O(a 2 ) Corrections to the Propagator and Bilinears of Wilson / Clover Fermions
|
|
- Θαΐς Μπλέτσας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 O(a 2 Corrections to the ropagator and Bilinears of Wilson / Clover Fermions Martha Constantinou Haris anagopoulos Fotos Stylianou hysics Department, University of Cyprus In collaboration with members of the ETM Collaboration (V. Lubicz, V. Giménez, D. alao July 13, 2008
2 OUTLINE 1. Introduction Motivation - Necessity for off-shell improvement Existing wor - Complications with O(a 2 2. Description of the calculation: Wilson/clover/twisted mass fermions, Symanzi improved gluons Results 3. Fermion bilinears improvement The method reliminary results 4. Applications - Future wor
3 Introduction Motivation Necessity for off-shell improvement Space-time discretization leads to systematic errors in simulations Action improvement does not lead to off-shell improvement Improvement of operator matrix elements: minimum discretization errors ahead comparing with continuum results O(a 1 improvement: Automatic in many cases Symanzi s program: irrelevant operators in the action Twisted mass QCD: maximal twist
4 Introduction Existing wor (erturbative evaluation of fermion propagator, bilinears ΨΓΨ O(a 1 improvement only (1-loop: O(g0 2 arbitrary fermion mass (Aoi et al., Capitani et al. O(a 0 to 2-loops (Z Ψ, Z Γ : mass-independent scheme, m = 0 (Souroupathis - anagopoulos New complications with O(a 2 O(a 1 : No new types of IR divergences O(a 2 : Novel IR singularities Non-Lorentz invariant contributions, e.g., µ γµp3 µ p 2
5 Description of the calculation Clover fermions r: Wilson parameter f: flavor index c sw: free parameter S F = 1 X g 2 Tr ˆ1 Π µν(x + X X (4r + m ψ f (xψf(x x, µ, ν f x 1 X X» ψ f (x `r γ µ Uµ(xψf (x + µ + ψ f (x + µ `r + γ µ Uµ(x ψ f (x 2 f x, µ + i 4 c X X SW ψ f (xσ µν ˆFµν(xψ f (x f x, µ, ν We are interested in renormalization constants at the chiral limit Our calculations/results are identical also for the twisted mass action
6 Description of the calculation Clover fermions r: Wilson parameter f: flavor index c sw: free parameter S F = 1 X g 2 Tr ˆ1 Π µν(x + X X (4r + m ψ f (xψf(x x, µ, ν f x 1 X X» ψ f (x `r γ µ Uµ(xψf (x + µ + ψ f (x + µ `r + γ µ Uµ(x ψ f (x 2 f x, µ + i 4 c X X SW ψ f (xσ µν ˆFµν(xψ f (x f x, µ, ν We are interested in renormalization constants at the chiral limit Our calculations/results are identical also for the twisted mass action
7 Symanzi gluons " 2 X X S G = g 2 c 0 ReTr(1 U plaquette + c 1 ReTr(1 U rectangle plaquette rectangle # X X + c 2 ReTr(1 U chair + c 3 ReTr(1 U parallelogram chair parallelogram c 0 + 8c c 2 + 8c 3 = 1, c 2 = 0 Action c 0 c 1 c 3 laquette Symanzi TILW, βc 0 = TILW, βc 0 = TILW, βc 0 = TILW, βc 0 = TILW, βc 0 = TILW, βc 0 = Iwasai DBW
8 Calculation of Feynman diagrams 1 2 : gluon field : fermion field Technical rocedure Wic contraction of appropriate vertices Simplification of color dependence, Dirac matrices and tensors Exploitation of symmetries of the theory and of the diagrams
9 Isolation of the logarithmic and non-lorentz invariant terms: Subtractions among the propagators ( 1 q 2 = 1ˆq q 2 1ˆq 2 D µν (q = δµν n «ˆqν (1 λ4ˆqµ ˆq 2 (ˆq D µν δµν ˆqν o (q (1 λ4ˆqµ ˆq 2 (ˆq 2 2 ˆq 2 = 4 µ sin2 ( qµ 2 D µν (q : Symanzi propagator q 2 : denominator of fermion propagator All primitive divergent integrals expressed in terms of Wilson gluon propagator 1/ˆq 2
