ΠΛΗ111. Ανοιξη Μάθηµα 8 ο. Αναζήτηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
|
|
- Δάφνη Αντωνοπούλου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 8 ο Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
2 Αναζήτηση Αναζήτηση σε ιατεταγµένο Πίνακα υαδική Αναζήτηση Κατακερµατισµός Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 2
3 Αναζήτηση σε ιατεταγµένο Πίνακα Θεωρούµε πίνακα στοιχείων σε αύξουσα διάταξη Αναζητούµε συγκεκριµένο στοιχείο στον πίνακα Γραµµική αναζήτηση Εξετάζουµε τα στοιχεία ένα ένα ξεκινώντας από το πρώτο Σταµατούµε µόλις βούµε το ζητούµενο ή µεγαλύτερό του Κόστος: περίπου n/2 συγκρίσεις Επιτυχηµένη αναζήτηση: ( n)/n = n(n+1)/(2n) = (n+1)/2 Αποτυχηµένη αναζήτηση: ( n+1)/(n+1) = (n+2)/2 σαν επιτυχηµένη αναζήτηση σε πίνακα µεγέθους n+1 εν αξιοποιούµε πλήρως την αύξουσα διάταξη των στοιχείων Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 3
4 υαδική Αναζήτηση Θεωρούµε πίνακα στοιχείων σε αύξουσα διάταξη Αναζητούµε συγκεκριµένο στοιχείο στον πίνακα υαδική αναζήτηση Συγκρίνουµε το ζητούµενο µε το µεσαίο στοιχείο του πίνακα Αν είναι ίσα, η αναζήτηση τερµατίζει επιτυχώς Αν το µεσαίο µεγαλύτερο του ζητούµενου, η αναζήτηση συνεχίζεται στο πρώτο µισό του πίνακα Αν το µεσαίο µικρότερο του ζητούµενου, η αναζήτηση συνεχίζεται στο δεύτερο µισό του πίνακα Σε κάθε σύκριση, το εναποµένον µέγεθος του πίνακα µισό Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 4
5 Παράδειγµα υαδικής Αναζήτησης Υπάρχει το στοιχείο 17 στον πίνακα; 1. Aρχική αναζήτηση στο [0..7] 2. Το µεσαίο στη θέση (0+7)/2=3 έχει τιµή a[3]=5<17 3. Επόµενη αναζήτηση στο διάστηµα [4..7] 4. Το µεσαίο στη θέση (4+7)/2=5 έχει τιµή a[5]=18>17 5. Επόµενη αναζήτηση στο διάστηµα a[4..4] 6. Το µεσαίο στη θέση (4+4)/2=4 έχει τιµή a[4]=17 7. Επιστρέφουµε τη θέση Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 5
6 Αναδροµική υαδική Αναζήτηση int binsearch(int a[], int key, int low, int high) { int mid; if (low > high) return (-1); mid = (low + high)/2; if (key == a[mid]) /* found */ return (mid); if (key < a[mid]) /* lower half */ return binsearch(a, key, low, mid-1); else /* upper half */ return binsearch(a, key, mid+1, high); Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 6
7 Επαναληπτική υαδική Αναζήτηση int binsearch(int a[], int key, int n) { int mid, low, high; low = 0; high = n-1; while (low <= high) { mid = (low + high)/2; if (key == a[mid]) /* found */ return (mid); if (key < a[mid]) /* lower half */ high = mid 1; else /* upper half */ low = mid + 1; return (-1); Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 7
8 Ανάλυση υαδικής Αναζήτησης Αναλύουµε πολυπλοκότητα χειρότερης περίπτωσης Υπολογίζουµε το πλήθος των συγκρίσεων σε αποτυχηµένη αναζήτηση Θεωρούµε αρχικό διάστηµα µεγέθους 2 n -1 Αποτυχηµένη αναζήτηση οδηγεί σε διάστηµα µεγέθους 2 n-1-1 T(2 n -1) = T(2 n-1-1) + 1, n>1 T(1) = 1 Τ(2 n -1) = T(2 n-1-1) + 1 = T(2 n-2-1) + 2 = T(0) + n = n Άρα T(n) = log 2 (n+1) = Ο(log 2 n) Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 8
9 Κατακερµατισµός (Hashing) Μέθοδος αποθήκευσης και αναζήτησης σε πίνακα Πίνακας κατακερµατισµού Aποθηκεύει κλειδιά Συνάρτηση κατακερµατισµού Mετατρέπει κάθε κλειδί σε θέση του πίνακα κατακερµατισµού Τέλεια όταν µετατρέπει κάθε κλειδί σε διαφορετική θέση Πρόβληµα Πως επιλέγουµε τη σωστή συνάρτηση κατακερµατισµού Τι γίνεται όταν πολλαπλά κλειδιά αντιστοιχούν στη ίδια θέση (collision resolution) key data h(key) hash table Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 9
