1 Bhabha scattering (1936)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 Bhabha scattering (1936)"

Transcript

1 Bhabha scaering 936 Consider he scaering of an elecron and a posiron. We have already compued he annihilaion of an elecron/posiron in finding he cross-secion for producing muon pairs. I is also possible for he final paricles o be an elecron-posiron pair. In addiion, he iniial paricles may exchage a phoon wihou annihilaing. Since he paricles are diinguishable, we have only he -channel diagram for his, wihou he crossed diagram. Le he in and ou elecrons have momena p, p, respecively and he iniial and final posirons have momena k,k. Le he angle beween he iniial and final elecrons be θ. The general calculaion is lenghy; here we reric our aenion o he ulrarelaiviic case, where we can rea he elecron and posiron as massless. This means we neglec erms of order m. For GeV or TeV colliders, his erm is of E order 0 8 or 0 4, so we incur no grea error. We may drop m whenever i occurs addiively.. The scaering marix We have wo Feynman diagrams, so he marix elemen is he sum im f i im s f i + im f i where s and refer o he phoon channel. The fir, s-channel, diagram describes he annihilaion-creaion. The marix elemen is he same as we use for he muon problem, excep he paricle masses are all equal, and here we wan o call p,k he incoming momena and p,k he ougoing momena. Therefore, inead of we wrie im s f i v p ieγ α up i q η αβ ξ q αq β q ūk ieγ β v k im f s i vk ieγα up i q η αβ ξ q αq β q ū p ieγ β v k ha is, we ju need o inerchange p k in our previous resul, and we have q p + k p + k. As before, he gauge erms vanish immediaely. We replace q s, leaving The second Feynman diagram has he marix elemen im f i ū p ieγ α up i q im s f i ie s η αβ vkγ α upū p γ β v k η αβ ξ q αq β q vk ieγ β v k where p, p are he incoming and ougoing elecron, respecively; k,k are he incoming and ougoing proon or any oher fermion of charge Q, excep he elecron which would also require he u channel, respecively; q p p k k is he -channel 4-momenum; ξ allows a choice of gauge. The gauge erm does no immediaely drop in his case. We have: ū p ieγ α up i q ξ q αq β q vk ieγ β v k i ξ e ū p iq/up vkiq/v k i ξ e ū p ip/ ip/ up vk ik/ ik/ v k i ξ e ū p mup vkmv k 4im e ξ e ū p up vkv k where we use he Dirac and conjugae Dirac equaions in he middle ep. The marix elemen becomes im f i ie η αβ ū p γ α upū k γ β uk 4im e ξ e ū p up vkv k

2 where we se q. We should ge he same resul in any gauge, so we could ju se ξ, bu in any case he erm of of order m and we drop i. The resuling marix elemen is im f i im s f i + im f i ie s η αβ vkγ α upū p γ β v k + ie η µν ū p γ µ up vkγ ν v k Squaring he marix elemen leads o four erms, im f i im s f i + M s f i M f i + M f i M f s i + im f i We work hem ou one a a ime.. Marix squared: s channel We already have from he muon case. Averaging over iniial spins and summing over final spins, we found M s f i im s f i 8e4 s k k k p k p + p k m k p + k p k p + m k p + m k p + 8e4 s k k + p k + m k p + m k p + m 4 where some simplificaion occurs because of he equal masses..3 Marix squared: channel For he final erm, we have M f i ie η µν ū p γ µ up vkγ ν v k ie η ρσ v k γ ρ vkūpγ σ u p 4 η µνη ρσ ū p γ µ up vkγ ν v k v k γ ρ vkūpγ σ u p 4 η µνη ρσ ū a p γ µ ab u b p v c kγcd ν v γ ρ e f v f kū g pγgh σ u h p 4 η µνη ρσ γ µ ab u b pū g pγ σ gh u h e4 4 η µνη ρσ γ µ ab p/ + m bg γσ gh p/ + m ha γν c/ m de γρ e f k/ m f c e4 4 η µνη ρσ r γ µ p/ + mγ σ p/ + m r γ ν k/ m γ ρ k/ m p ū a p γcd ν v γ ρ e f v f k v c k where he facor 4 keeps rack of he number of imes we commue fermion fields. The races give r γ µ p/ + mγ σ p/ + m r γ µ p/γ σ p/ + mγ µ γ σ p/ + mγ µ p/γ σ + m γ µ γ σ r γ µ p/γ σ p/ + m r γ µ γ σ p λ p τr γ µ γ λ γ σ γ τ + 4m η µσ 4p λ p τ η µλ η στ η µσ η λτ + η µτ η λσ + 4m η µσ 4p λ p τ η µλ η στ η µσ η λτ + η µτ η λσ + 4m η µσ 4 p µ p σ η µσ + p µ p σ + m η µσ r γ ν k/ m γ ρ k/ m 4 k ν k ρ k k η νρ + k ν k ρ + m η νρ