10 Isolation of the logarithmic and non-lorentz invariant terms: Subtractions among the propagators ( 1 q 2 = 1ˆq q 2 1ˆq 2 IR degree of divergence reduced by 2 D µν (q = δµν n «ˆqν (1 λ4ˆqµ ˆq 2 (ˆq D µν δµν ˆqν o (q (1 λ4ˆqµ ˆq 2 (ˆq 2 2 ˆq 2 = 4 µ sin2 ( qµ 2 D µν (q : Symanzi propagator q 2 : denominator of fermion propagator All primitive divergent integrals expressed in terms of Wilson gluon propagator 1/ˆq 2
11 Isolation of the logarithmic and non-lorentz invariant terms: Subtractions among the propagators iteratively ( 1 q 2 = 1ˆq q 2 1ˆq 2 = 1ˆq 2 + ˆq2 q 2 (ˆq (ˆq2 q 2 2 (ˆq 2 2 q 2 =... IR degree of divergence reduced by 2 D µν (q = δµν n «ˆqν (1 λ4ˆqµ ˆq 2 (ˆq D µν δµν ˆqν o (q (1 λ4ˆqµ ˆq 2 (ˆq 2 2 ˆq 2 = 4 µ sin2 ( qµ 2 D µν (q : Symanzi propagator q 2 : denominator of fermion propagator All primitive divergent integrals expressed in terms of Wilson gluon propagator 1/ˆq 2
12 Analytical evaluation of primitive divergent integrals: Non-integer dimensions, D 4 Ultraviolet divergences are isolated à la Zimmermann Z π d 4 1 Example : I 1 = π (2π 4 ˆ 2 + a p 2 neededto O(a 2! Required operations: Z π Z π d 4 (2π 4 = <µ d 4 (2π 4 + Z π π d 4 Z (2π 4 <µ d 4! (2π 4 Z d 4 Z (2π 4 d D (2π D 1 ˆ 2 = ˆ 2 1 «2 repeatedly {z } IR degree of divergence reduced by 2 Z d D Z <µ (2π D = d D Z < (2π D d D µ< < (2π D UV-finite integrands
13 Analytical evaluation of primitive divergent integrals: Non-integer dimensions, D 4 Ultraviolet divergences are isolated à la Zimmermann Z π d 4 1 Example : I 1 = π (2π 4 ˆ 2 + a p 2 neededto O(a 2! Required operations: Z π Z π d 4 (2π 4 = <µ d 4 (2π 4 + Z π π d 4 Z (2π 4 <µ d 4! (2π 4 Z d 4 Z (2π 4 d D (2π D 1 ˆ 2 = ˆ 2 1 «2 repeatedly {z } IR degree of divergence reduced by 2 Z d D Z <µ (2π D = d D Z < (2π D d D µ< < (2π D UV-finite integrands
14 Analytical evaluation of primitive divergent integrals: Non-integer dimensions, D 4 Ultraviolet divergences are isolated à la Zimmermann Z π d 4 1 Example : I 1 = π (2π 4 ˆ 2 + a p 2 neededto O(a 2! Required operations: Z π Z π d 4 (2π 4 = <µ d 4 (2π 4 + Z π π d 4 Z (2π 4 <µ d 4! (2π 4 Z d 4 Z (2π 4 d D (2π D 1 ˆ 2 = ˆ 2 1 «2 repeatedly {z } IR degree of divergence reduced by 2 Z d D Z <µ (2π D = d D Z < (2π D d D µ< < (2π D UV-finite integrands
15 Analytical evaluation of primitive divergent integrals: Non-integer dimensions, D 4 Ultraviolet divergences are isolated à la Zimmermann Z π d 4 1 Example : I 1 = π (2π 4 ˆ 2 + a p 2 neededto O(a 2! Required operations: Z π Z π d 4 (2π 4 = <µ d 4 (2π 4 + Z π π d 4 Z (2π 4 <µ d 4! (2π 4 Z d 4 Z (2π 4 d D (2π D 1 ˆ 2 = ˆ 2 1 «2 repeatedly {z } IR degree of divergence reduced by 2 Z d D Z <µ (2π D = d D Z < (2π D d D µ< < (2π D UV-finite integrands
16 Most divergent piece: Z <µ d 4 1 (2π 4 2 ( + a p 2 = π 2 ln( a2 p 2 «µ 2 D-dimensional lattice integrals with explicit (polynomial external momentum dependence: Bessel functions D-dimensional UV-convergent integrals: evaluated with continuum methods (Chetyrin A host of 4-dimensional finite lattice integrals: numerical integration Z π π d 4 1 (2π 4 ˆ 2 + a p 2 = ln(a2p2 16π 2 + a (3 p 2 + a 2 µ p4 µ 384π 2 p 2 + O(a4 p 4 (Evaluated at 2 further orders in a, beyond the order at which an IR divergence initially sets in D 6