10 Παράδειγµα Κατακερµατισµού #define TABLE_SIZE 15 #define h(s) ((s[0] + s[1]) % TABLE_SIZE) typedef struct node { char *key; int data; node_t; node_t hashtable[table_size]; void install(char *key, int data) { node_t *p = &hashtable[h(key)] if (p->key) fprintf(stderr, collision ); else { p->key = key; p->data = data; Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 10
11 Συνάρτηση Κατακερµατισµού Μετατρέπει το κλειδί σε ακέραιο [0,Μ-1], όπου Μ το µέγεθος του πίνακα κατακερµατισµού Μετατροπή κλειδιού σε ακέραιο Έστω αλφάβητο µε 32 χαρακτήρες A, B, C,, Z Έστω ότι ο i-στός χαρακτήρας αναπαρίσταται µε δυαδικό i Μετατρέπουµε τη συµβολοσειρά-κλειδί στον αντίστοιχο δυαδικό π.χ. Α Κ Ε Υ γίνεται Εναλλακτικά χρησιµοποιούµε το σχήµα Horner π.χ. Α Κ Ε Υ γίνεται 1* * * *32 0 = (((1* )*32)+5)*32+25 = Μετατροπή ακεραίου σε θέση πίνακα: π.χ. h(k)=k mod M Προτιµούµε Μ πρώτο αριθµό για να αξιοποιούµε όλους τους χαρακτήρες του κλειδιού Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 11
12 Γραµµικός Κατακερµατισµός (Linear Probing) Εισαγωγή στοιχείων σε απλό πίνακα κατακερµατισµού Αν µια θέση του πίνακα είναι κατειλληµένη αναζητούµε κενή θέση στις υπόλοιπες του πίνακα Προσαυξάνουµε την τρέχουσα θέση κατά µία σταθερά i, και εξετάζουµε διαδοχικά τις θέσεις h(key), h(key)+i, h(key)+2i void install(char *key, int data) { int p = h(key); while (hashtable[p].key) p = (p + 1) % M; /* i = 1 */ hashtable[p].key = key; hashtable[p].data = data; Τί γίνεται στην περίπτωση που ο πίνακας είναι γεµάτος ; Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 12
13 Αναζήτηση µε Γραµµικό Κατακερµατισµό int find(char *key) { int try, h; try = h = hash(key); do { if (!hashtable[try].key) return (-1); /* not found */ else if (!strcmp(hashtable[try].key, key)) return (try); /* found */ try = (try + 1) mod M; while (try!= h); return (-2); /* not found and hash table full */ Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 13
14 Αλυσιδωτός Κατακερµατισµός (Separate Chaining) Κάθε θέση του πίνακα είχνει σε λίστα µε όλα τα αποθηκευµένα στοιχεία της θέση αυτής Κόστος αναζήτησης Ν/Μ, Ν το πλήθος των αποθηκευµένων κλειδιών typedef struct node { char *key; int data; struct node *next; node_t, *nodeptr_t; node_t hashtable[table_size]; κεφαλή λίστας void insert(char *key, int data) { nodeptr_t *p; for (p = &hashtable[h(key)]; *p; p = &((*p)->next)) if (!strcmp((*p)->key, key)) return; /* key found in hash table */ *p = (nodeptr_t) malloc(sizeof(node_t)); (*p)->data = data; (*p)->key = key; (*p)->next = NULL; Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 14
ΠΛΗ111. Ανοιξη Μάθηµα 5 ο. Ουρά. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ οµηµένος Προγραµµατισµός Ανοιξη 5 Μάθηµα 5 ο Ουρά Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ανασκόπηση Αφηρηµένος Τύπος εδοµένων Ουρά Υλοποίηση µε Κυκλικό Πίνακα Υλοποίηση
Διαβάστε περισσότεραΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο
Διαβάστε περισσότεραΠΛΗ111. Ανοιξη 2005. Μάθηµα 3 ο. Συνδεδεµένες Λίστες. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 3 ο Συνδεδεµένες Λίστες Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ανασκόπηση ΟΑΤ λίστα Ακολουθιακή λίστα Συνδεδεµένη λίστα
Διαβάστε περισσότεραΔιάλεξη 21η: Απλά Συνδεδεμένες Λίστες
Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Πρατικάκης (CSD) Απλές Λίστες CS100, 2015-2016 1 / 10 Δομές δεδομένων Ορισμός:
Διαβάστε περισσότεραΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 10 ο Γράφοι Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Γράφοι Ορισµός Αφηρηµένος τύπος δεδοµένων Υλοποίηση Αναζήτηση έντρο
Διαβάστε περισσότεραΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 9 ο Ταξινόµηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ταξινόµηση Εισαγωγή Selection sort Insertion sort Bubble sort