3 Combining hese resuls, M f i 4e4 η µνη ρσ p µ p σ η µσ + p µ p σ + m η µσ k ν k ρ k k η νρ + k ν k ρ + m η νρ 4e4 p ν p ρ k ν k ρ k k η νρ + k ν k ρ + m η νρ 4e4 η νρ k ν k ρ k k η νρ + k ν k ρ + m η νρ Performing he remaining conracions, M f i + 4e4 p ν p ρ k ν k ρ k k η νρ + k ν k ρ + m η νρ + 4m η νρ k ν k ρ k k η νρ + k ν k ρ + m η νρ 4e4 p k k k + p k + m 4e4 k k 4 k k + k k + 4m + 4e4 p k k k + p k + m + 4m k k 4 k k + k k + 4m 8e4 p k k k + p k + m + m k k + m 8e4 p k + p k m m k k + m 4.4 Marix squared: fir cross erm Now consider he fir of he cross erms. We need o make sure we ve assigned he same momena o he four paricles. Bu for he s channel we ve se p as he iniial posiron momenum inead of he final. ie s η αβ vkγ α upū p γ β v k ie η µν v k γ ν vkūpγ µ u p M f s i M f i e4 4 η αβ η µν 5 4 η αβ η µν v a kγab α u b pū c p γ β cd v γe ν f v f kū g pγ µ gh u h p e4 4 η αβ η µν k/ f a γab α p/ bgγ µ gh p/ hc γβ c/ de γν e f e4 4 η αβ η µν r k/γ α p/γ µ p/ γ β k/ γ ν γab α u b pū g pγ β cd v γe ν f v f k v a kγ µ gh u h p ū c p where we have dropped all mass erms. Noice ha he fermion exchanges have inroduced an overall sign. Now evaluae he race. Fir, we eliminae he free γ-marices, using r η αβ γ α γ β r η αβ { γ α,γ β } 4. To do his, we mu bring he wo relevan gamma marices nex o each oher. Also, noice ha γ α p/ p β γ α γ β p α p/γ α p β η αβ γ β γ α p α p/γ α 3

4 and for any of p,k, p,k, p/p/ p α p β γ α γ β p α p β { γ α,γ β } p α p β η αβ p 0 The race is M f s i M f i e4 4 η αβ η µν r k/γ α p/γ µ p/ γ β k/ γ ν Using conservaion of momenum, we replace k p + k p, where M f s i M f i e4 4 η αβ η µν r k/γ α p/γ µ p/ γ β p/ + k/ p/ γ ν e4 Tp + T k T 4 p T p η αβ η µν r k/γ α p/γ µ p/ γ β p/γ ν T k η αβ η µν r k/γ α p/γ µ p/ γ β k/γ ν T p η αβ η µν r k/γ α p/γ µ p/ γ β p/ γ ν η αβ η µν r p/ γ ν k/γ α p/γ µ p/ γ β where we used he cyclic propery on T p o check ha i is relaed o T k by he cyclic subiuion, k p p k, and renaming he dummy Lorenz indices. We herefore only need o compue he fir wo. For T p, T p η αβ η µν r k/γ α p/γ µ p/ γ β p/γ ν η αβ η µν r k/γ α p µ γ µ p/ p/ p β p/γ β γ ν 4r k/p/p/ p/ η αβ r k/γ α p/ p/γ β p/ η µν r k/p/γ µ p/p/ γ ν + η αβ η µν r k/γ α γ µ p/p/ p/γ β γ ν 4r k/p/ p/p/ η αβ r k/γ α p/ p β γ β p/ p/ η µν r k/p/p µ p/γ µ p/ γ ν + η αβ η µν r k/γ α γ µ p/ p/ p/γ β γ ν Simplifying, and using p m 0, T p 8 r k/p/ 4r k/p p/ 4r k/p/p/ p/ + η αβ r k/γ α p/ γ β p 4r k/p/p/ p/ + η µν r k/p γ µ p/ γ ν + η αβ η µν r k/γ α γ µ p/γ β γ ν η αβ η µν r k/γ α γ µ p/ p/p/γ β γ ν 3 k p 4r k/p/p/ p/ 4r k/p/p/ p/ 4

