Ασκήσεις Στοίβες, Ουρές και Διπλές Ουρές Στοίβες Ο Αφηρημένος Τύπος Δεδομένων Στοίβα Μια Απλή Υλοποίηση Στοίβας που Βασίζεται σε Πίνακα Υλοποίηση Στοίβας με Γενική Συνδεδεμένη Λίστα Αντιστροφή ενός Πίνακα με Χρήση Στοίβας Αντιστοίχιση Παρενθέσεων σε HTML Ετικέτες Ουρές Ο Αφηρημένος Τύπος Δεδομένων της Ουράς Μια Απλή Υλοποίηση Ουράς που Βασίζεται σε Πίνακα Υλοποίηση μιας Ουράς με μια Γενική Συνδεδεμένη Λίστα Κυκλικός Δρομολογητής Ουρές με Δύο Άκρα Ο Αφηρημένος Τύπος Δεδομένων της Διπλής Ουράς Υλοποίηση της Διπλής Ουράς Διπλές Ουρές στα Πλαίσιο των Java Συλλογών Ασκήσεις
4 xviii Δομές δεδομένων & Αλγόριθμοι σε Java 6 ΑΤΔ Λίστα και Επαναλήπτησ Γραμμικές Λίστες Ο Αφηρημένος Τύπος Δεδομένων Γραμμική Λίστα Το Πρότυπο Προσαρμοστή Μια Απλή Υλοποίηση Βασισμένη σε Πίνακα Μια Απλή Διασύνδεση και η Κλάση java.util.arraylist Υλοποίηση μιας Γραμμικής Λίστας με Επεκτατούς Πίνακες Λίστες Κόμβων Πράξεις που βασίζονται σε κόμβους Θέσεις Ο Αφηρημένος Τύπος Δεδομένων Λίστα Κόμβων Υλοποίηση Διπλά Συνδεδεμένης Λίστας Επαναλήπτες Ο Επαναλήπτης και οι Επαναλήψιμοι Αφηρημένοι Τύποι Δεδομένων Ο Java Βρόχος Επανάληψης For-Each Υλοποίηση Επαναληπτών Επαναλήπτες Λίστας στην Java ΑΤΔ Λίστα και το Πλαίσιο Συλλογών Λίστες στο Πλαίσιο Συλλογών της Java Ακολουθίες Μελέτη Περίπτωσης: Η ευριστική μετακίνηση στην αρχή Χρήση μιας Ταξινομημένης Λίστας και μιας Εμφωλευμένης Κλάσης Χρήση Λίστας με την Ευριστική Μετακίνηση στην Αρχή Πιθανές Χρήσεις της Λίστας Προτιμήσεων Ασκήσεις Δενδρα Δένδρα Γενικά Ορισμοί Δένδρων και Ιδιότητες Ο Αφηρημένος Τύπος Δένδρου Υλοποίηση ενός Δένδρου Αλγόριθμοι Διάσχισης Δένδρων Βάθος και Ύψος Προδιατεταγμένη Διάσχιση Μεταδιατεταγμένη Διάσχιση Δυαδικά Δένδρα Ο ΑΤΔ Δυαδικό Δένδρο Μια Java Διασύνδεση Δυαδικού Δένδρου Ιδιότητες των Δυαδικών Δένδρων Μια Συνδεδεμένη Δομή για Δυαδικά Δένδρα Μια Αναπαράσταση Δυαδικού Δένδρου με Λίστα Πίνακα
5 Περιεχόμενα xix Σαρώσεις Δυαδικών Δένδρων Η Μέθοδος Προτύπου Περιγράμματος Ασκήσεις Σωροί και Ουρές Προτεραιότητας Ο Αφηρημένος Τύπος Δεδομένων Ουρά Προτεραιότητας Κλειδιά, Προτεραιότητες και Σχέσεις Ολικής Διάταξης Καταχωρήσεις και Συγκριτές Ο ΑΤΔ Ουρά Προτεραιότητας Ταξινόμηση με Ουρά Προτεραιότητας Υλοποίηση μιας Ουράς Προτεραιότητας με μια Λίστα Μια Java Υλοποίηση Ουράς Προτεραιότητας με Χρήση μιας Λίστας Ταξινόμηση με Επιλογή και Ταξινόμηση με Εισαγωγή Σωροί Η Δομή Δεδομένων του Σωρού Πλήρη Δυαδικά Δένδρα και Αναπαράστασή τους Υλοποίηση μιας Ουράς Προτεραιότητας με έναν Σωρό Μια Java Υλοποίηση του Σωρού Ταξινόμηση Σωρού Προς τα Πάνω Κατασκευή του Σωρού Προσαρμοζόμενες Ουρές Προτεραιότητας Χρήση της Κλάσης java.util.priorityqueue Καταχωρήσεις Ενήμερες Θέσης Υλοποίηση μιας Προσαρμοζόμενης Ουράς Προτεραιότητας Ασκήσεις Πίνακες Κατακερματισμού, Χάρτες και Λίστες Παράλειψης Χάρτες Ο ΑΤΔ Χάρτης Μια Απλή Υλοποίηση Χάρτη που Βασίζεται σε Λίστα Πίνακες Κατακερματισμού Πίνακες Κάδων Συναρτήσεις Κατακερματισμού Κώδικες Κατακερματισμού Συναρτήσεις Συμπίεσης Σχήματα Διαχείρισης Συγκρούσεων Μια Υλοποίηση Πίνακα Κατακερματισμού σε Java Παράγοντες Φόρτωσης και Επανάληψη Κατακερματισμού Εφαρμογή: Απαρίθμηση των Συχνοτήτων Λέξεων Διατεταγμένοι Χάρτες Αναζήτηση σε Διατεταγμένους Πίνακες και Δυαδική Αναζήτηση
6 xx Δομές δεδομένων & Αλγόριθμοι σε Java Δύο Εφαρμογές Διατεταγμένων Χαρτών Λίστες Παράλειψης Πράξεις Αναζήτησης και Ενημέρωσης σε μια Λίστα Παράλειψης Μια Πιθανοθεωρητική Ανάλυση των Λιστών Παράλειψης* Λεξικά Ο ΑΤΔ Λεξικό Υλοποιήσεις με Καταχωρήσεις Ενήμερες Θέσης Μια Υλοποίηση που Χρησιμοποιεί το Πακέτο java.util Ασκήσεις Δένδρα Αναζήτησης Δυαδικά Δένδρα Αναζήτησης Αναζήτηση Πράξεις Ενημέρωσης Java Υλοποίηση AVL Δένδρα Πράξεις Ενημέρωσης Java Υλοποίηση Στρεβλά Δένδρα (Splay Trees) Στρέβλωση Πότε Εκτελείται Στρέβλωση Κλιμακωτή Ανάλυση των Στρεβλών Δένδρων* (2,4) Δένδρα Δένδρα Αναζήτησης Πολλών Δρόμων Πράξεις Ενημέρωσης για (2,4) Δένδρα Κόκκινα-Μαύρα Δένδρα Πράξεις Ενημέρωσης Java Υλοποίηση Ασκήσεις Ταξινόμηση, Σύνολα, και Επιλογή Ταξινόμηση με Συγχώνευση Διαίρει και Βασίλευε Συγχώνευση Πινάκων και Λιστών Ο Χρόνος Τρεξίματος της Ταξινόμησης με Συγχώνευση Java Υλοποιήσεις της Ταξινόμησης με Συγχώνευση Ταξινόμηση με Συγχώνευση και Αναδρομικές Εξισώσεις* Quick-Sort (Γρήγορη Ταξινόμηση) Τυχαία Γρήγορη Ταξινόμηση Java Υλοποιήσεις και Βελτιστοποιήσεις
7 Περιεχόμενα xxi 11.3 Μελέτη της Ταξινόμησης μέσω Αλγοριθμικού Φακού Ένα Κάτω Φράγμα για την Ταξινόμηση Γραμμική σε Χρόνο Ταξινόμηση: Ταξινόμηση Κάδου και Ταξινόμηση Βάσης Σύγκριση των Αλγορίθμων Ταξινόμησης Σύνολα και Δομές Εύρεσης της Ένωσης Ο ΑΤΔ Σύνολο Σύνολα με Δυνατότητα Συγχώνευσης και το Πρότυπο Μεθόδου Πλαισίου Διαμερίσεις με Πράξεις Εύρεσης της Ένωσης Επιλογή Κλάδεμα και Αναζήτηση Γρήγορη Τυχαία Επιλογή Ανάλυση της Τυχαίας Γρήγορης Επιλογής Ασκήσεις Συμβολοσειρές και Δυναμικός Προγραμματισμός Πράξεις Συμβολοσειρών Η Κλάση String της Java Η Κλάση StringBuffer της Java Δυναμικός Προγραμματισμός Γινόμενο Πολλών Πινάκων DNA και Ευθυγράμμιση Ακολουθίας Κειμένου Αλγόριθμοι Ταιριάσματος Προτύπων Εξαντλητική Μέθοδος Ο Αλγόριθμος των Boyer-Moore Ο Αλγόριθμος των Knuth-Morris-Pratt Συμπίεση Κειμένου και η Άπληστη Μέθοδος Ο Αλγόριθμος Κωδικοποίησης του Huffman Η Άπληστη Μέθοδος Tries Τυπικές Tries Συμπιεσμένες Tries Tries Κατάληξης Μηχανές Αναζήτησης Ασκήσεις Αλγόριθμοι Γράφων Γράφοι Ο ΑΤΔ Γράφος Δομές Δεδομένων για Γράφους
8 xxii Δομές δεδομένων & Αλγόριθμοι σε Java Η Δομή Λίστας Ακμών Η Δομή με Λίστα Γειτνίασης Η Δομή Πίνακα Γειτνίασης Διασχίσεις Γράφων Αναζήτηση με Προτεραιότητα Βάθους Υλοποίηση της Αναζήτησης με Προτεραιότητα Βάθους Αναζήτηση με Προτεραιότητα Πλάτους Κατευθυνόμενοι Γράφοι Διάσχιση ενός Κατευθυνόμενου Γράφου Μεταβατική Κλειστότητα Κατευθυνόμενοι Άκυκλοι Γράφοι Συντομότερες Διαδρομές Γράφοι με Βάρη Αλγόριθμος του Dijkstra Υλοποιήσεις του Αλγορίθμου του Dijkstra Ελάχιστα Ζευγνύοντα Δένδρα Ο Αλγόριθμος του Kruskal Ο Αλγόριθμος Prim-Jarník Ασκήσεις Διαχείριση Μνήμης και Β-Δένδρα Διαχείριση Μνήμης Στοίβες στην Εικονική Μηχανή της Java Κατανομή του Χώρου στον Σωρό της Μνήμης Συλλογή Άχρηστων Εξωτερική και Κρυφή Μνήμη Η Ιεραρχία της μνήμης Στρατηγικές Κρυφής Μνήμης Εξωτερική Αναζήτηση και B-Δένδρα (a,b) Δένδρα Β-Δένδρα Εξωτερική Ταξινόμηση Συγχώνευση Πολλών Δρόμων Ασκήσεις Παράρτημα Α Χρήσιμα Μαθηματικά ΔΕΔΟΜΕΝΑ Βιβλιογραφία Ευερτήριο
Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ
Περιεχόμενα Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23 Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ 1. Επαναληπτικοί αλγόριθμοι: Μέτρα προόδου και αναλλοίωτες συνθήκες.....................................................29
viii 20 Δένδρα van Emde Boas 543
Περιεχόμενα Πρόλογος xi I Θεμελιώδεις έννοιες Εισαγωγή 3 1 Ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες 5 1.1 Αλγόριθμοι 5 1.2 Οι αλγόριθμοι σαν τεχνολογία 12 2 Προκαταρκτικές έννοιες και παρατηρήσεις
xvi Προσέγγιση δομεσ δεδομενων και αλγοριθμοι
Πρόλογος Το εφαλτήριο για τη συγγραφή αυτού του βιβλίου ήταν η πολύχρονη εμπειρία μου στη διδασκαλία του μαθήματος «Αλγόριθμοι και Δομές Δεδομένων» (κωδ. ECE 250) το οποίο εντάσσεται στο πρόγραμμα σπουδών
επιφάνεια πυριτίου Αναφορά στο Εκπαιδευτικό Υλικό : 5. Αναφορά στο Εργαστήριο :
2. Α/Α Διάλεξης : 1 1. Τίτλος : Εισαγωγή στην Ψηφιακή Τεχνολογία 2. Μαθησιακοί Στόχοι : Λογικές Πύλες και η υλοποίησή τους με τρανζίστορ. Κατασκευή ολοκληρωμένων κυκλωμάτων. 3. Θέματα που καλύπτει : Λογικές
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 1 Εισαγωγή 1 / 14 Δομές Δεδομένων και Αλγόριθμοι Δομή Δεδομένων Δομή δεδομένων είναι ένα σύνολο αποθηκευμένων
Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου
Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική
ΒΙΒΛΙΑ ΒΙΒΛΙΑ
ΠΑΡΑΡΤΗΜΑ 05 ΠΛΗΡΟΦΟΡΙΚΗ Σύγκριση της Διδακτέας-εξεταστέας ύλης του πανελλαδικώς εξεταζόμενου μαθήματος «ΠΛΗΡΟΦΟΡΙΚΗ» (πρώην Περιβάλλον), της Γ τάξης ημερήσιου Γενικού Λυκείου, μεταξύ του σχολικού έτους
ΚΕΦΑΛΑΙΟ 2: Τύποι δεδομένων και εμφάνιση στοιχείων...33
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος του συγγραφέα... 13 Πρόλογος του καθηγητή Τιμολέοντα Σελλή... 15 ΚΕΦΑΛΑΙΟ 1: Εργαλεία γλωσσών προγραμματισμού...17 1.1 Γλώσσες προγραμματισμού τρίτης γεννεάς... 18 τι είναι η γλώσσα
Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Περιεχόμενα. 2 Αριθμητικά συστήματα
Περιεχόμενα Πρόλογος 1 Εισαγωγή 1.1 Το μοντέλο Turing 1.2 Το μοντέλο von Neumann 1.3 Συστατικά στοιχεία υπολογιστών 1.4 Ιστορικό 1.5 Κοινωνικά και ηθικά ζητήματα 1.6 Η επιστήμη των υπολογιστών ως επαγγελματικός
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και
Περιεχόμενα. Πρόλογος... 21
Περιεχόμενα Πρόλογος... 21 Κεφάλαιο 1: Εισαγωγή στον προγραμματισμό... 25 Εισαγωγή...27 Πώς να διαβάσετε αυτό το βιβλίο...27 Η δομή των κεφαλαίων...28 Γιατί να μάθω προγραμματισμό;...31 Γιατί να μάθω C;...31
Οι δυναμικές δομές δεδομένων στην ΑΕΠΠ