Διαβάστε περισσότεραΔομημένος Προγραμματισμός (ΤΛ1006)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης Σχολή Εφαρμοσμένων Επιστημών Τμήμα Ηλεκτρονικών Μηχανικών Τομέας Αυτοματισμού και Πληροφορικής Δομημένος Προγραμματισμός (ΤΛ100) Δρ. Μηχ. Νικόλαος Πετράκης, Καθηγητής
Διαβάστε περισσότεραΠΛΗ111. Ανοιξη Μάθηµα 4 ο. Στοίβα. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 4 ο Στοίβα Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ανασκόπηση Αφηρηµένος Τύπος εδοµένων Στοίβα Υλοποίηση µε Πίνακα Υλοποίηση
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης 09.07.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες
Διαβάστε περισσότεραΠρογραμματισμός Η/Υ (ΤΛ2007 )
Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε.Ι. Κρήτης Προγραμματισμός Η/Υ (ΤΛ00 ) Δρ. Μηχ. Νικόλαος Πετράκης (npet@chania.teicrete.gr) Ιστοσελίδα Μαθήματος: https://eclass.chania.teicrete.gr/ Εξάμηνο: Εαρινό 01-15
Διαβάστε περισσότεραΔιάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:
Διαβάστε περισσότεραΕνότητα 1: Εισαγωγή Ασκήσεις και Λύσεις
Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για
Διαβάστε περισσότεραΔομές Δεδομένων. Κατακερματισμός. Δομές Δεδομένων & Αλγόριθμοι. Εργαστήριο Γνώσης και Ευφυούς Πληροφορικής 1
Δομές Δεδομένων Κατακερματισμός Πληροφορικής 1 Πρόβλημα Insert, Search και DELETE εγγραφής Σε σταθερό χρόνο Σε πίνακα εγγραφών όπου το πεδίο τιμών στα κλειδιά >> Μέγεθος Πίνακα (M) το πλήθος των εγγραφών
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και
Διαβάστε περισσότεραΔομές Δεδομένων. Ενότητα 12: Κατακερματισμός: Χειρισμός Συγκρούσεων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής.
Ενότητα 12: Κατακερματισμός: Χειρισμός Συγκρούσεων Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Κατακερµατισµός Κεφάλαιο 14. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Κατακερµατισµός Κεφάλαιο 14 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Εισαγωγή στον κατακερµατισµό Συναρτήσεις κατακερµατισµού Χωριστή αλυσίδωση Γραµµική διερεύνηση Διπλός κατακερµατισµός
Διαβάστε περισσότεραΔομές Δεδομένων & Αλγόριθμοι
- Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ
Διαβάστε περισσότεραΚατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1
Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών
Διαβάστε περισσότεραΟργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο
Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών
Διαβάστε περισσότεραΛΙΣΤΕΣ. Ορισμός ΑΤΔ Λίστα ΑΤΔ Ακολουθιακή Λίστα Διαχείριση Δεικτών και Λιστών στη C ΑΤΔ Συνδεδεμένη Λίστα. Εφαρμογές και Χρήση Λιστών
ΛΙΣΤΕΣ Ορισμός ΑΤΔ Λίστα ΑΤΔ Ακολουθιακή Λίστα Διαχείριση Δεικτών και Λιστών στη C ΑΤΔ Συνδεδεμένη Λίστα Υλοποίηση με δείκτες (pointers) Υλοποίηση με πίνακα Εφαρμογές και Χρήση Λιστών Λίστες (Lists) Δεδομένα
Διαβάστε περισσότεραΑλγόριθμοι Αναζήτησης
Αλγόριθμοι Αναζήτησης ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΠρογραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωμύλος Κορακίτης
Διαβάστε περισσότεραΔομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας
Διαβάστε περισσότεραΔομές Δεδομένων. Ενότητα 11: Τεχνικές Κατακερματισμού. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής.
Ενότητα 11: Τεχνικές Κατακερματισμού Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΠρογραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ Επικ. Καθηγητής ΕΜΠ v.vescoukis@cs.ntua.gr
Διαβάστε περισσότεραCuckoo Hashing. Αλγόριθμοι και Πολυπλοκότητα. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Cuckoo Hashing Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο β Πολυτεχνείο Πρόβλημα (ADT) Λεξικού υναμικά μεταβαλλόμενη συλλογή αντικειμένων που αναγνωρίζονται με «κλειδί» (π.χ.