17 Convergent terms: Taylor expansion in the external momentum p and the lattice spacing up to O(a 3 p 3 Numerical integration over the internal momentum lattices with different size L 4 : L sets of the Symanzi parameters (actions: laquette, tree-level improved Symanzi, TILW, Iwasai, DBW2 Extrapolation of results to L combination of 51 functional forms of the type X e i,j L i lnl j i,j accurate estimation of systematic errors
18 Results C F = (N 2 1/(2N S 1 (p = i p + a 2 p2 i a2 6 p 3 p 3 = µ γµp3 µ λ = 1 (0 : Feynman (Landau gauge i p g2 C h F 16 π 2 ε (0, (6 λ + ε (0,2 c SW + ε (0,3 c 2 SW + λ ln(a2 p 2 i a p 2 g2 C F hε (1,1 16 π (2 λ + ε (1,2 c SW + ε (1,3 c 2 SW λ 3 c SW ln(a 2 p 2 i 2 i a 2 p 3 g2 C h F 16 π 2 ε (2, (9 λ + ε (2,2 c SW + ε (2,3 c 2 SW + ε (2,4 1 6 λ ln(a 2 p 2 i i a 2 p 2 p g2 C F 16 π 2 h ε (2, (9 λ + ε (2,6 c SW + ε (2,7 c 2 SW + ε (2, λ + c SW + c 2 SW ln(a 2 p 2 i i a 2 µ p p4 µ p 2 g 2 C h F 16 π 2 ε (2,9 5 i 48 λ
19 Results C F = (N 2 1/(2N S 1 (p = i p + a 2 p2 i a2 6 p 3 p 3 = µ γµp3 µ λ = 1 (0 : Feynman (Landau gauge i p g2 C h F 16 π 2 ε (0, (6 λ + ε (0,2 c SW + ε (0,3 c 2 SW + λ ln(a2 p 2 i a p 2 g2 C F hε (1,1 16 π (2 λ + ε (1,2 c SW + ε (1,3 c 2 SW λ 3 c SW ln(a 2 p 2 i 2 i a 2 p 3 g2 C h F 16 π 2 ε (2, (9 λ + ε (2,2 c SW + ε (2,3 c 2 SW + ε (2,4 1 6 λ ln(a 2 p 2 i i a 2 p 2 p g2 C F 16 π 2 h ε (2, (9 λ + ε (2,6 c SW + ε (2,7 c 2 SW + ε (2, λ + c SW + c 2 SW ln(a 2 p 2 i i a 2 µ p p4 µ p 2 g 2 C h F 16 π 2 ε (2,9 5 i 48 λ
20 Action ε (0,1 ε (0,2 ε (0,3 laquette ( ( (7 Symanzi ( ( (2 TILW, βc 0 = ( ( (2 TILW, βc 0 = ( ( (1 TILW, βc 0 = ( ( (5 TILW, βc 0 = ( ( (2 TILW, βc 0 = ( ( (3 TILW, βc 0 = ( ( (3 Iwasai ( ( (3 DBW ( ( (4 Action ε (1,1 ε (1,2 ε (1,3 laquette ( ( (4 Symanzi ( ( (1 TILW, βc 0 = ( ( (1 TILW, βc 0 = ( ( (1 TILW, βc 0 = ( ( (3 TILW, βc 0 = ( ( (3 TILW, βc 0 = ( ( (2 TILW, βc 0 = ( ( (3 Iwasai ( ( (8 DBW ( ( (1
21 Action ε (2,1 ε (2,2 ε (2,3 ε (2,4 ε (2,5 laquette ( ( (3 101/ (1 Symanzi ( ( ( ( (5 TILW ( ( ( ( ( (7 TILW ( ( ( ( ( (6 TILW ( ( ( ( ( (8 TILW ( ( ( ( ( (2 TILW ( ( ( ( ( (1 TILW ( ( ( ( ( (1 Iwasai ( ( ( ( (1 DBW ( ( ( ( (5 Action ε (2,6 ε (2,7 ε (2,8 ε (2,9 laquette ( (7 59/240-3/80 Symanzi ( ( ( (1 TILW, βc 0 = ( ( ( (1 TILW, βc 0 = ( ( ( (1 TILW, βc 0 = ( ( ( (1 TILW, βc 0 = ( ( ( (1 TILW, βc 0 = ( ( ( (1 TILW, βc 0 = ( ( ( (1 Iwasai ( ( ( (1 DBW ( ( ( (1
22 Fermion bilinears improvement Fermion bilinears improvement The method Scalar, seudoscalar, Vector, Axial, Tensor O Γ = ΨΓΨ Operator Γ Scalar ˆ1 seudoscalar γ 5 Vector γ µ Axial γ µ γ 5 Tensor σ µν γ 5
23 Fermion bilinears improvement O(a 2 improvement: O imp Γ = ΨΓΨ + a! 0 1 nx Γ,1 i Ψ Q i Γ,1 Ψ Xn + a i Ψ Γ,2 Q i Γ,2 Ψ A i=1 i=1 Q i Γ,1 (Qi Γ,2 : same symmetries as Γ, dimension 1 (2 higher include covariant derivatives Ψ ΓΨ: up to O(a 2 ΨQ i Γ,1 Ψ: up to O(a1 ΨQ i Γ,2 Ψ: up to O(a0 i Γ,1, i Γ,2 appropriately chosen to cancel all O(a2 terms
24 Fermion bilinears improvement O(a 2 improvement: O imp Γ = ΨΓΨ + a! 0 1 nx Γ,1 i Ψ Q i Γ,1 Ψ Xn + a i Ψ Γ,2 Q i Γ,2 Ψ A i=1 i=1 "local" operator Q i Γ,1 (Qi Γ,2 : same symmetries as Γ, dimension 1 (2 higher include covariant derivatives Ψ ΓΨ: up to O(a 2 ΨQ i Γ,1 Ψ: up to O(a1 ΨQ i Γ,2 Ψ: up to O(a0 i Γ,1, i Γ,2 appropriately chosen to cancel all O(a2 terms
25 Fermion bilinears improvement O(a 2 improvement: O imp Γ = ΨΓΨ + a! 0 1 nx Γ,1 i Ψ Q i Γ,1 Ψ Xn + a i Ψ Γ,2 Q i Γ,2 Ψ A i=1 i=1 "local" operator extended operators Q i Γ,1 (Qi Γ,2 : same symmetries as Γ, dimension 1 (2 higher include covariant derivatives Ψ ΓΨ: up to O(a 2 ΨQ i Γ,1 Ψ: up to O(a1 ΨQ i Γ,2 Ψ: up to O(a0 i Γ,1, i Γ,2 appropriately chosen to cancel all O(a2 terms
26 Fermion bilinears improvement erturbative calculation of local operators 1 2 : gluon field : fermion field : operator insertion erturbative calculation of extended operators Additional diagrams: 6 7 8
27 Fermion bilinears improvement erturbative calculation of local operators 1 2 : gluon field : fermion field : operator insertion erturbative calculation of extended operators Additional diagrams: 6 7 8
28 Fermion bilinears improvement Scalar: Tr[ Ψˆ1Ψ ](p = g2 C F 4 π 2 h + a 2 p 2 g2 C F 4 π 2 h ε (0,1 S ε (2,1 S reliminary results (8 λ + ε (0,2 S (5 λ + ε (2,2 S + a 2 µ p4 2 µ g CF h p 2 4 π 2 ε (2,4 1 i S 8 λ seudoscalar: Tr[γ 5 Ψγ 5 Ψ ](p = g2 C F 4 π 2 h + a 2 p 2 g2 C F 4 π 2 h ε (2,1 ε (0,1 + a 2 µ p4 2 µ g CF h p 2 4 π 2 ε (2,4 1 i 8 λ c SW + ε (0,3 c 2 S SW ln(a2 p 2 i (3 + λ c SW + ε (2,3 c 2 S SW λ + 3 «2 c SW ln(a 2 p 2 i C F = (N 2 1/(2N λ = 1 (0 : Feynman (Landau gauge (1 λ + ε (0,2 c 2 SW ln(a2 p 2 i (3 + λ (5 λ + ε (2,2 c 2 SW «4 λ ln(a 2 p 2 i
29 Fermion bilinears improvement Action ε (0,1 S ε (0,2 S ε (0,3 S laquette ( ( (6 Symanzi ( ( (5 TILW, βc 0 = ( ( (2 TILW, βc 0 = ( ( (3 TILW, βc 0 = ( ( (4 TILW, βc 0 = ( ( (1 TILW, βc 0 = ( ( (4 TILW, βc 0 = ( ( (3 Iwasai ( ( (4 DBW ( ( (4 Action ε (2,1 S ε (2,2 S ε (2,3 S ε (2,4 S laquette ( ( ( (1 Symanzi ( ( ( (1 TILW, βc 0 = ( ( ( (1 TILW, βc 0 = ( ( ( (1 TILW, βc 0 = ( ( ( (1 TILW, βc 0 = ( ( ( (1 TILW, βc 0 = ( ( ( (1 TILW, βc 0 = ( ( ( (1 Iwasai ( ( ( (1 DBW ( ( ( (1
30 Fermion bilinears improvement Action ε (0,1 ε (0,2 ε (2,1 ε (2,2 ε (2,3 laquette ( ( ( ( (1 Symanzi ( ( ( ( (1 TILW ( ( ( ( ( (1 TILW ( ( ( ( ( (1 TILW ( ( ( ( ( (1 TILW ( ( ( ( ( (1 TILW ( ( ( ( ( (1 TILW ( ( ( ( ( (1 Iwasai ( ( ( ( (1 DBW ( ( ( ( (1
31 Fermion bilinears improvement Vector: pµ pν Tr[γ ν Ψγ µψ ](p = p 2 + δ µν g 2 C F 4 π 2 h ε (0,1 V + a 2 p 2 µ δµν g 2 C F 4 π 2 h 2 g CF h i 4 π 2 2 λ (4 λ + ε (0,2 V ε (2,1 V λ + ε(2,2 V + a 2 ρ δ p4 2 ρ g CF h µν p 2 4 π 2 ε (2,5 + 5 i V 48 λ + a 2 pµ p3 ν p 2 + a 2 p3 µ pν p 2 2 g CF h 4 π 2 + a 2 p 2 δ µν g 2 C F 4 π 2 h + a 2 p µ p ν g 2 C F 4 π 2 h ε (2,7 + 1 i V 12 λ + + ε (2,9 V c SW + ε (0,3 c 2 V SW λ ln(a2 p 2 i c SW + ε (2,3 c 2 V SW + ε(2,4 ln(a 2 p 2 i V 2 g CF h 4 π 2 + a 2 pµ pν ρ p4 2 ρ g CF h p 2 4 π (1 λ + ε (2,10 V ε (2, V 8 λ 5 12 c SW c2 SW ε (2,13 V (1 λ + ε (2,14 V ε (2, V 4 λ c SW c2 SW ε (2,6 + 1 i V 3 λ ε (2,8 V c SW + ε (2,11 c 2 V SW «ln(a 2 p 2 i c SW + ε (2,15 c 2 V SW «ln(a 2 p 2 i 5 24 λ i
32 Fermion bilinears improvement Axial: Tr[γ 5 γ ν Ψγ 5 pµ pν γ µψ ](p = p 2 δ µν g 2 C F 4 π 2 h ε (0,1 A a 2 p 2 µ δµν g 2 C F 4 π 2 h 2 g CF h i 4 π 2 2 λ (4 λ + ε (0,2 A ε (2,1 A λ + ε(2,2 A a 2 ρ δ p4 2 ρ g CF h µν p 2 4 π 2 ε (2,5 + 5 i A 48 λ a 2 pµ p3 ν p 2 a 2 p3 µ pν p 2 2 g CF h 4 π 2 a 2 p 2 δ µν g 2 C F 4 π 2 h a 2 p µ p ν g 2 C F 4 π 2 h ε (2,7 + 1 i A 12 λ + + ε (2,9 A c SW + ε (0,3 c 2 A SW λ ln(a2 p 2 i c SW + ε (2,3 c 2 A SW + ε(2,4 ln(a 2 p 2 i A 2 g CF h 4 π 2 a 2 pµ pν ρ p4 2 ρ g CF h p 2 4 π (1 λ + ε (2,10 A ε (2, A 8 λ c SW 1 4 c2 SW ε (2,13 A (1 λ + ε (2,14 A ε (2,16 3 A 4 λ 5 6 c SW 1 2 c2 SW ε (2,6 + 1 i A 3 λ ε (2,8 5 i A 24 λ c SW + ε (2,11 c 2 A SW «ln(a 2 p 2 i c SW + ε (2,15 c 2 A SW «ln(a 2 p 2 i