Καθηγητής Πληροφορικής Απαγορεύεται η αναπαραγωγή των σημειώσεων χωρίς αναφορά στην πηγή Οι σημειώσεις, αν και βασίζονται στο διδακτικό πακέτο, αποτελούν προσωπική θεώρηση της σχετικής ύλης και όχι επίσημο
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί
Περιεχόμενα Πρόλογος 1. Εισαγωγή 2. Τα Βασικά Μέρη ενός Προγράμματος Prolog
Περιεχόμενα Πρόλογος... xxv 1. Εισαγωγή... 1 1.1. Ιστορική Εξέλιξη της Prolog.... 2 1.2. Προστακτικός και Δηλωτικός Προγραμματισμός.... 2 1.3. Δηλωτική και διαδικαστική έννοια ενός προγράμματος Prolog....
Αλγόριθμοι και Πολυπλοκότητα
Το έργο υλοποιείται στο πλαίσιο του υποέργου 2 με τίτλο «Ανάπτυξη έντυπου εκπαιδευτικού υλικού για τα νέα Προγράμματα Σπουδών» της Πράξης «Ελληνικό Ανοικτό Πανεπιστήμιο» η οποία έχει ενταχθεί στο Επιχειρησιακό
Πρόλογος. Πρόλογος 13. Πώς χρησιμοποείται αυτό το βιβλίο 17
Πρόλογος Πρόλογος 13 Πώς χρησιμοποείται αυτό το βιβλίο 17 1 Η λογική σκέψη 19 1.1 Τυπική λογική 20 1.1.1 Διερευνητικά προβλήματα 21 1.1.2 Σύνδεσμοι και προτάσεις 21 1.1.3 Οι πίνακες αλήθειας 23 1.1.4 Λογικές
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του
ΕΞΕΤΑΣΤΕΑ ΥΛΗ (SYLLABUS) ADVANCED αντικειμενοστραφής προγραμματισμός ΕΚΔΟΣΗ 1.0. Σόλωνος 108,Τηλ Φαξ
ΕΞΕΤΑΣΤΕΑ ΥΛΗ (SYLLABUS) ADVANCED αντικειμενοστραφής προγραμματισμός ΕΚΔΟΣΗ 1.0 ΤΙ ΕΙΝΑΙ ΤΟ ADVANCED Οι Advanced θεματικές ενότητες είναι κατάλληλες για άτομα που επιθυμούν να συνεχίσουν σπουδές στο χώρο
ΠΕΡΙΕΧΟΜΕΝΑ 1 ΚΕΦΑΛΑΙΟ ΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΜΕΧΡΙ ΣΗΜΕΡΑ Ιστορική αναδρομή Υπολογιστικές μηχανές
ΠΕΡΙΕΧΟΜΕΝΑ 1 ΚΕΦΑΛΑΙΟ 1... 11 ΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΜΕΧΡΙ... 11 ΣΗΜΕΡΑ... 11 1.1 Ιστορική αναδρομή... 13 1.1.1 Υπολογιστικές μηχανές στην αρχαιότητα... 13 1.1.2 17ο έως τον 19ο... 14 1.1.3
Δομές Δεδομένων. Ενότητα 1 - Εισαγωγή. Χρήστος Γκουμόπουλος. Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων
Δομές Δεδομένων Ενότητα 1 - Εισαγωγή Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Αντικείμενο μαθήματος Δομές Δεδομένων (ΔΔ): Στην επιστήμη υπολογιστών
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής. Ακαδημαϊκό Έτος 2007-2008
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ακαδημαϊκό Έτος 2007-2008 ΠΑΡΑΔΟΤΕΟ: Έκθεση Προόδου Υλοποίησης του Μαθήματος Εισαγωγή στην Επιστήμη των Υπολογιστών Διδάσκοντες: Θ.Ανδρόνικος - Μ.Στεφανιδάκης Περιεχόμενα
Εξωτερική Αναζήτηση. Ιεραρχία Μνήμης Υπολογιστή. Εξωτερική Μνήμη. Εσωτερική Μνήμη. Κρυφή Μνήμη (Cache) Καταχωρητές (Registers) μεγαλύτερη ταχύτητα
Ιεραρχία Μνήμης Υπολογιστή Εξωτερική Μνήμη Εσωτερική Μνήμη Κρυφή Μνήμη (Cache) μεγαλύτερη χωρητικότητα Καταχωρητές (Registers) Κεντρική Μονάδα (CPU) μεγαλύτερη ταχύτητα Πολλές σημαντικές εφαρμογές διαχειρίζονται
Ελαφρύτατες διαδρομές
Ελαφρύτατες διαδρομές Ελαφρύτατες διαδρομές Κατευθυνόμενο γράφημα Συνάρτηση βάρους Ελαφρύτατη διαδρομή από το u στο v : διαδρομή με και ελάχιστο βάρος s 3 t 7 x 5 3 y z Βάρος ελαφρύτατης διαδρομής εάν
10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.