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης 1 Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική
Διαβάστε περισσότεραΕργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας
Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Αναζήτηση με linearsearch, binarysearch, ternarysearch - Ανάλυση Πολυπλοκότητας ternarysearch
Διαβάστε περισσότεραΤα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο
Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Διαβάστε περισσότεραInsert(K,I,S) Delete(K,S)
ΕΝΟΤΗΤΑ 5 ΣΥΝΟΛΑ & ΛΕΞΙΚΑ Φατούρου Παναγιώτα 1 Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενα από έναν αριθµό και
Διαβάστε περισσότεραΔομές δεδομένων (2) Αλγόριθμοι
Δομές δεδομένων (2) Αλγόριθμοι Παράγωγοι τύποι (struct) σύνοψη προηγουμένων Πίνακες: πολλές μεταβλητές ίδιου τύπου Παράγωγοι τύποι ή Δομές (struct): ομαδοποίηση μεταβλητών διαφορετικού τύπου struct Student
Διαβάστε περισσότεραΔιάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
Διαβάστε περισσότεραΠΛΗ111. Ανοιξη Μάθηµα 2 ο. Αλγόριθµοι και Αφηρηµένοι Τύποι εδοµένων. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 2 ο Αλγόριθµοι και Αφηρηµένοι Τύποι εδοµένων Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Αλγόριθµοι Ορισµός Παράδειγµα Ασυµπτωτική
Διαβάστε περισσότεραΔοµές Δεδοµένων. 16η Διάλεξη Κατακερµατισµός. Ε. Μαρκάκης
Δοµές Δεδοµένων 16η Διάλεξη Κατακερµατισµός Ε. Μαρκάκης Περίληψη Συναρτήσεις κατακερµατισµού Χωριστή αλυσίδωση Γραµµική διερεύνηση Διπλός κατακερµατισµός Δυναµικός κατακερµατισµός Προοπτική Δοµές Δεδοµένων
Διαβάστε περισσότεραΑ Β Γ static; printf("%c\n", putchar( A +1)+2); B DB BD. int i = 0; while (++i); printf("*");
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Α Περιόδου 2016 (1/2/2016) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 10: Λίστες Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εύρεση, εισαγωγή, διαγραφή) Σύγκριση Συνδεδεμένων Λιστών με Πίνακες
Διαβάστε περισσότεραΔιάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing)
Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανασκόπηση Προβλήματος και Προκαταρκτικών Λύσεων Bit Διανύσματα Τεχνικές Κατακερματισμού & Συναρτήσεις
Διαβάστε περισσότεραΑλγόριθμοι Ταξινόμησης Μέρος 1
Αλγόριθμοι Ταξινόμησης Μέρος 1 Μανόλης Κουμπαράκης 1 Το Πρόβλημα της Ταξινόμησης Το πρόβλημα της ταξινόμησης (sorting) μιας ακολουθίας στοιχείων με κλειδιά ενός γνωστού τύπου (π.χ., τους ακέραιους ή τις
Διαβάστε περισσότεραΔομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί
Διαβάστε περισσότεραυναµική έσµευση Μνήµης (συν.) ΕΠΛ 132 Αρχές Προγραµµατισµού ΙΙ 2 Εφαρµογή
υναµική έσµευση Μνήµης (συν.) Στην ενότητα αυτή θα µελετηθούν: Μια εφαρµογή συνδεδεµένων λιστών ιπλά συνδεδεµένες Λίστες ΕΠΛ 132 Αρχές Προγραµµατισµού ΙΙ 1 Εφαρµογή Ζητούµενο: Πρόγραµµα που παίρνει σαν
Διαβάστε περισσότεραΔομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου
Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS)
ΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS) Ταχεία Αναζήτηση Σε πίνακα: δυαδική αναζήτηση (binary search) σε ταξινοµηµένο πίνακα O(log n) Σε δένδρο: αναζήτηση σε ισοζυγισµένο δένδρο O(log n) Σε λίστα: Μπορούµε
Διαβάστε περισσότεραΔομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΣτόχοι και αντικείμενο ενότητας. Πέρασμα Πίνακα σε Συνάρτηση (συν.) Πέρασμα Πίνακα σε Συνάρτηση. #8.. Ειδικά Θέματα Αλγορίθμων