33 Fermion bilinears improvement Tensor: Tr[γ 5 σ ρτ Ψγ 5 σ µνψ ](p = {δ µτ δ νρ} a g 2 C F 4 π 2 h ε (0,1 T (2 λ + ε (0,2 c T SW + ε (0,3 c 2 T SW + (1 λ ln(a2 p 2 i + a 2 p 2 g 2 C h F µ {δµτ δνρ}a 4 π 2 ε (2, (2λ (1 c T SW (1 c 2 i SW + a 2 σ {δ µτ δ p4 2 σ g CF h νρ} a p 2 4 π 2 + a 2 p3 µ {δντ pρ}a 2 g CF h p 2 4 π 2 + a 2 p 2 {δ µτ δ νρ} a g 2 C F 4 π 2 h + a 2 p µ {δ ντ p ρ} a g 2 C F 4 π 2 h + ε (2,2 + 1 i T 3 λ + a 2 pµ {δντ p3 ρ }a 2 g CF h p 2 4 π 2 ε (2,4 + 1 i T 2 λ + a 2 p2 µ pν {δµτ pρ}a 2 g CF h p 2 4 π 2 ε (2,6 T (1 λ + ε (2,7 T ε (2,9 1 T 2 c SW ε (2,10 T «ln(a 2 p 2 i (2 λ + ε (2,11 T + (2 λ c SW ln(a 2 p 2 i c SW + ε (2,8 c 2 T SW ε (2,3 i T ε (2,5 5 i T 24 λ c SW + ε (2,12 c 2 T SW
34 Applications Applications Construction of bilinears with O(a 3 suppressed finite lattice effects O S imp = ΨΨ + a S,1 Ψ D Ψ O imp = Ψγ5 Ψ imp Oµ V = ΨγµΨ + a V,1 ΨD µψ O A µ imp = Ψγµγ 5 Ψ + a i A,1 Ψσµλ γ 5 D λψ imp Oµν T = Ψσµνγ 5 Ψ + a i T,1 Ψ γ µd ν γ νd µ γ 5 Ψ
35 Applications Applications Construction of bilinears with O(a 3 suppressed finite lattice effects O S imp = ΨΨ + a S,1 Ψ D Ψ + a 2 i=1 O imp n! X = Ψγ5 Ψ + a 2,2 i Ψ Q i,2 Ψ! nx S,2 i Ψ Q i S,2 Ψ i=1 imp Oµ V = ΨγµΨ + a V,1 ΨD µψ n! X + a 2 V,2 i Ψ Q i V,2 Ψ i=1 imp Oµ A = Ψγµγ 5 Ψ + a i A,1 Ψσµλ γ 5 D n! X λψ + a 2 A,2 i Ψ Q i A,2 Ψ i=1 imp Oµν T = Ψσµνγ 5 Ψ + a i T,1 Ψ γ µd ν γ n! X νd µ γ 5 Ψ + a 2 T,2 i Ψ Q i T,2 Ψ i=1
36 Future wor Future wor O(a 2 computation of higher dimension operators Ψ(xΓD µψ(x O(a 2 computation of 4-fermi operators Ψ(xΓΨ(x Ψ(xΓ Ψ(x
37 THANK YOU
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Symmetric Stress-Energy Tensor
Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor
SPONTANEOUS GENERATION OF GEOMETRY IN 4D
SPONTANEOUS GENERATION OF GEOMETRY IN 4D Dani Puigdomènch Dual year Russia-Spain: Particle Physics, Nuclear Physics and Astroparticle Physics 10/11/11 Based on arxiv: 1004.3664 and wor on progress. by
Revisiting the S-matrix approach to the open superstring low energy eective lagrangian
Revisiting the S-matrix approach to the open superstring low energy eective lagrangian IX Simposio Latino Americano de Altas Energías Memorial da América Latina, São Paulo. Diciembre de 2012. L. A. Barreiro
UV fixed-point structure of the 3d Thirring model
UV fixed-point structure of the 3d Thirring model arxiv:1006.3747 [hep-th] (PRD accepted) Lukas Janssen in collaboration with Holger Gies Friedrich-Schiller-Universität Jena Theoretisch-Physikalisches
3+1 Splitting of the Generalized Harmonic Equations
3+1 Splitting of the Generalized Harmonic Equations David Brown North Carolina State University EGM June 2011 Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Moments of Structure Functions in Full QCD
Moments of Structure Functions in Full QCD John W. Negele Lattice 2000 Collaborators MIT Dmitri Dolgov Stefano Capitani Richard Brower Andrew Pochinsky Jefferson Lab Robert Edwards Wuppertal SESAM Klaus
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
8.324 Relativistic Quantum Field Theory II
8.324 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 200 Lecture 2 3: GENERAL ASPECTS OF QUANTUM ELECTRODYNAMICS 3.: RENORMALIZED LAGRANGIAN Consider the Lagrangian
General equilibrium second-order hydrodynamic coefficients for stress-energy tensor and axial current
General equilibrium second-order hydrodynamic coefficients for stress-energy tensor and axial current Matteo Buzzegoli Dipartimento di Fisica e Astronomia & INFN, Firenze March 29 217 Based on a work in