5 + η αβ η µν r k/γ α γ µ p/γ β γ ν 3 k p 8r k/ p/ p/ p/ + η αβ η µν r k/γ α γ µ p/γ β γ ν Look a η αβ η µν r k/γ α γ µ p/γ β γ ν η αβ η µν r k α γ α k/γ µ p/ η βν γ ν γ β 4r k/p/ η µν r γ µ p/γ ν k/ η αµ r γ α k/γ µ p/ + 4η µν r k/γ µ p/γ ν 4r k/p/ + 4η µν r γ µ p/γ ν k/ 6k p Therefore, T p 3 k p 6 r k/p/ + 8r k/p/ p/p/ + 3 k p 3 k p k p 0 Now compue T k, which is easier because he repeaes are closer: T k η αβ η µν r k/γ α p/γ µ p/ γ β k/γ ν η αβ η µν r k/γ α p/γ µ p/ γ β k ν γ ν k/ η αβ r k/γ α p/k/p/ γ β η αβ η µν r k/γ α p/γ µ p/ γ β γ ν k/ η αβ r k α γ α k/ p/k/p/ γ β 4r p/k/p/ k/ η αβ r γ α k/p/k/p/ γ β 4r p/k/p/ k/ 8r k/p/k/p/ 4r p/k/ p k k/p/ 8 p k r p/k/ + 4r p/k/k/p/ 3 p k and cycling k p p k we have T p 3 k p The full form of his cross erm conribuion o he squared marix elemen i herefore, M f s i M f i e4 Tp + T k T 4 p e4 0 3 p k + 3 k p 4 8e4.5 Marix squared: second cross erm The second cross erm, averaged and summed over spins is k p p k 5

6 M f i M f s i ie η µν ū p γ µ up vkγ ν v k ie s η αβ v k γ β u p ūpγ α vk We need e4 4 η αβ η µν 5 4 η αβ η µν ū a p γ µ ab u b p v c kγcd ν v γ β e f u f p ū g pγgh α v h k γ µ ab u b pū g pγcd ν v γ β e f u f p ū a p γgh α v h k v c k e4 4 η αβ η µν γ µ ab u b pū g pγgh α v h k v c kγcd ν v γ β e f u f p ū a p e4 4 η αβ η µν r γ µ p/γ α k/γ ν k/ γ β p/ Compare his o he fir cross erm, where we calculaed r γ µ p/γ α k/γ ν k/ γ β p/ r p/γ α k/γ ν k/ γ β p/ γ µ 4 η αβ η µν r k/γ α p/γ µ p/ γ β k/ γ ν 8e4 k p p k These differ only by he exchange p k, p k. Therefore,.6 Final marix squared M f i M f s i 8e4 k k k p k p The final marix squared, averaged/summed over spins, is im f i im s f i + M s f i M f i + M f i M f s i + im f i Dropping he mass erms and combining, im f i 8e4 s k k + p k + m k p + m k p + m 4 8e4 k p p k 8e4 k k k p k p 8e4 s 8e4.7 Relaiviic kinemaics + 8e4 p k + p k m m k k + m 4 k k + p k + 8e4 p k + p k k p p k k p k p + k k Consider he collision of an elecron on a posiron in he CM frame. Then he momena are p E, p k E, p p E,p k E, p 6

7 Then, dropping masses, and seing p E m E, all quaniies may be expressed in erms of E and θ: Subiuing ino he squared marix elemen, im f i E + p E m E p k E + E + p cosθ E + cosθ k k E E cosθ E cosθ E + cosθ p k E + p p E p p m E cosθ s p + k 4E 8e4 s k k + p k + 8e4 p k + p k 8e4 k p p k k p k p + k k 8 E 4E 4E cosθe cosθ + E + cosθe + cosθ 8 + E E cosθe + co cosθ 8e4 E 4E cosθe + cosθ E + cosθe E + cosθe + E cosθe + cosθ Then he differenial cross secion is dσ dω 64π s M ji 64π 4E + cos θ cosθ + cosθ + e4 cos 64π 4E θ 4 + cosθ cosθ 64π 4E + cos θ cosθ + cosθ + cos θ cosθ + cos 64π E θ + + cos4 θ sin 4 θ + cos θ cos θ sin θ 64π E + cos θ + + cos4 θ sin 4 θ This is he ulrarelaiviic limi of h Bhabha cross secion 936. cos4 θ sin θ 4 + cosθ cosθ 7