Στόχοι και αντικείμενο ενότητας Πέρασμα Πίνακα σε Συνάρτηση #8.. Ειδικά Θέματα Αλγορίθμων Προβλήματα Αναζήτησης Γραμμική Αναζήτηση (Linear Search) Ενημέρωση Μέτρηση Δυαδική Αναζήτηση (Binary Search) Προβλήματα
Διαβάστε περισσότεραΚατ οίκον Εργασία 3 Σκελετοί Λύσεων
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 (α) Έστω Α(n) και Κ(n) ο αριθμός των ακμών και ο αριθμός των κόμβων ενός αυστηρά δυαδικού δένδρου με n φύλλα. Θέλουμε να αποδείξουμε για κάθε n 1 την πρόταση
Διαβάστε περισσότεραΠίνακες Συμβόλων. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση
Πίνακες Συμβόλων χειρότερη περίπτωση μέση περίπτωση εισαγωγή αναζήτηση επιλογή εισαγωγή αναζήτηση διατεταγμένος πίνακας διατεταγμένη λίστα μη διατεταγμένος πίνακας μη διατεταγμένη λίστα δένδρο αναζήτησης
Διαβάστε περισσότεραΠρογραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 20: Δυαδικό Δέντρο Αναζήτησης Δυαδικό δέντρο Κάθε κόμβος «γονέας» περιέχει δύο δείκτες που δείχνουν σε δύο κόμβους «παιδιά» του ιδίου τύπου. Αν οι δείκτες προς αυτούς
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 8 KATAKEΡΜΑΤΙΣΜΟΣ (HASHING)
ΕΝΟΤΗΤΑ 8 KATAKEΡΜΑΤΙΣΜΟΣ (HASHING) Κατακερµατισµός Στόχος Έχουµε ένα σύνολο από κλειδιά {Κ 0,, Κ n-1 } και θέλουµε να υλοποιήσουµε Insert() και LookUp() (ίσως και Delete()) απλά και γρήγορα στην πράξη.
Διαβάστε περισσότεραΔομές Αναζήτησης. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση
Δομές Αναζήτησης χειρότερη περίπτωση μέση περίπτωση εισαγωγή αναζήτηση επιλογή εισαγωγή αναζήτηση διατεταγμένος πίνακας διατεταγμένη λίστα μη διατεταγμένος πίνακας μη διατεταγμένη λίστα δένδρο αναζήτησης
Διαβάστε περισσότεραΥλοποίηση Λιστών. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:
Υλοποίηση Λιστών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμές Απλά και Διπλά Συνδεδεμένες Λίστες Κυκλικές Απλά και Διπλά Συνδεδεμένες Λίστες Τεχνικές Μείωσης Μνήμης ΕΠΛ 231 Δομές
Διαβάστε περισσότεραΕΠΛ232 Προγραμματιστικές Τεχνικές και Εργαλεία Δυναμική Δέσμευση Μνήμης και Δομές Δεδομένων (Φροντιστήριο)
ΕΠΛ232 Προγραμματιστικές Τεχνικές και Εργαλεία Δυναμική Δέσμευση Μνήμης και Δομές Δεδομένων (Φροντιστήριο) Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου http://www.cs.ucy.ac.cy/courses/epl232 Το μάθημα αυτό
Διαβάστε περισσότεραΣΥΜΒΟΛΟΣΕΙΡΕΣ (Strings) Ο ΑΤΔ Συµβολοσειρά Μία συµβολοσειρά είναι µία ακολουθία χαρακτήρων. Bασικές πράξεις : 1. Δηµιουργία. 2. Μήκος. 3.
ΣΥΜΒΟΛΟΣΕΙΡΕΣ (Strings) Ο ΑΤΔ Συµβολοσειρά Μία συµβολοσειρά είναι µία ακολουθία χαρακτήρων Bασικές πράξεις : 1. Δηµιουργία 2. Μήκος 3. Ανάκτηση 4. Προσάρτηση 5. Διαγραφή 6. Αντιγραφή 7. Συνένωση 8. Αναζήτηση
Διαβάστε περισσότερα#include <stdlib.h> Α. [-128,127] Β. [-127,128] Γ. [-128,128]
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Α Περιόδου 2017 (27/1/2017) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................
Διαβάστε περισσότεραΔρ. Πέτρος Παναγή B123
Δρ. Πέτρος Παναγή petrosp@cs.ucy.ac.cy B123 1 ΣΥΜΒΟΛΟΣΕΙΡΕΣ (Strings) Ο ΑΤΔ Συμβολοσειρά Μία συμβολοσειρά είναι μία συλλογή χαρακτήρων με διάταξη Bασικές πράξεις : (Είναιτοελάχιστοδυνατόσύνολοπράξεων)
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα
Διαβάστε περισσότεραΔιαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2
Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.
Διαβάστε περισσότεραΔοµές Δεδοµένων. 15η Διάλεξη Δέντρα Δυαδικής Αναζήτησης και Κατακερµατισµός. Ε. Μαρκάκης
Δοµές Δεδοµένων 15η Διάλεξη Δέντρα Δυαδικής Αναζήτησης και Κατακερµατισµός Ε. Μαρκάκης Περίληψη Υλοποιήσεις άλλων λειτουργιών σε ΔΔΑ: Επιλογή k-οστού µικρότερου Διαµέριση Αφαίρεση στοιχείου Ένωση 2 δέντρων
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι
ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι 5.1 Η έννοια του αλγορίθµου 5.2 Αναπαράσταση αλγορίθµων 5.3 Επινόηση αλγορίθµων 5.4 Δοµές επανάληψης 5.5 Αναδροµικές δοµές 1 Αλγόριθµος: Ορισµός Ένας αλγόριθµος είναι ένα διατεταγµένο
Διαβάστε περισσότεραHY240 : Δομές Δεδομένων. Φροντιστήριο Προγραμματιστικής Εργασίας 2 ο και 3 ο Μέρος
HY240 : Δομές Δεδομένων Φροντιστήριο Προγραμματιστικής Εργασίας 2 ο και 3 ο Μέρος Εισαγωγή Στο 2 ο μέρος της εργασίας θα πρέπει να γίνουν τροποποιήσεις στο πρόγραμμα που προέκυψε κατά την υλοποίηση του
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Ενδεικτικές Απαντήσεις Εξετάσεων Α' Περιόδου Θέµα 1. (α') 2 - ii 3 - iii 4 - iv
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Ενδεικτικές Απαντήσεις Εξετάσεων Α' Περιόδου 2011 Θέµα 1 (α') 1 - i 2 - ii 3 - iii 4 - iv 5 - v 6 - vi 7 - vii 8 - viii 9 - ix 10 - x Το αποτέλεσµα είναι η αντιστοιχία των
Διαβάστε περισσότεραΕνότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του
Διαβάστε περισσότεραΕργαστήριο 2 Δυναμικές Δομές Δεδομένων Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι
Μεταγλωττιστές Εργαστήριο 2 Δυναμικές Δομές Δεδομένων Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι 2015-1016 Δομές Δεδομένων Μια δομή δεδομένων είναι μια συλλογή δεδομένων με κάποιες ιδιότητες
Διαβάστε περισσότεραΔιασυνδεδεμένες Δομές. Δυαδικά Δέντρα. Προγραμματισμός II 1
Διασυνδεδεμένες Δομές Δυαδικά Δέντρα Προγραμματισμός II 1 lalis@inf.uth.gr Δέντρα Τα δέντρα είναι κλασικές αναδρομικές δομές Ένα δέντρο αποτελείται από υποδέντρα, καθένα από τα οποία μπορεί να θεωρηθεί
Διαβάστε περισσότεραΔιάλεξη 22η: Επιπλέον στοιχεία της C
Διάλεξη 22η: Επιπλέον στοιχεία της C Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Πρατικάκης (CSD) Extra CS100, 2018-2019 1 / 11 Οργάνωση του κώδικα Ένα πρόγραμμα
Διαβάστε περισσότεραΔένδρα Αναζήτησης Πολλαπλής Διακλάδωσης
Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα στα οποία κάθε κόμβος μπορεί να αποθηκεύει ένα ή περισσότερα κλειδιά. Κόμβος με d διακλαδώσεις : k 1 k 2 k 3 k 4 d-1 διατεταγμένα κλειδιά d διατεταγμένα παιδιά
Διαβάστε περισσότεραΠρογραµµατιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Προγραµµατιστικές Τεχνικές Βασίλειος Βεσκούκης ρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωµύλος Κορακίτης
Διαβάστε περισσότεραοµές (structures) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Πίνακες δοµών, δείκτες σε δοµές, και αυτοαναφορικές δοµές.
οµές (structures) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Πίνακες δοµών, δείκτες σε δοµές, και αυτοαναφορικές δοµές. ΕΠΛ 132 Αρχές Προγραµµατισµού ΙΙ 1 Παράδειγµα Πρόβληµα: Να γράψετε
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #5
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #5 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #5 2 Γενικά Στο Τετράδιο #5 του Εργαστηρίου θα ασχοληθούμε με πιο προχωρημένα θέματα υλοποίησης
Διαβάστε περισσότεραΠρογραμματισμός Δομές Δεδομένων
Προγραμματισμός Δομές Δεδομένων Προγραμματισμός Δομές Δεδομένων (Data Structures) Καινούργιοι τύποι δεδομένων που αποτελούνται από την ομαδοποίηση υπαρχόντων τύπων δεδομένων Ομαδοποίηση πληροφορίας που
Διαβάστε περισσότεραΦροντιστήριο 4 Σκελετοί Λύσεων
Φροντιστήριο 4 Σκελετοί Λύσεων 1. Ο ζητούμενος ΑΤΔ μπορεί να υλοποιηθεί ως εξής: (i) Διαδοχική χορήγηση μνήμης Υποθέτουμε ότι οι λίστες μας έχουν μέγιστο μέγεθος max και χρησιμοποιούμε τη δομή type elements[max];
Διαβάστε περισσότεραΚατ οίκον Εργασία 3 Σκελετοί Λύσεων
Άσκηση 1 Χρησιµοποιούµε τη δοµή Κατ οίκον Εργασία 3 Σκελετοί Λύσεων typedef struct Node int data; struct node *lchild; struct node *rbro; node; και υποθέτουµε πως ένα τυχαίο δένδρο είναι υλοποιηµένο ως
Διαβάστε περισσότεραΔυαδικά Δένδρα Αναζήτησης, Δένδρα AVL
Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL Υλικό από τις σηµειώσεις Ν. Παπασπύρου, 2006 Δέντρα δυαδικής αναζήτησης Δενδρικές δοµές δεδοµένων στις οποίες Όλα τα στοιχεία στο αριστερό υποδέντρο της ρίζας είναι
Διαβάστε περισσότεραΔιάλεξη 12: Λίστες Υλοποίηση & Εφαρμογές. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Λίστες Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εύρεση, εισαγωγή, διαγραφή) - Σύγκριση Συνδεδεμένων Λιστών με Πίνακες
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΑ. ΕΤΟΣ 2012-13 Ι ΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής, Τοµέας Τεχνολογίας
Διαβάστε περισσότεραΜεταγλωττιστές. Συντακτικός Αναλυτής Κατασκευή Πίνακα Συμβόλων (ΠΣ) Εργαστήριο 7. Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι
Μεταγλωττιστές Εργαστήριο 7 Συντακτικός Αναλυτής Κατασκευή Πίνακα Συμβόλων (ΠΣ) Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι 2016-2017 Πίνακας Συμβόλων Συγκεντρώνει πληροφορίες για τα ονόματα
Διαβάστε περισσότεραΤα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο
Οργάνωση Αρχείων 1 Αρχεία Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Η μεταφορά δεδομένων από το δίσκο στη μνήμη και από τη μνήμη στο δίσκο γίνεται σε μονάδες blocks Βασικός στόχος η ελαχιστοποίηση
Διαβάστε περισσότεραΔυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή
Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής διαγραφή εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής
Διαβάστε περισσότεραδιεύθυνση πρώτου στοιχείου διεύθυνση i-οστού στοιχείου T t[n]; &t[0] είναι t &t[i] είναι t + i*sizeof(t)
Προγραµµατισµός Ι (ΗΥ120) ιάλεξη 18: ιασυνδεµένες οµές - Λίστες ιασυνδεδεµένες δοµές δεδοµένων Η µνήµη ενός πίνακα δεσµεύεται συνεχόµενα. Η πρόσβαση στο i-οστό στοιχείο είναι άµεσηκαθώς η διεύθυνση του
Διαβάστε περισσότεραιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ
ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ Ουρές Προτεραιότητας (Priority Queues) Θεωρούµε ότι τα προς αποθήκευση στοιχεία έχουν κάποια διάταξη (καθένα έχει µια προτεραιότητα). Τα προς αποθήκευση στοιχεία είναι
Διαβάστε περισσότεραΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Πίνακες Συµβόλων Κεφάλαιο 12 ( ) Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Πίνακες Συµβόλων Κεφάλαιο 12 (12.1-12.4) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Πίνακες συµβόλων Διεπαφή πίνακα συµβόλων Αναζήτηση µε αριθµοδείκτη Ακολουθιακή αναζήτηση Δυαδική αναζήτηση
Διαβάστε περισσότεραΗΥ240: Δομές Δεδομένων Εαρινό Εξάμηνο Ακαδημαϊκό Έτος 2018 Διδάσκουσα: Παναγιώτα Φατούρου Προγραμματιστική Εργασία - 2o Μέρος
ΗΥ240: Δομές Δεδομένων Εαρινό Εξάμηνο Ακαδημαϊκό Έτος 2018 Διδάσκουσα: Παναγιώτα Φατούρου Προγραμματιστική Εργασία - 2o Μέρος Ημερομηνία Παράδοσης: Δευτέρα, 14 Μαΐου 2018, ώρα 23:59 Τρόπος Παράδοσης: Χρησιμοποιώντας
Διαβάστε περισσότεραΕνότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις
ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Ενότητα : Κατακερματισμός Ασκήσεις και Λύσεις Άσκηση 1 Χρησιμοποιήστε τη συνάρτηση κατακερματισμού της διαίρεσης ως πρωτεύουσα συνάρτηση κατακερματισμού και τη συνάρτηση
Διαβάστε περισσότεραΟι βασικές πράξεις που ορίζουν τον ΑΤ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες:
υαδικά έντρα Αναζήτησης (Binary Search Trees) Ορισµός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόµενα στο αριστερό υποδέντρο του t είναι
Διαβάστε περισσότεραΕργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά
EPL231: Δομές Δεδομένων και Αλγόριθμοι Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά Αναδρομή Η αναδρομή εμφανίζεται όταν μία διεργασία καλεί τον εαυτό της Υπάρχουν
Διαβάστε περισσότεραιαφάνειες παρουσίασης #4
ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ http://www.softlab.ntua.gr/~nickie/courses/progtech/ ιδάσκοντες: Γιάννης Μαΐστρος (maistros@cs.ntua.gr) Στάθης Ζάχος (zachos@cs.ntua.gr) (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης
Διαβάστε περισσότεραΠανεπιστήµιο Θεσσαλίας, THMMY HY120, Σεπτέµβριος 2015 ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: AEM: ΜΕΡΟΣ Α: ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ [15 µονάδες] ΣΗΜΑΝΤΙΚΕΣ ΔΙΕΥΚΡΙΝΙΣΕΙΣ: Επιλέξτε ΜΙΑ σωστή απάντηση για κάθε ερώτηση. Λάθος απαντήσεις βαθµολογούνται αρνητικά Σε ερωτήσεις που
Διαβάστε περισσότεραΕργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ
Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά
Διαβάστε περισσότεραΓράφοι. Ορολογία. Ορισµός: G = (V, E) όπου. Ορολογία (συνέχεια) γράφος ή γράφηµα (graph) V:ένα σύνολο E:µια διµελής σχέση στο V
Γράφοι Ορολογία γράφος ή γράφηµα (graph) Ορισµός: G = (V, E) όπου V:ένα σύνολο E:µια διµελής σχέση στο V Ορολογία (συνέχεια) κάθε v V ονοµάζεται κορυφή (vertex) ή κόµβος (node) κάθε (v 1, v 2 ) Ε ονοµάζεται
Διαβάστε περισσότεραΘεωρητικό Μέρος. int rec(int n) { int n1, n2; if (n <= 5) then return n; else { n1 = rec(n-5); n2 = rec(n-3); return (n1+n2); } }
Πανεπιστήµιο Ιωαννίνων, Τµήµα Πληροφορικής 2 Νοεµβρίου 2005 Η/Υ 432: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκού Έτους 2005-2006 Παναγιώτα Φατούρου Ηµεροµηνία Παράδοσης 1 ο Σετ Ασκήσεων Θεωρητικό Μέρος:
Διαβάστε περισσότεραΜΥΥ105: Εισαγωγή στον Προγραµµατισµό. Αναζήτηση και Ταξινόµηση Χειµερινό Εξάµηνο 2014
ΜΥΥ105: Εισαγωγή στον Προγραµµατισµό Αναζήτηση και Ταξινόµηση Χειµερινό Εξάµηνο 2014 Αναζήτηση και Ταξινόµηση Βασικές λειτουργίες σε προγράµµατα Αναζήτηση (searching): Βρες ένα ζητούµενο στοιχείο σε µια
Διαβάστε περισσότεραΕργαστήριο 2: Πίνακες
Εργαστήριο 2: Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Επεξεργασία Πινάκων - Υλοποίηση της Δυαδικής Αναζήτησης σε πίνακες - Υλοποίηση της Ταξινόμησης με Επιλογής σε πίνακες ΕΠΛ035
Διαβάστε περισσότεραΚατακερματισμός (Hashing)
Κατακερματισμός (Hashing) O κατακερματισμός είναι μια τεχνική οργάνωσης ενός αρχείου. Είναι αρκετά δημοφιλής μέθοδος για την οργάνωση αρχείων Βάσεων Δεδομένων, καθώς βοηθάει σημαντικά στην γρήγορη αναζήτηση
Διαβάστε περισσότεραΔομές Δεδομένων. Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα
Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΔυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή
Διαβάστε περισσότεραΠΛΗ111. Ανοιξη Μάθηµα 1 ο Ανασκόπηση της Γλώσσας Προγραµµατισµού C. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 1 ο Ανασκόπηση της Γλώσσας Προγραµµατισµού C Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ανασκόπηση της C είκτες Πίνακες
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε7: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Hashing, Final Exam Διδάσκων: Κωνσταντίνος Κώστα ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. Ε7-1
Διαβάστε περισσότεραΔυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε:
Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόμενα στο αριστερό υποδέντρο του t είναι
Διαβάστε περισσότερα