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
A NLO Calculation of pqcd: Total Cross Section of P P W + + X. C. P. Yuan. Michigan State University CTEQ Summer School, June 2002
A NLO Calculation of pqcd: Total Cross Section of P P W X C. P. Yuan Michigan State University CTEQ Summer School, June Outline. Parton Model Born Cross Section. Factorization Theorem How to organize a
Non-Gaussianity from Lifshitz Scalar
COSMO/CosPA 200 September 27, 200 Non-Gaussianity from Lifshitz Scalar Takeshi Kobayashi (Tokyo U.) based on: arxiv:008.406 with Keisuke Izumi, Shinji Mukohyama Lifshitz scalars with z=3 obtain super-horizon,
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Section 9: Quantum Electrodynamics
Physics 8.33 Section 9: Quantum Electrodynamics May c W. Taylor 8.33 Section 9: QED / 6 9. Feynman rules for QED Field content: A µ(x) gauge field, ψ(x) Dirac spinor Action Z» S = d x ψ(iγ µ D µ m)ψ Z
Discretization of Generalized Convection-Diffusion
Discretization of Generalized Convection-Diffusion H. Heumann R. Hiptmair Seminar für Angewandte Mathematik ETH Zürich Colloque Numérique Suisse / Schweizer Numerik Kolloquium 8 Generalized Convection-Diffusion
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Neutrino emissivities in quark matter
Neutrino emissivities in quark matter Jens Berdermann (University Rostock) David Blaschke (University Wrocław) WORKSHOP III OF THE VI,,DENSE HADRONIC MATTER & QCD PHASE TRANSITION 16.10.2006 Rathen Neutrino
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Divergence for log concave functions
Divergence or log concave unctions Umut Caglar The Euler International Mathematical Institute June 22nd, 2013 Joint work with C. Schütt and E. Werner Outline 1 Introduction 2 Main Theorem 3 -divergence
Wavelet based matrix compression for boundary integral equations on complex geometries
1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,
ERG for a Yukawa Theory in 3 Dimensions
ERG for a Yukawa Theory in 3 Dimensions Hidenori SONODA Physics Department, Kobe University, Japan 14 September 2010 at ERG2010 Abstract We consider a theory of N Majorana fermions and a real scalar in
= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.
PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D
Hartree-Fock Theory. Solving electronic structure problem on computers
Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Non-Abelian Gauge Fields
Chapter 5 Non-Abelian Gauge Fields The simplest example starts with two Fermions Dirac particles) ψ 1, ψ 2, degenerate in mass, and hence satisfying in the absence of interactions γ 1 i + m)ψ 1 = 0, γ
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Particle Physics Formula Sheet
Particle Physics Formula Sheet Special Relativity Spacetime Coordinates: x µ = (c t, x) x µ = (c t, x) x = (x, x, x ) = (x, y, z) 4-Momentum: p µ = (E/c, p) p µ = (E/c, p) p = (p, p, p ) = (p x, p y, p
PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM
PHASE TRANSITIONS IN THROUGH THE SCHWINGER DYSON FORMALISM Spyridon Argyropoulos University of Athens Physics Department Division of Nuclear Physics and Elementary Particles Supervisor: C.N. Ktorides Athens
Kaon Weak Matrix Elements in 2+1 Flavor DWF QCD