8 .8 Traces of gamma marices Now compue he races using he fundamenal relaion { γ α,γ β } η αβ, and he cyclic propery of he race, r A...BC r CA...B. Fir, we can show ha he race of he produc of any odd number of γ-marices vanishes by using γ 5 and {γ 5,γ a } 0, r γ α...γ β r γ α...γ β }{{} n+ r γ 5 γ 5 γ α...γ β r γ 5 γ α γ 5...γ β n+ r γ 5 γ α...γ β γ 5 n+ r γ 5 γ 5 γ α...γ β r γ α...γ β 0 For even producs, we will need races of producs of,4,6 and 8 gamma marices. r γ α γ β r γ β γ α + η αβ r γ β γ α + η αβ r r γ α γ β + 8η αβ r γ α γ β 4η αβ and r γ α γ β γ µ γ ν r γ β γ α + η αβ γ µ γ ν r γ β γ α γ µ γ ν + η αβ r γ µ γ ν r γ β γ µ γ α + η µα γ ν + η αβ r γ µ γ ν r γ β γ µ γ α γ ν η µα r γ β γ ν + η αβ r γ µ γ ν r r r γ β γ µ γ ν γ α + η να η µα r γ β γ ν + η αβ r γ µ γ ν r γ β γ µ γ ν γ α + η να r γ β γ µ η µα r γ β γ µ η µα r γ β γ ν + η αβ r γ µ γ ν γ α γ β γ µ γ ν η να r γ α γ β γ µ γ ν 4η να η β µ 4η µα η βν + 4η αβ η µν γ β γ ν + η αβ r γ µ γ ν For six, we use he simple paern o more quickly find r γ α γ β γ µ γ ν γ ρ γ σ r γ β γ α + η αβ γ µ γ ν γ ρ γ σ r γ β η αµ γ µ γ α γ ν γ ρ γ σ + η αβ γ µ γ ν γ ρ γ σ r γ β γ µ γ ν γ ρ γ σ γ α + η ασ γ β γ µ γ ν γ ρ η αρ γ β γ µ γ ν γ σ + η αν γ β γ µ γ ρ γ σ η αµ γ β γ ν γ ρ γ σ + η αβ γ µ γ ν 8

9 and from here we can use he resul for he race of four, r γ α γ β γ µ γ ν γ ρ γ σ r η ασ γ β γ µ γ ν γ ρ η αρ γ β γ µ γ ν γ σ + η αν γ β γ µ γ ρ γ σ η αµ γ β γ ν γ ρ γ σ + η αβ γ µ γ ν γ ρ γ σ 4η ασ η β µ η νρ η βν η µρ + η ρβ η µν 4η αρ η β µ η νσ η βν η µσ + η σβ η µν +4η αν η β µ η ρσ η βρ η µσ + η βσ η µρ 4η αµ η βν η ρσ η βρ η νσ + η βσ η νρ +4η αβ η µν η ρσ η µρ η νσ + η µσ η νρ or, perhaps more mnemonically, r γ α γ β γ µ γ ν γ ρ γ σ 4η αβ η µν η ρσ η µρ η νσ + η µσ η νρ 4η αµ η βν η ρσ η βρ η νσ + η βσ η νρ +4η αν η β µ η ρσ η βρ η µσ + η βσ η µρ 4η αρ η β µ η νσ η βν η µσ + η σβ η µν +4η ασ η β µ η νρ η βν η µρ + η ρβ η µν From his, if we don run ou of Greek leers, we can immediaely wrie he resul for eigh gammas: r γ α γ β γ µ γ ν γ ρ γ σ γ λ γ τ 4η αβ η µν η ρσ η µρ η νσ + η µσ η νρ 4η αµ η βν η ρσ η βρ η νσ + η βσ η νρ +4η αν η β µ η ρσ η βρ η µσ + η βσ η µρ 4η αρ η β µ η νσ η βν η µσ + η σβ η µν +4η ασ η β µ η νρ η βν η µρ + η ρβ η µν 9

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Dirac Trace Techniques

Dirac Trace Techniques Dirac Trace Techniques Consider a QED amplitude involving one incoming electron with momentum p and spin s, one outgoing electron with momentum p and spin s, and some photons. There may be several Feynman

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

ω = radians per sec, t = 3 sec

ω = radians per sec, t = 3 sec Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Section 9: Quantum Electrodynamics

Section 9: Quantum Electrodynamics Physics 8.33 Section 9: Quantum Electrodynamics May c W. Taylor 8.33 Section 9: QED / 6 9. Feynman rules for QED Field content: A µ(x) gauge field, ψ(x) Dirac spinor Action Z» S = d x ψ(iγ µ D µ m)ψ Z

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0) Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

F-TF Sum and Difference angle

F-TF Sum and Difference angle F-TF Sum and Difference angle formulas Alignments to Content Standards: F-TF.C.9 Task In this task, you will show how all of the sum and difference angle formulas can be derived from a single formula when

Διαβάστε περισσότερα

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook Βήμα 1: Step 1: Βρείτε το βιβλίο που θα θέλατε να αγοράσετε και πατήστε Add to Cart, για να το προσθέσετε στο καλάθι σας. Αυτόματα θα

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα