ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι
|
|
- Αλθαία Αλεξανδρίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι 5.1 Η έννοια του αλγορίθµου 5.2 Αναπαράσταση αλγορίθµων 5.3 Επινόηση αλγορίθµων 5.4 Δοµές επανάληψης 5.5 Αναδροµικές δοµές 1
2 Αλγόριθµος: Ορισµός Ένας αλγόριθµος είναι ένα διατεταγµένο σύνολο, πεπερασµένων, σαφώς ορισµένων, εκτελέσιµων βηµάτων, το οποίο ορίζει µία τερµατιζόµενη διαδικασία. 2
3 Αλγόριθµοι, προγράµµατα και γλώσσες είσοδος Αλγόριθµος έξοδος - αλγόριθµοι τερµατίζουν ή δεν τερµατίζουν - πως να περιγράψουµε έναν αλγόριθµο; - φυσική γλώσσα (ελληνικά, αγγλικά) είναι ασαφής «µαζεύετε τριαντάφυλλα όσο σας επιτρέπεται» - γλώσσα προγραµµατισµού: - εύκολη και περιεκτική έκφραση αλγορίθµων - άµεσα κατανοητή από υπολογιστές και ανθρώπους - περιορισµός λαθών 3
4 Αλγόριθµοι : επίπεδα αφαίρεσης Ένα πρόβληµα αποτελεί το κίνητρο για την επινόηση ενός αλγόριθµου. Ο αλγόριθµος είναι µια διαδικασία επίλυσης του προβλήµατος αυτού. Συνήθως µία διαδικασία από πολλές πιθανές Η αναπαράσταση είναι η επαρκής περιγραφή ενός αλγορίθµου για τη µετάδοση του στο επιθυµητό κοινό. Πάντα µία περιγραφή από πολλές πιθανές. 4
5 Βήµατα επίλυσης προβλήµατος 1. Κατανόηση του προβλήµατος. 2. Σχηµατισµός (στο νου µας) µιας ιδέας για το πώς µπορεί να λυθεί το πρόβληµα από µία αλγοριθµική διαδικασία. 3. Συγκρότηση του αλγορίθµου και αναπαράσταση του ως πρόγραµµα. 4. Αξιολόγηση του προγράµµατος όσον αφορά την ακρίβεια του και τη δυνατότητα να χρησιµοποιηθεί ως εργαλείο για την επίλυση άλλων προβληµάτων. 5
6 Τεχνικές για το πρώτο βήµα Επίλυση του προβλήµατος προς τα πίσω. Επίλυση ενός πιο εύκολου, σχετικού προβλήµατος: «Χαλαρώνει» κάποιους από τους ασφυκτικούς περιορισµούς του προβλήµατος. Επιλύει πρώτα κάποια επιµέρους τµήµατα του προβλήµατος - συνθετική µεθοδολογία. Η βηµατική εκλέπτυνση είναι µία αναλυτική µεθοδολογία. Δηµοφιλής τεχνική επειδή παράγει τµηµατικά προγράµµατα. 6
7 Αλγόριθµος: (1) βράσε νερό Βηµατική εκλέπτυνση φτιάξε στιγµιαίο καφέ (1.1) γέµισε χύτρα (1.1.1) βάλε χύτρα κάτω από βρύση (1.1.2) άνοιξε βρύση (1.1.3) περίµενε να γεµίσει η χύτρα (1.2) άναψε το µάτι (1.1.4) κλείσε βρύση (1.3) περίµενε να βράσει (1.4) σβήσε το µάτι (1.3.1) περίµενε να σφυρίξει η χύτρα (2) βάλε καφέ στο φλιτζάνι (3) πρόσθεσε νερό στο φλιτζάνι (2.1) άνοιξε το δοχείο του καφέ (2.2) πάρε ένα κουταλάκι καφέ (2.3) άδειασε το κουταλάκι στο φλιτζάνι (2.4) κλείσε το δοχείο του καφέ (3.1) βάλε νερό από την χύτρα στο φλιτζάνι µέχρι να γεµίσει (2.1.1) πάρε το δοχείο του καφέ από το ντουλάπι (2.1.2) βγάλε το καπάκι (2.4.1) βάλε το καπάκι στο δοχείο (2.4.2) βαλε το δοχείο στο ντουλάπι 7
8 Ακολουθία βηµάτων 1. βάλε την χύτρα κάτω από βρύση 2. άνοιξε την βρύση εάν δεν υπάρχει νερό; 3. περίµενε να γεµίσει η χύτρα 4. κλείσε την βρύση 5. άναψε το µάτι 6. περίµενε να σφυρίξει η χύτρα 7. σβήσε το µάτι 8. πάρε το δοχείο του καφέ από το ντουλάπι 9. βγάλε το καπάκι 10. πάρε ένα κουταλάκι καφέ 11. άδειασε το κουταλάκι στο φλιτζάνι 12. βάλε το καπάκι στο δοχείο 13. βαλε το δοχείο στο ντουλάπι 14. βάλε νερό από την χύτρα στο φλιτζάνι µέχρι να γεµίσει εάν δεν υπάρχει καφές, να δοκιµάσει το επόµενο δοχείο καφέ; εάν υπάρχουν 1000 δοχεία, πολλά από αυτά άδεια, τι να κάνει; 8