Kaon Weak Matrix Element in 2 Flavor DWF QCD Renormalization an Phyical Vale Sh Li (for the RBC an UKQCD Collaboration) The XXV International Sympoim on Lattice Fiel Theory Regenbrg 7/27 Sh Li (for RBC
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
Relativistic particle dynamics and deformed symmetry
Relativistic particle dynamics and deformed Poincare symmetry Department for Theoretical Physics, Ivan Franko Lviv National University XXXIII Max Born Symposium, Wroclaw Outline Lorentz-covariant deformed
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES
GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES RICHARD J. MATHAR Abstract. The manuscript provides tables of abscissae and weights for Gauss- Laguerre integration on 64, 96 and 128
A Lambda Model Characterizing Computational Behaviours of Terms
A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities
Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories
Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories Hiroshi Kunitomo YITP 215/3/5 @Nara Women s U. Nara arxiv:1412.5281, 153.xxxx Y TP YUKAWA INSTITUTE FOR THEORETICAL
Eulerian Simulation of Large Deformations
Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications
Lectures on Quantum sine-gordon Models
Lectures on Quantum sine-gordon Models Juan Mateos Guilarte 1,2 1 Departamento de Física Fundamental (Universidad de Salamanca) 2 IUFFyM (Universidad de Salamanca) Universidade Federal de Matto Grosso
Quantum gravity with torsion and non-metricity
Quantum gravity with torsion and non-metricity Carlo Pagani work in collaboration with R. Percacci arxiv: 1506.02882. Asymptotic Safety seminar,. Carlo Pagani 1 Outline Motivations. Definition of torsion
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
The static quark potential to three loops in perturbation theory
The static quark potential to three loops in perturbation theory Alexander V. Smirnov a, Vladimir A. Smirnov b, Matthias Steinhauser c a Scientific Research Computing Center of Moscow State University,
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 740Ä744 ˆ Œˆ ƒ Š Œ ˆ Œˆ ˆŸ ˆ ˆ ˆŸ ˆˆ ƒ ˆ Šˆ ˆ.. Œμ Ìμ ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ±μ³ ² ± ÒÌ ³μ ʲÖÌ Ð É Ò³ ² ³ в ËËμ Î É μ - ³ μ É Ò Ë ³ μ Ò ³ Ò Å ²μ ÉÉ. Ì
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)
EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
A Hierarchy of Theta Bodies for Polynomial Systems
A Hierarchy of Theta Bodies for Polynomial Systems Rekha Thomas, U Washington, Seattle Joint work with João Gouveia (U Washington) Monique Laurent (CWI) Pablo Parrilo (MIT) The Theta Body of a Graph G
ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΛΥΣΕΩΝ ΚΑΝΟΝΙΣΤΙΚΩΝ ΙΑΤΑΞΕΩΝ ΚΑΙ
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Ασθενής Αλληλεπίδραση και V-A ρεύµατα πιθανότητας. Σπυρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική 1
Ασθενής Αλληλεπίδραση και V-A ρεύµατα πιθανότητας Σπυρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική 1 Parity Εφαρµόζοντας τον δύο φορές : άρα Αλλά θα πρέπει να διατηρείται και η κανονικοποίηση της κυµατοσυνάρτησης
AdS black disk model for small-x DIS
AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March
1 Poincare group and spinors
Introduction on Supersymmetry Di Xu 1 Poincare group and spinors A Poincare transformation P is a proper Lorentz transformation Λ followed by a translation a. The generators of the Poincare group are the
D-term Dynamical SUSY Breaking