1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.
Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας Τα βασικά βήματα στην επεξεργασία
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΚΤΥΩΝ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 1.1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΓΡΑΦΗΜΑΤΩΝ... 2 1.1.1 Ορισμός και ιδιότητες γραφημάτων... 2 1.1.2 Δέντρα... 7 1.2 ΑΠΟΘΗΚΕΥΣΗ ΓΡΑΦΩΝ ΚΑΙ ΔΙΚΤΥΩΝ... 11 1.2.1 Μήτρα πρόσπτωσης κόμβων τόξων...
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
ΠΡΟΛΟΓΟΣ. Θεσσαλονίκη, Μάρτιος 2009. Οι συγγραφείς. Κ. Παπαρρίζος, Ν. Σαμαράς, Α. Σιφαλέρας.
ΠΡΟΛΟΓΟΣ Το βιβλίο «Δικτυακή Βελτιστοποίηση» γράφτηκε με κύριο στόχο να καλύψει τις ανάγκες της διδασκαλίας του μαθήματος «Δικτυακός Προγραμματισμός», που διδάσκεται στο Τμήμα Εφαρμοσμένης Πληροφορικής,
ΑΝΑΚΟΙΝΩΣΗ ΚΑΤΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΑΚ. ΈΤΟΥΣ
ΑΝΑΚΟΙΝΩΣΗ ΚΑΤΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΑΚ. ΈΤΟΥΣ 2017-18 Οι υποψήφιοι για κατάταξη μέσω εξετάσεων στο Τμήμα Πληροφορικής και Τηλεπικοινωνιών του Πανεπιστημίου Πελοποννήσου παρακαλούνται να καταθέσουν στη γραμματεία
Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Γλώσσες Προγραμματισμού
Το έργο υλοποιείται στο πλαίσιο του υποέργου 2 με τίτλο «Ανάπτυξη έντυπου εκπαιδευτικού υλικού για τα νέα Προγράμματα Σπουδών» της Πράξης «Ελληνικό Ανοικτό Πανεπιστήμιο» η οποία έχει ενταχθεί στο Επιχειρησιακό
Εισαγωγή στους Αλγόριθμους. Παύλος Εφραιμίδης, Λέκτορας
Εισαγωγή στους Αλγόριθμους Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr 1 Περιεχόμενα Μαθήματος Εισαγωγή στου Αλγόριθμους Πολυπλοκότητα Αλγορίθμων Ασυμπτωτική Ανάλυση Θεωρία Γράφων Κλάσεις Πολυπλοκότητας
Περιεχόμενα ΜΕΡΟΣ ΠΡΩΤΟ. Πρόλογος... 13
Περιεχόμενα Πρόλογος... 13 ΜΕΡΟΣ ΠΡΩΤΟ Κεφ. 1 Περί προγραμματισμού και γλωσσών προγραμματισμού Προγράμματα και Λειτουργικά Συστήματα... 17 Γλώσσες προγραμματισμού και εργαλεία ανάπτυξης προγραμμάτων...
Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος
Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες
Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται
Επιλογές και Κριτήρια Σχεδιασμού ΑΤΔ Ανεξαρτήτως από Γλώσσα Υλοποίησης 24/4/2012
Επιλογές και Κριτήρια Σχεδιασμού ΑΤΔ Ανεξαρτήτως από Γλώσσα Υλοποίησης 24/4/2012 Κύκλος (Ζωής) Λογισμικού (ΑΤΔ) Γενικά Ορισμός ΑΤΔ (Προδιαγραφές) Οργάνωση Δεδομένων Τι κάνει Υλοποίηση Σχεδιασμός (ανεξάρτητος
Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.
i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical
Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο
Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου
Δομές Δεδομένων & Αλγόριθμοι
Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων Πληροφορικής 2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών 3. Ο αλγόριθμος
Δυναμικές Δομές Δεδομένων Λίστες Δένδρα - Γράφοι
Δυναμικές Δομές Δεδομένων Λίστες Δένδρα - Γράφοι Κ Ο Τ Ι Ν Η Ι Σ Α Β Ε Λ Λ Α Ε Κ Π Α Ι Δ Ε Υ Τ Ι Κ Ο Σ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Π Ε 8 6 Ν Ε Ι Ρ Ο Σ Α Ν Τ Ω ΝΙ Ο Σ Ε Κ Π Α Ι Δ Ε Υ Τ Ι Κ Ο Σ Π Λ Η Ρ Ο Φ Ο
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Γιάννης Κουτσονίκος Επίκουρος Καθηγητής Οργάνωση Δεδομένων Δομή Δεδομένων: τεχνική οργάνωσης των δεδομένων με σκοπό την
Δοµές Δεδοµένων. 6η Διάλεξη Αναδροµικές Εξισώσεις και Αφηρηµένοι Τύποι Δεδοµένων. Ε. Μαρκάκης
Δοµές Δεδοµένων 6η Διάλεξη Αναδροµικές Εξισώσεις και Αφηρηµένοι Τύποι Δεδοµένων Ε. Μαρκάκης Περίληψη Χρήση αναδροµικών εξισώσεων στην ανάλυση αλγορίθµων Αφηρηµένοι τύποι δεδοµένων Συλλογές στοιχείων Στοίβα
Πληροφορική 2. Δομές δεδομένων και αρχείων
Πληροφορική 2 Δομές δεδομένων και αρχείων 1 2 Δομή Δεδομένων (data structure) Δομή δεδομένων είναι μια συλλογή δεδομένων που έχουν μεταξύ τους μια συγκεκριμένη σχέση Παραδείγματα δομών δεδομένων Πίνακες
Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης
Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα στα οποία κάθε κόμβος μπορεί να αποθηκεύει ένα ή περισσότερα κλειδιά. Κόμβος με d διακλαδώσεις : k 1 k 2 k 3 k 4 d-1 διατεταγμένα κλειδιά d διατεταγμένα παιδιά
Δομές Δεδομένων και Αλγόριθμοι
Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας και Γεωπληροφορικής TE Διάλεξη στο μάθημα Εφαρμοσμένη Πληροφορική ΙΙ Δομές Δεδομένων και Αλγόριθμοι Πηγές - Βιβλιογραφία
Κεφάλαιο 5 Ανάλυση Αλγορίθμων
Κεφάλαιο 5 Ανάλυση Αλγορίθμων 5.1 Επίδοση αλγορίθμων Τα πρωταρχικά ερωτήματα που προκύπτουν είναι: 1. πώς υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 2. πώς μπορούν να συγκριθούν μεταξύ τους οι διάφοροι
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ GD2670
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ GD2670 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Έκτο ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Δομές Δεδομένων και Αλγόριθμοι ΑΥΤΟΤΕΛΕΙΣ ΔΙΔΑΚΤΙΚΕΣ
Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1
Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών
Περιεχόμενα. Λίγα λόγια για αυτή την έκδοση... 23
Περιεχόμενα Λίγα λόγια για αυτή την έκδοση...... 23 Κεφάλαιο 1 Εισαγωγή... 25 O στόχος του βιβλίου και σε ποιους απευθύνεται... 27 Πώς να διαβάσετε αυτό το βιβλίο... 27 Εκπαίδευση από απόσταση... 29 Ιστορική
Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες
Δοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης
Δοµές Δεδοµένων 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων Ε. Μαρκάκης Περίληψη Quicksort Χαρακτηριστικά επιδόσεων Μη αναδροµική υλοποίηση Δέντρα Μαθηµατικές ιδιότητες Δοµές Δεδοµένων 11-2
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 1 ο ΚΕΦΑΛΑΙΟ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1 ο ΚΕΦΑΛΑΙΟ 1) Τι είναι πρόβλημα (σελ. 3) 2) Τι είναι δεδομένο, πληροφορία, επεξεργασία δεδομένων (σελ. 8) 3) Τι είναι δομή ενός προβλήματος (σελ. 8)
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 3 1. Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή 2. Δυναμικές είναι οι δομές που αποθηκεύονται σε συνεχόμενες θέσεις μνήμης 3. Ένας πίνακας
Περιεχόμενα. Πρόλογος... 17
Περιεχόμενα Πρόλογος... 17 Κεφάλαιο 1: Εισαγωγή... 19 Πώς να διαβάσετε αυτό το βιβλίο... 20 Η γλώσσα C Ιστορική αναδρομή... 22 Τα χαρακτηριστικά της C... 23 C Μια δομημένη γλώσσα... 23 C Μια γλώσσα για
Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω:
Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: 1ο ΓΕΛ Καστοριάς Βασικές Έννοιες Αλγορίθμων Δομή Ακολουθίας (κεφ. 2 και 7 σχολικού βιβλίου) 1. Οι μεταβλητές αντιστοιχίζονται από τον μεταγλωττιστή κάθε
Περιεχόμενα. 1. Εισαγωγή: Κάποια αντιπροσωπευτικά προβλήματα... 25. 2. Βασικά στοιχεία ανάλυσης αλγορίθμων... 57. 3. Γραφήματα...
Περιεχόμενα Σχετικά με τους συγγραφείς...3 Πρόλογος... 11 Πρόλογος της ελληνικής έκδοσης... 23 1. Εισαγωγή: Κάποια αντιπροσωπευτικά προβλήματα... 25 1.1 Ένα πρώτο πρόβλημα: Ευσταθές Ταίριασμα...25 1.2
Ταξινόμηση με συγχώνευση Merge Sort
Ταξινόμηση με συγχώνευση Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Πληροφορικής 1 Διαίρει και Βασίλευε Η μέθοδος του «Διαίρει και Βασίλευε» είναι μια γενική αρχή σχεδιασμού αλγορίθμων
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ
ii ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. Εντολές εκχώρησης (αντικατάστασης)....1 1.1 Εισαγωγή...4 1.1.1 Χρήση ΛΣ και IDE της Turbo Pascal....4 1.1.2 Αίνιγμα...6 1.2 Με REAL...7 1.2.1 Ερώτηση...9 1.2.2 Επίλυση δευτεροβάθμιας
Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις
Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»
Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε
Ενδεικτικές Ερωτήσεις Θεωρίας
Ενδεικτικές Ερωτήσεις Θεωρίας Κεφάλαιο 2 1. Τι καλούμε αλγόριθμο; 2. Ποια κριτήρια πρέπει οπωσδήποτε να ικανοποιεί ένας αλγόριθμος; 3. Πώς ονομάζεται μια διαδικασία που δεν περατώνεται μετά από συγκεκριμένο
Περιεχόμενα. Προλεγόμενα... ix Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Δεδομένα και εκφράσεις Κεφάλαιο 3 Λογικές συνθήκες και δομές ελέγχου...
Προλεγόμενα... ix Κεφάλαιο 1 Εισαγωγή... 1 1.1 Εισαγωγικά στοιχεία για τους υπολογιστές 2 1.2 Αλγόριθμοι, προγράμματα, προγραμματισμός 16 1.3 Η Python 25 1.4 Ο διερμηνευτής της Python 28 1.5 Το περιβάλλον
Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο
Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών
8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων
Προγραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωμύλος Κορακίτης
Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι
Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση
Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2
Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.
Κατηγορίες Συμπίεσης. Συμπίεση με απώλειες δεδομένων (lossy compression) π.χ. συμπίεση εικόνας και ήχου
Συμπίεση Η συμπίεση δεδομένων ελαττώνει το μέγεθος ενός αρχείου : Εξοικονόμηση αποθηκευτικού χώρου Εξοικονόμηση χρόνου μετάδοσης Τα περισσότερα αρχεία έχουν πλεονασμό στα δεδομένα τους Είναι σημαντική
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 12. Ανασκόπηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 13/01/2017 Εξεταστέα Ύλη
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
1 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΟ 3ο: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΜΕΡΟΣ 2 ο : ΣΤΟΙΒΑ & ΟΥΡΑ ΙΣΤΟΣΕΛΙΔΑ ΜΑΘΗΜΑΤΟΣ: http://eclass.sch.gr/courses/el594100/ ΣΤΟΙΒΑ 2 Μια στοίβα
Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 9 ο
Γιώργος Δημητρίου Μάθημα 9 ο Ενδιάμεσος Κώδικας Απεικόνιση ανάμεσα στον αρχικό και στον τελικό κώδικα Γραμμικές αναπαραστάσεις: Ενδιάμεσος κώδικας πλησιέστερα στον τελικό ευκολότερη παραγωγή τελικού κώδικα
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2 Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Εµπειρική ανάλυση αλγορίθµων Μαθηµατική ανάλυση αλγορίθµων Αύξηση συναρτήσεων Συµβολισµός µεγάλου όµικρον Παραδείγµατα
Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο
Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ 17 ΣΥΝΟΛΑ ΣΧΕΣΕΙΣ - ΣΥΝΑΡΤΗΣΕΙΣ 17 1. Η έννοια του συνόλου 17 2. Εγκλεισμός και ισότητα συνόλων 19
Αλγόριθμοι Ταξινόμησης Μέρος 2
Αλγόριθμοι Ταξινόμησης Μέρος 2 Μανόλης Κουμπαράκης 1 Προχωρημένοι Αλγόριθμοι Ταξινόμησης Στη συνέχεια θα παρουσιάσουμε τρείς προχωρημένους αλγόριθμους ταξινόμησης: treesort, quicksort και mergesort. 2
Αναδρομή Ανάλυση Αλγορίθμων
Αναδρομή Ανάλυση Αλγορίθμων Παράδειγμα: Υπολογισμός του παραγοντικού Ορισμός του n! n! = n x (n - 1) x x 2 x 1 Ο παραπάνω ορισμός μπορεί να γραφεί ως n! = 1 αν n = 0 n x (n -1)! αλλιώς Παράδειγμα (συνέχ).
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή
ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος στη δεύτερη έκδοση
Πρόλογος του επιµελητή xiii Πρόλογος στην πρώτη έκδοση xv Προς τους ϕοιτητές.......................... xv Προς τους διδάσκοντες........................ xvii Ηπρώτηέκδοση........................... xviii
Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Πολλαπλασιασμός μεγάλων ακεραίων (1) Για να πολλαπλασιάσουμε δύο ακεραίους με n 1 και n 2 ψηφία με το χέρι, θα εκτελέσουμε n 1 n 2 πράξεις πολλαπλασιασμού Πρόβλημα ρβημ όταν έχουμε πολλά ψηφία: A = 12345678901357986429
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 2. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ...30
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 1.1 Τι είναι Πληροφορική;...11 1.1.1 Τι είναι η Πληροφορική;...12 1.1.2 Τι είναι ο Υπολογιστής;...14 1.1.3 Τι είναι το Υλικό και το
Επεξεργασία Ερωτήσεων
Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων
Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε.
Ψηφιακά Δένδρα Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών τα οποία είναι ακολουθίες συμβάλλων από ένα πεπερασμένο αλφάβητο Ένα στοιχείο γράφεται ως, όπου κάθε. Μπορούμε να
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης 3-4 Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητες 3 & 4: ένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε
Επεξεργασία Ερωτήσεων
Εισαγωγή Επεξεργασία Ερωτήσεων Σ Β Βάση εδομένων Η ομή ενός ΣΒ Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 1 Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 2 Εισαγωγή Εισαγωγή ΜΕΡΟΣ 1 (Χρήση Σ Β ) Γενική
ΕΞΕΤΑΣΤΕΑ ΥΛΗ (SYLLABUS) ADVANCED αντικειμενοστραφής προγραμματισμός ΕΚΔΟΣΗ 1.0. Σόλωνος 108,Τηλ Φαξ
ΕΞΕΤΑΣΤΕΑ ΥΛΗ (SYLLABUS) ADVANCED αντικειμενοστραφής προγραμματισμός ΕΚΔΟΣΗ 1.0 ΤΙ ΕΙΝΑΙ ΤΟ ADVANCED Οι Advanced θεματικές ενότητες είναι είναι κατάλληλες για άτομα που επιθυμούν να συνεχίσουν σπουδές
Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών
Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 1 2 3 4 5 πλήθος κορυφών πλήθος ακμών Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από
1.1 Αλγόριθμοι Ένα ενδεικτικό πρόβλημα: συνδετικότητα Αλγόριθμοι ένωσης-εύρεσης Προοπτική Σύνοψη θεμάτων 46
Περιεχόμενα ΜΕΡΟΣ ΕΝΑ Θεμελιώδεις έννοιες 21 ΚΕΦΑΛΑΙΟ ΕΝΑ. Εισαγωγή 23 1.1 Αλγόριθμοι 24 1.2 Ένα ενδεικτικό πρόβλημα: συνδετικότητα 26 1.3 Αλγόριθμοι ένωσης-εύρεσης 31 1.4 Προοπτική 44 1.5 Σύνοψη θεμάτων
Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9
Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις
Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -
ΑΕΠΠ Ερωτήσεις θεωρίας
ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος
Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3)
Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3) 3.1 Ασυμπτωτικός συμβολισμός (Ι) Οι ορισμοί που ακολουθούν μας επιτρέπουν να επιχειρηματολογούμε με ακρίβεια για την ασυμπτωτική συμπεριφορά. Οι f(n) και g(n) συμβολίζουν
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 3: Δομές Δεδομένων και Αλγόριθμοι Ενδιάμεση Εξέταση Ημερομηνία : Τετάρτη, 4 Οκτωβρίου 005 Διάρκεια : 5.00-6.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο: Αριθμός
Μεταβατικό Πρόγραμμα Σπουδών και Συμπληρωματικό Εκπ/κό Υλικό
Πληροφορική Γ Γενικού Λυκείου Μεταβατικό Πρόγραμμα Σπουδών και Συμπληρωματικό Εκπ/κό Υλικό Ν ι κ ό λ α ο ς Γ ρ α μ μ έ ν ο ς, Σ ύ μ β ο υ λ ο ς Β Ι Ε Π Α ν θ ή Γ ο ύ σ ι ο υ, Σ ύ μ β ο υ λ ο ς Β Ι Ε Π
ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης
ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Βασικές έννοιες και εφαρμογές Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δομή