9 Διαγράµµατα ροής Διαγράµµατα ροής: γραφικός τρόπος περιγραφής δοµής αλγορίθµων Ορίζουµε τα βασικά συστατικά διαγραµµάτων ροής - - ακολουθία - - δοκιµή (διάφοροι τύποι) - - επανάληψη (διάφοροι τύποι) βάλε την χύτρα κάτω από βρύση άνοιξε την βρύση περίµενε να γεµίσει η χύτρα κλείσε την βρύση άναψε το µάτι περίµενε να σφυρίξει η χύτρα σβήσε το µάτι πάρε το δοχείο του καφέ από το ντουλάπι ακολουθία δοκιµή (test) συνθήκη = false συνθήκη = false συνθήκη = true 9
10 Σύνθεση βασικών διαγραµµάτων Αλγόριθµος: σύνθεση βασικών διαγραµµάτων ακολουθία δοκιµή (test) false true ακολουθία ακολουθία 10
11 Η δοµή ελέγχου επιλογής δοκιµή συνθήκης false if condition then P1 true δοκιµή συνθήκης false P1 P2 true P1 if condition then P1 else P2 if x>3 then z:=1 else y:=8 11
12 Παράδειγµα φωλιασµένων επιλογών δοκιµή συνθήκης false δοκιµή συνθήκης false P2 true true δοκιµή συνθήκης false P1 P1 P2 true P3 P4 if condition then P1 else if condition then P3 else P4 P2 12
13 Η δοµή ελέγχου επανάληψης Η δοµή βρόχου όσο (while) 13
14 Άλλο παράδειγµα δοµής επανάληψης Η δοµή βρόχου επανέλαβε (repeat) 14
15 Αρχέτυπα (εντολές) ψευδοκώδικα Ανάθεση όνοµα ß έκφραση Επιλογή συνθήκης αν (συνθήκη) τότε (ενέργεια) Επαναλαµβανόµενη εκτέλεση όσο (συνθήκη) κάνε (ενέργεια) Διαδικασία διαδικασία όνοµα (συγκεκριµένο όνοµα της µονάδας) 15
16 Η διαδικασία Χαιρετισµός σε ψευδοκώδικα διαδικασία Χαιρετισµός Μετρητής ß 3; όσο (Μετρητής >0) κάνε (τύπωσε το µήνυµα Γεια χαρά και Μετρητήςß Μετρητής-1) 16
17 Αλφαβητική ταξινόµηση της λίστας Fred, Alex, Diana, Byron, Carol Ορίζουµε βήµα = σύγκριση Αριθµός βηµάτων χειρότερης περίτπωσης (n 1) = 1 2 (n 2 n) Βασικές έννοιες: πρόβληµα, µέγεθος προβλήµατος, Πολυπλοκότητα αλγορίθµου 17
18 Εφαρµογή της ταξινόµησης παρεµβολής σε ένα σενάριο χειρότερης περίπτωσης 18
19 Ο αλγόριθµος ταξινόµησης παρεµβολής σε ψευδοκώδικα διαδικασία Ταξινόµηση (Λίστα) Νß 2 όσο (η τιµή του Ν δεν υπερβαίνει το µήκος της Λίστας) κάνε (επίλεξε την Ν-οστή καταχώρηση της Λίστας ως οριακή καταχώρηση. Μετακίνησε την οριακή καταχώριση σε µία προσωρινή θέση, αφήνοντας ένα κενό στη Λίστα. όσο (υπάρχει κάποιο όνοµα επάνω από το κενό, και το όνοµα αυτό είναι µεγαλύτερο από την οριακή καταχώριση) κάνε (µετακίνησε το όνοµα που βρίσκεται επάνω από το κενό προς τα κάτω, αφήνοντας ένα κενό από πάνω του) Τοποθέτησε την οριακή καταχώριση στο κενό της Λίστας. Ν ß Ν + 1 ) 19
20 Αναδροµή Αναδροµικός αλγόριθµος: καλεί τον εαυτό του Μεθοδολογία: εκφράζουµε την διαδικασία µε βάση ιδίου τύπου διαδικασίες που λειτουργούν σε απλούστερα προβλήµατα, γνωρίζουµε την απάντηση για το πλέον απλό πρόβληµα factorial(n) = 1*2*3*... (N-1)*N = N*factorial(N-1) module factorial(n) if N=1 then answer = 1 else answer = N * factorial(n-1) * 2 * 1 20