D-term Dynamical SUSY Breaking Nobuhito Maru (Keio University) with H. Itoyama (Osaka City University) arxiv: 1109.76 [hep-ph] 7/6/01 @Y ITP workshop on Field Theory & String Theory Introduction SUPERSYMMETRY
The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia
http://arxiv.org/pd/0705.464 The Standard Mode Antonio Pich IFIC, CSIC Univ. Vaencia Gauge Invariance: QED, QCD Eectroweak Uniication: SU() Symmetry Breaking: Higgs Mechanism Eectroweak Phenomenoogy Favour
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Dan Censor Ben Gurion University of the Negev Department of Electrical and Computer Engineering Beer Sheva,
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied
Dark matter from Dark Energy-Baryonic Matter Couplings
Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010
GREECE BULGARIA 6 th JOINT MONITORING
GREECE BULGARIA 6 th JOINT MONITORING COMMITTEE BANSKO 26-5-2015 «GREECE BULGARIA» Timeline 02 Future actions of the new GR-BG 20 Programme June 2015: Re - submission of the modified d Programme according
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Higher spin gauge theories and their CFT duals
Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Biodiesel quality and EN 14214:2012
3η Ενότητα: «Αγορά Βιοκαυσίμων στην Ελλάδα: Τάσεις και Προοπτικές» Biodiesel quality and EN 14214:2012 Dr. Hendrik Stein Pilot Plant Manager, ASG Analytik Content Introduction Development of the Biodiesel
The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality
The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
News from NRQCD. Matthias Steinhauser TTP Karlsruhe Dresden, July 3,
News from NRQCD Matthias Steinhauser TTP Karlsruhe Dresden, July 3, 2014 KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu Outline Introduction
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
Riemannian Curvature
Riemannian Curvature February 6, 013 We now generalize our computation of curvature to arbitrary spaces. 1 Parallel transport around a small closed loop We compute the change in a vector, w, which we parallel
Cosmological Space-Times
Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"
The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density
The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density 5..29 Radek Wojtak Nicolaus Copernicus Astronomical Center collaboration: Ewa Łokas, Gary Mamon, Stefan
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Constitutive Relations in Chiral Media
Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization
Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories
Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories Hiroshi Kunitomo (YITP) 215/5/11 SFT215@Sichuan U. arxiv:1412.5281, 15x.xxxxx Y TP YUKAWA INSTITUTE FOR THEORETICAL
New bounds for spherical two-distance sets and equiangular lines
New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4
Homework 4 Solutions 4.1 - Weyl or Chiral representation for γ-matrices 4.1.1: Anti-commutation relations We can write out the γ µ matrices as where ( ) 0 σ γ µ µ = σ µ 0 σ µ = (1, σ), σ µ = (1 2, σ) The
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Thermodynamics of the motility-induced phase separation
1/9 Thermodynamics of the motility-induced phase separation Alex Solon (MIT), Joakim Stenhammar (Lund U), Mike Cates (Cambridge U), Julien Tailleur (Paris Diderot U) July 21st 2016 STATPHYS Lyon Active