21 Παράδειγµα: οι πύργοι του Hanoi Πρόβληµα: να µεταφέρουµε όλους τους δίσκους σε έναν άλλο πάσσαλο κουνώντας ένα δίσκο τη φορά, χωρίς ποτέ ένας δίσκος να τοποθετηθεί πάνω από µικρότερους δίσκους. 64 δίσκοι a b c Ψάχνουµε για αναδροµική σχέση: Πρόβληµα Α: µετάφερε 64 δίσκους από το a στο b (χωρίς να παραβείς τους περιορισµούς) Πρόβληµα Β: µετάφερε 63 δίσκους από το a στο c, µετάφερε τον τελευταίο δίσκο από το a στο b, µετάφερε 63 δίσκους από το c στο b. 21
22 Παράδειγµα: οι πύργοι του Hanoi (2) 64 δίσκοι a b c πηγή προορισµός βοηθητικός µεταφορά_πύργου (Ν, πηγή, προορισµός, βοηθητικός) module µεταφορά_πύργου (Ν, a, b, c) if N=1 then µετακίνησε 1 δίσκο από a σε b else { µεταφορά_πύργου (Ν-1, a, c, b); µετακίνησε 1 δίσκο από a σε b; µεταφορά_πύργου (Ν-1, c, b, a) } 22
23 Παράδειγµα: οι πύργοι του Hanoi (3) module µεταφορά_πύργου (Ν, a, b, c) if N=1 then µετακίνησε τον δίσκο από πηγή σε προορισµό else { µεταφορά_πύργου (Ν-1, a, c, b); µετακίνησε 1 δίσκο από πηγή σε προορισµό; µεταφορά_πύργου (Ν-1, c, b, a) } Δ3 Δ2 Δ1 µ_π (3, a, b, c) µ_π (2, a, c, b) Δ2,a,c Δ1,a,b µ_π (2, c, b, a) Δ2,c,b µ_π (1, a, b, c) µ_π (1, b, c, a) µ_π (1, c, a, b) µ_π (1, a, b, c) Δ1,a,b Δ1,b,c Δ1,c,a Δ1,a,b 23
24 Ο αλγόριθµος της δυαδικής αναζήτησης σε ψευδοκώδικα Διαδικασία Αναζήτηση (Λίστα, ΤιµήΣτόχος) αν ( Η Λίστα είναι άδεια) τότε (Ανάφερε ότι η αναζήτηση απέτυχε) αλλιώς [Επίλεξε τη µεσαία καταχώριση της Λίστας ως την ΚαταχώρισηΠροςΈλεγχο. Εκτέλεσε το παρακάτω µπλοκ εντολών που αντιστοιχεί στην κατάλληλη περίπτωση. περίπτωση 1: ΤιµήΣτόχος=ΚαταχώρισηΠροςΈλεγχο (Ανέφερε ότι η αναζήτηση είναι επιτυχής.) περίπτωση 2: ΤιµήΣτόχος<ΚαταχώρισηΠροςΈλεγχο (Εφάρµοσε τη διαδικασία Αναζήτηση για να δεις αν η ΤιµήΣτόχος βρίσκεται στο τµήµα της λίστα που προηγείται της ΚαταχώρισηΠροςΈλεγχο, και ανέφερε το αποτέλεσµα αυτής της αναζήτησης.) περίπτωση3: ΤιµήΣτόχος> ΚαταχώρισηΠροςΈλεγχο (Εφάρµοσε τη διαδικασία Αναζήτηση για να δεις αν η ΤιµήΣτόχος βρίσκεται στο τµήµα της λίστα µετά την ΚαταχώρισηΠροςΈλεγχο, και ανέφερε το αποτέλεσµα αυτής της αναζήτησης.) ] τέλος αν 24
25 Binary search low = 0; high = N-1; BinarySearch(A[0..N-1], value, low, high) { if (high < low) return -1 // not found mid = (low + high) / 2 if (A[mid] > value) return BinarySearch(A, value, low, mid-1) else if (A[mid] < value) return BinarySearch(A, value, mid+1, high) else return mid // found } 25
26 Δυαδική αναζήτηση 26
27 Εφαρµογή της δυαδικής αναζήτησης για την καταχώριση Κώστας σε µία ταξινοµηµένη λίστα Αριθµός βηµάτων χειρότερης περίτπωσης Log 2 n = πόσες φορές διαιρείται το n µε το 2 2 log n = n 27
28 Αποδοτικότητα Λογισµικού Μετριέται ως το πλήθος των εκτελούµενων εντολών. Ο συµβολισµός µε Θ προσδιορίζει την αποδοτικότητα των αλγορίθµων Παράδειγµα η ταξινόµηση παρεµβολής αναπαριστάται µε Θ(n 2 ) Καλύτερη, χειρότερη και µέση περίπτωση. 28
29 Ορισµός ταχύτητας αύξησης µιας συνάρτησης f ( n) O( g( n)): f έχει την g ασυµπτωτικό άνω φράγµα όταν n, f ( n) g( n) k η f αυξάνεται το πολύ σαν την g n 2,5 O(n 3 ), 2n 2 +10n 5 O(n 2 ), 2 n + 2n 2 O(2 n ) f ( n) Θ( g( n)): f έχει την g ασυµπτωτικό άνω και κάτω φράγµα όταν n, η f αυξάνεται σαν την g, άρα είναι στην οικογένεια Θ(g) g( n) k 1 f( n) g( n) k 2n 2 +10n 5 Θ(n 2 ), 2nlogn +10n 5 Θ(n logn) 2 29
30 Γράφηµα της ανάλυσης χειρότερης περίπτωσης του αλγορίθµου ταξινόµησης παρεµβολής (ρυθµός αύξησης) 30
31 Γράφηµα της ανάλυσης χειρότερης περίπτωσης του αλγορίθµου δυαδικής αναζήτησης (ρυθµός αύξησης) 31
ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι. 5.1 Αλγόριθµος: Ορισµός. Αλγόριθµοι : επίπεδα αφαίρεσης
ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι 5.1 Αλγόριθµος: Ορισµός 5.1 Η έννοια του αλγορίθµου 5.2 Αναπαράσταση αλγορίθµων 5.3 Επινόηση αλγορίθµων 5.4 οµές επανάληψης Ένας αλγόριθµος είναι ένα διατεταγµένο σύνολο, σαφώς ορισµένων,
ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι
ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι Αρχικές έννοιες Αναπαράσταση αλγορίθμων Διαγράμματα ροής και δομές επανάληψης Αλγόριθμος σειριακής αναζήτησης Αλγόριθμος αλφαβητικής ταξινόμησης Αναδρομικοί αλγόριθμοι Αλγόριθμος
ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι
ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι 5.1 Η έννοια του αλγορίθμου 5.2 Αναπαράσταση αλγορίθμων 5.3 Επινόηση αλγορίθμων 5.4 Δομές επανάληψης 5.5 Αναδρομικές δομές 5.6 Απόδοση και ορθότητα Οι διαφάνειες βασίζονται σε μεγάλο
ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι
ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι 5.1 Η έννοια του αλγορίθμου 5.2 Αναπαράσταση αλγορίθμων 5.3 Επινόηση αλγορίθμων 5.4 Δομές επανάληψης 5.5 Αναδρομικές δομές 5.6 Απόδοση και ορθότητα Οι διαφάνειες βασίζονται σε μεγάλο
1o Φροντιστήριο ΗΥ240
1o Φροντιστήριο ΗΥ240 Άσκηση 1 Αποδείξτε τη μεταβατική και τη συμμετρική ιδιότητα του Θ Μεταβατική Ιδιότητα (ορισμός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)) Για να ισχύει f(n)= Θ(h(n))
Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις
Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για
Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι
Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση
Πληροφορική 2. Αλγόριθμοι
Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται
Στοιχεία Αλγορίθµων και Πολυπλοκότητας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις
Εισαγωγή στην πληροφορική
Εισαγωγή στην πληροφορική Ενότητα 5: ΑΛΓΟΡΙΘΜΟΙ Πασχαλίδης Δημοσθένης Τμήμα Διαχείρισης Εκκλησιαστικών Κειμηλίων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Εισαγωγή στην επιστήμη των Υπολογιστών & Τηλεπικοινωνιών
Εισαγωγή στην επιστήμη των Υπολογιστών & Τηλεπικοινωνιών Λογισμικό Υπολογιστών Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση
Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:
Συµβολισµός Ω( ) Τάξη των Συναρτήσεων () Εκτίµηση Πολυπλοκότητας Αλγορίθµων Ορέστης Τελέλης telelis@unipi.gr Ορισµός. Εστω συναρτήσεις: f : N R και g : N R η f(n) είναι Ω( g(n) ) αν υπάρχουν σταθερές C
Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης 1 Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική
ιδάσκων: ηµήτρης Ζεϊναλιπούρ
Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?
Γ7.5 Αλγόριθμοι Αναζήτησης. Γ Λυκείου Κατεύθυνσης
Γ7.5 Αλγόριθμοι Αναζήτησης Γ Λυκείου Κατεύθυνσης Εισαγωγή Αλγόριθμος αναζήτησης θεωρείται ένας αλγόριθμος, ο οποίος προσπαθεί να εντοπίσει ένα στοιχείο με συγκεκριμένες ιδιότητες, μέσα σε μία συλλογή από
Προγραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωμύλος Κορακίτης
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2 Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Εµπειρική ανάλυση αλγορίθµων Μαθηµατική ανάλυση αλγορίθµων Αύξηση συναρτήσεων Συµβολισµός µεγάλου όµικρον Παραδείγµατα
Αναδρομικοί Αλγόριθμοι
Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας
Προγραµµατισµός Η/Υ. Μέρος2
Προγραµµατισµός Η/Υ Μέρος2 Περιεχόμενα Επανάληψη Βασικών Σύμβολων Διαγραμμάτων Ροής Αλγόριθμος Ψευδοκώδικας Παραδείγματα Αλγορίθμων Γλώσσες προγραμματισμού 2 Επανάληψη Βασικών Σύμβολων Διαγραμμάτων Ροής
Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Πολλαπλασιασμός μεγάλων ακεραίων (1) Για να πολλαπλασιάσουμε δύο ακεραίους με n 1 και n 2 ψηφία με το χέρι, θα εκτελέσουμε n 1 n 2 πράξεις πολλαπλασιασμού Πρόβλημα ρβημ όταν έχουμε πολλά ψηφία: A = 12345678901357986429
1η Σειρά Γραπτών Ασκήσεων
1/20 Ασυμπτωτικός Συμβολισμός, Αναδρομικές Σχέσεις 1η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 1 Ασυμπτωτικός Συμβολισμός, Αναδρομικές Σχέσεις 2 3 4 5 2/20
Δομές Δεδομένων & Αλγόριθμοι
- Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η
Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2
Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.
Τεχνικές Αναπαράστασης αλγορίθµων Ψευδοκώδικας Διάγραµµα Ροής Αλγοριθµικές δοµές (Ακολουθία Επιλογή Επανάληψη)
Τεχνικές Αναπαράστασης αλγορίθµων Διάγραµµα Ροής Αλγοριθµικές δοµές (Ακολουθία Επιλογή ) 1 Βασικές έννοιες Τυποποίηση αναπαράστασης αλγορίθµου - Ανάγκη ύπαρξης ενός κοινού τρόπου αναπαράστασης αλγορίθµων
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
Αλγόριθμοι Αναζήτησης
Αλγόριθμοι Αναζήτησης ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Προβλήματα, αλγόριθμοι, ψευδοκώδικας
Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Αναζήτηση και ταξινόμηση
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Αναζήτηση και ταξινόμηση Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αναζήτηση και ταξινόµηση 7 Αναζήτηση (search) Πρόβληµα: αναζήτηση της καταχώρησης key στη
Ενότητα: Δυαδική Αναζήτηση Σχέδιο Δραστηριότητας: Παιχνίδι: Βρες τον αριθμό
Ενότητα: Δυαδική Αναζήτηση Σχέδιο Δραστηριότητας: Παιχνίδι: Βρες τον αριθμό 1 Εισαγωγή Σκεφτείτε έναν αριθμό από το 1 έως το 1000 και απαντήστε στην ερώτηση: Ο αριθμός που σκεφτήκατε είναι μεγαλύτερος
Διάλεξη 04: Παραδείγματα Ανάλυσης
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Προγραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ Επικ. Καθηγητής ΕΜΠ v.vescoukis@cs.ntua.gr
Δομές Δεδομένων Ενότητα 2
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Θέματα Απόδοσης Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΜΟΣ Εντολές επιλογής και αποφάσεων 1 ο Φύλλο Εργασιών Εισαγωγικές ασκήσεις για την εντολή if ΑΠΑΝΤΗΣΕΙΣ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΜΟΣ Κεφάλαιο 10 : Εντολές επιλογής και αποφάσεων 1 ο Φύλλο Εργασιών Εισαγωγικές ασκήσεις για την εντολή if ΑΠΑΝΤΗΣΕΙΣ 1. Ποιες από τις παρακάτω εντολές είναι σωστές; α) if A + B
Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.
Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind
Θέματα Προγραμματισμού Η/Υ
Πρόγραμμα Μεταπτυχιακών Σπουδών Πληροφορική και Υπολογιστική Βιοϊατρική Θέματα Προγραμματισμού Η/Υ Ενότητα 1: Εισαγωγή Θεματική Ενότητα: Εισαγωγή στον Προγραμματισμό ΘΕΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ Θεματική
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
ΕΠΛ 034: Εισαγωγήστον ΠρογραµµατισµόγιαΗΜΥ
ΕΠΛ 034: Εισαγωγήστον ΠρογραµµατισµόγιαΗΜΥ Αχιλλέας Αχιλλέως, Τµήµα Πληροφορικής, Πανεπιστήµιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 2 ΠρογραµµατισµόςΗ/Υ Θέµατα ιάλεξης οµή Προγράµµατος C Μεθοδολογία
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών 1 Συναρτήσεις και ο υπολογισµός τους 2 Μηχανές Turing 3 Καθολικές γλώσσες προγραµµατισµού 4 Μια µη υπολογίσιµη συνάρτηση 5 Πολυπλοκότητα προβληµάτων 1 Συναρτήσεις Μία συνάρτηση
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου;
5.1 Επίδοση αλγορίθμων Μέχρι τώρα έχουμε γνωρίσει διάφορους αλγόριθμους (αναζήτησης, ταξινόμησης, κ.α.). Στο σημείο αυτό θα παρουσιάσουμε ένα τρόπο εκτίμησης της επίδοσης (performance) η της αποδοτικότητας
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων
ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων
3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ. n! = 1*2*3*..(n-1)*n. n! = 1 αν n = 0, = n*(n-1)! αν n > ΑΝΑ ΡΟΜΗ Εισαγωγή
3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ 3.1 ΑΝΑ ΡΟΜΗ 3.1.1 Εισαγωγή ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Αναδροµή είναι η µέθοδος κατά την οποία, σε µία γλώσσα προγραµµατισµού, µία διαδικασία ή συνάρτηση έχει την δυνατότητα
Επίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική II. Ενότητα 2 : Αλγόριθμοι. Δρ. Γκόγκος Χρήστος
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική II Ενότητα 2 : Αλγόριθμοι Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.
Διάλεξη : Παραδείγματα Ανάλυσης Πολυπλοκότητας / Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, 6 παραδείγματα
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα
Προτεινόμενος τρόπος διδασκαλίας του μαθήματος με ενδεικτικό χρονοπρογραμματισμό. Α/Α Ενότητες Περιγραφή Ώρες 1 Εισαγωγικό μάθημα 1
Αγαπητοί συνάδελφοι, Σας αποστέλλω τις παιδαγωγικές απόψεις μου, εκ μέρους μίας ομάδας Σχολικών Συμβούλων Πληροφορικής, σχετικώς με την προτεινόμενη προσέγγιση για τη διδασκαλία του μαθήματος Ανάπτυξη
Κεφάλαιο 5 Ανάλυση Αλγορίθμων
Κεφάλαιο 5 Ανάλυση Αλγορίθμων 5.1 Επίδοση αλγορίθμων Τα πρωταρχικά ερωτήματα που προκύπτουν είναι: 1. πώς υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 2. πώς μπορούν να συγκριθούν μεταξύ τους οι διάφοροι
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός Επιμέλεια διαφανειών: Δημήτρης Φωτάκης (λίγες προσθήκες: Άρης Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα
ΜΥΥ105: Εισαγωγή στον Προγραμματισμό. Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016
ΜΥΥ105: Εισαγωγή στον Προγραμματισμό Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016 Αναζήτηση και Ταξινόμηση Βασικές λειτουργίες σε προγράμματα Αναζήτηση (searching): Βρες ένα ζητούμενο στοιχείο σε μια
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 6: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
ΠΛΗ111. Ανοιξη Μάθηµα 8 ο. Αναζήτηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 8 ο Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Αναζήτηση Αναζήτηση σε ιατεταγµένο Πίνακα υαδική Αναζήτηση Κατακερµατισµός
Δοµές Δεδοµένων. 6η Διάλεξη Αναδροµικές Εξισώσεις και Αφηρηµένοι Τύποι Δεδοµένων. Ε. Μαρκάκης
Δοµές Δεδοµένων 6η Διάλεξη Αναδροµικές Εξισώσεις και Αφηρηµένοι Τύποι Δεδοµένων Ε. Μαρκάκης Περίληψη Χρήση αναδροµικών εξισώσεων στην ανάλυση αλγορίθµων Αφηρηµένοι τύποι δεδοµένων Συλλογές στοιχείων Στοίβα
Αναδρομή Ανάλυση Αλγορίθμων
Αναδρομή Ανάλυση Αλγορίθμων Παράδειγμα: Υπολογισμός του παραγοντικού Ορισμός του n! n! = n x (n - 1) x x 2 x 1 Ο παραπάνω ορισμός μπορεί να γραφεί ως n! = 1 αν n = 0 n x (n -1)! αλλιώς Παράδειγμα (συνέχ).
Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού Πολυπλοκότητα
Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού Πολυπλοκότητα Τµήµα Διοίκησης Επιχειρήσεων Τει Δυτικής Ελλάδας Μεσολόγγι Δρ. Α. Στεφανή Διάλεξη 5 2 Εγκυροποίηση Λογισµικού Εγκυροποίηση Λογισµικού
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:
ΜΥΥ105: Εισαγωγή στον Προγραµµατισµό. Αναζήτηση και Ταξινόµηση Χειµερινό Εξάµηνο 2014
ΜΥΥ105: Εισαγωγή στον Προγραµµατισµό Αναζήτηση και Ταξινόµηση Χειµερινό Εξάµηνο 2014 Αναζήτηση και Ταξινόµηση Βασικές λειτουργίες σε προγράµµατα Αναζήτηση (searching): Βρες ένα ζητούµενο στοιχείο σε µια
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης 09.07.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος
Ορισμός Κάθε ζήτημα που τίθεται προς επίλυση, κάθε δύσκολη κατάσταση που μας απασχολεί και πρέπει να αντιμετωπιστεί.
ΠΡΟΒΛΗΜΑ Ορισμός Κάθε ζήτημα που τίθεται προς επίλυση, κάθε δύσκολη κατάσταση που μας απασχολεί και πρέπει να αντιμετωπιστεί. ΚΑΤΗΓΟΡΙΕΣ ΠΡΟΒΛΗΜΑΤΩΝ Απλά προβλήματα εύκολη η επίλυσή τους π.χ. υπολογισμός
Διορθώσεις σελ
Διορθώσεις σελ. 73-74 # Τώρα ο άνθρωπος σκέφτεται έναν αριθμό από 1 έως 1000 Ν = 1000 print Σκέψου έναν αριθμό από το 1 έως το, Ν guesses = 0 found = False first = 1 last = N while not found and guesses
Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Ανάλυση Αλγορίθμων Θέματα Θέματα: Ορθότητα Χρονική αποδοτικότητα Χωρική αποδοτικότητα Βελτιστότητα Προσεγγίσεις: Θεωρητική ανάλυση Εμπειρική ανάλυση Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Θεωρητική
Προγραμματισμός Η/Υ (ΤΛ2007 )
Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε.Ι. Κρήτης Προγραμματισμός Η/Υ (ΤΛ00 ) Δρ. Μηχ. Νικόλαος Πετράκης (npet@chania.teicrete.gr) Ιστοσελίδα Μαθήματος: https://eclass.chania.teicrete.gr/ Εξάμηνο: Εαρινό 01-15
for for for for( . */
Εισαγωγή Στον Προγραµµατισµό «C» Βρόχοι Επανάληψης Πανεπιστήµιο Πελοποννήσου Τµήµα Πληροφορικής & Τηλεπικοινωνιών Νικόλαος Δ. Τσελίκας Νικόλαος Προγραµµατισµός Δ. Τσελίκας Ι Ο βρόχος for Η εντολή for χρησιµοποιείται
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 04: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ. ΚΑΤΕΥΘΥΝΣΗ ΔΙΟΙΚΗΣΗΣ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ Πληροφορική I "Προγραμματισμός" B. Φερεντίνος
8 Τεχνικός Εφαρμογών Πληροφορικής με Πολυμέσα
Περιεχόμενα Πρόλογος... 9 Κεφάλαιο 1: Δομή και λειτουργία του υπολογιστή... 11 Κεφάλαιο 2: Χρήση Λ.Σ. DOS και Windows... 19 Κεφάλαιο 3: Δίκτυα Υπολογιστών και Επικοινωνίας... 27 Κεφάλαιο 4: Unix... 37
Περιεχόµενα. Ανασκόπηση - Ορισµοί. Ο κύκλος ανάπτυξης προγράµµατος. Γλώσσες Προγραµµατισµού Ασκήσεις
Προγραµµατισµός Η/Υ Ανασκόπηση - Ορισµοί Περιεχόµενα Ο κύκλος ανάπτυξης προγράµµατος Περιγραφή προβλήµατος Ανάλυση προβλήµατος Λογικό ιάγραµµα Ψευδοκώδικας Κωδικοποίηση Συντήρηση Γλώσσες Προγραµµατισµού
Επιµέλεια Θοδωρής Πιερράτος
Ερωτήσεις Σωστό - Λάθος 1. Ο αλγόριθµος πρέπει να τερµατίζεται µετά από εκτέλεση πεπερασµένου αριθµού εντολών. 2. Η είσοδος σε έναν αλγόριθµο µπορεί να είναι έξοδος σε έναν άλλο αλγόριθµο. 3. Ένας αλγόριθµος
Αλγόριθμοι Γραφημάτων
Αλγόριθμοι Γραφημάτων 1. Συντομότατα μονοπάτια 2. Αλγόριθμος Bellman-Ford 3. Αλγόριθμος Dijkstra 4. Floyd-Warshall Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Single-Source Shortest Path Πρόβλημα:
Θεωρητικό Μέρος. int rec(int n) { int n1, n2; if (n <= 5) then return n; else { n1 = rec(n-5); n2 = rec(n-3); return (n1+n2); } }
Πανεπιστήµιο Ιωαννίνων, Τµήµα Πληροφορικής 2 Νοεµβρίου 2005 Η/Υ 432: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκού Έτους 2005-2006 Παναγιώτα Φατούρου Ηµεροµηνία Παράδοσης 1 ο Σετ Ασκήσεων Θεωρητικό Μέρος:
Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3)
Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3) 3.1 Ασυμπτωτικός συμβολισμός (Ι) Οι ορισμοί που ακολουθούν μας επιτρέπουν να επιχειρηματολογούμε με ακρίβεια για την ασυμπτωτική συμπεριφορά. Οι f(n) και g(n) συμβολίζουν
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ
1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός
Ανάλυση Αλγορίθµων. Σύντοµη επανάληψη (ΕΠΛ 035).
Ανάλυση Αλγορίθµων Σύντοµη επανάληψη (ΕΠΛ 035). Περίληψη Ανάλυση αλγορίθµων Ο, Θ, Ω Ανάλυση µη αναδροµικών αλγόριθµων Ανάλυση αναδροµικών αλγόριθµων Εµπειρική Ανάλυση Visualization Απόδοση Αλγορίθµων Απόδοση
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου
Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1
Διαίρει-και-Βασίλευε Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική μέθοδος
Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Αναζήτηση. Σειριακή αναζήτηση. Δυαδική Αναζήτηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Παραδοχή Στη συνέχεια των διαφανειών (διαλέξεων) η ασυμπτωτική έκφραση (συμβολισμός Ο, Ω, Θ) του χρόνου
Εισαγωγή στην Πληροφορική
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Εισαγωγή στην Πληροφορική Ρωµύλος Κορακίτης Αστροφυσικός Αναπλ. Καθηγητής ΕΜΠ romylos@survey.ntua.gr Η έννοια του αλγορίθµου Παραδείγµατα
Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου
Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική
Δομές Δεδομένων (Data Structures)
Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες
Ταξινόμηση: Εισαγωγικά. Ταξινόμηση (Sor ng) Αλγόριθμοι Απλής Ταξινόμησης. Βασικά Βήματα των Αλγορίθμων
Ταξινόμηση: Εισαγωγικά Ταξινόμηση (Sor ng) Ορέστης Τελέλης Βασικό πρόβλημα για την Επιστήμη των Υπολογιστών. π.χ. αλφαβητική σειρά, πωλήσεις ανά τιμή, πόλεις με βάση πληθυσμό, Μπορεί να είναι ένα πρώτο
ΠΛΗ111. Ανοιξη Μάθηµα 2 ο. Αλγόριθµοι και Αφηρηµένοι Τύποι εδοµένων. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 2 ο Αλγόριθµοι και Αφηρηµένοι Τύποι εδοµένων Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Αλγόριθµοι Ορισµός Παράδειγµα Ασυµπτωτική
5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ
5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5.1 Εισαγωγή στους αλγορίθμους 5.1.1 Εισαγωγή και ορισμοί Αλγόριθμος (algorithm) είναι ένα πεπερασμένο σύνολο εντολών οι οποίες εκτελούν κάποιο ιδιαίτερο έργο. Κάθε αλγόριθμος
Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 15: Αναδρομή (Recursion) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η έννοια της αναδρομής Μη αναδρομικός / Αναδρομικός Ορισμός Συναρτήσεων Παραδείγματα Ανάδρομης Αφαίρεση της Αναδρομής
Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή
Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Εισαγωγή στις έννοιες Αλγόριθµοι και Πολυπλοκότητα, Οργάνωση Δεδοµένων και Δοµές Δεδοµένων Χρήσιµοι µαθηµατικοί
Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:
Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος
Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 10: Ταξινόμηση Πίνακα Αναζήτηση σε Ταξινομημένο Πίνακα Πρόβλημα Δίνεται πίνακας t από Ν ακεραίους. Ζητούμενο: να ταξινομηθούν τα περιεχόμενα του πίνακα σε αύξουσα αριθμητική
ΠαράδειγµαΠρογραµµατισµού
Προγραµµατισµός Η/Υ Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Μεθοδολογία Προγραµµατισµού Αφαιρετικότητα Ροή Ελέγχου/ εδοµένων Βιβλίο µαθήµατος: Chapter 1,, Sec. 4-54 ΕΠΛ 131 Αρχές Προγραµµατισµού
ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ
ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, σελ. 55-62 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 5) Δυαδική αναζήτηση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΕΡΓΑΣΤΗΡΙΟ 2: Εκφράσεις, πίνακες και βρόχοι 14 Απριλίου 2016 Το σημερινό εργαστήριο
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή
ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ. Εισαγωγή στη Python
ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Εισαγωγή στη Python Νικόλαος Ζ. Ζάχαρης Αναπληρωτής
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 2.0 Πολυπλοκότητα Αλγορίθμων Ασυμπτωτική Πολυπλοκότητα Αναδρομικές Σχέσεις Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων