Συγγραφή κώδικα, δοκιμασία, επαλήθευση. Γιάννης Σμαραγδάκης
|
|
- Έλλη Βουγιουκλάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Συγγραφή κώδικα, δοκιμασία, επαλήθευση Γιάννης Σμαραγδάκης
2 Προδιαγραφή απαιτήσεων Σχεδιασμός συνεπείς σχέσεις Υψηλό επίπεδο συνεπείς σχέσεις Χαμηλό επίπεδο συνεπείς σχέσεις Πλάνο δοκιμών Κώδικας
3 Συγγραφή κώδικα εν έχουμε να πούμε πολλά. Θυμηθείτε τι έχουμε πει από την αρχή του εξαμήνου ο κώδικας αντιπροσωπεύει συνήθως γύρω το 15% της προσπάθειας ανάπτυξης λογισμικού αλλά όλα τα άλλα γίνονται για να δουλέψει σωστά αυτό το 15% ο κώδικας πρέπει να ακολουθεί τις προδιαγραφές σχεδίασης τμηματική σχεδίαση, κρύψιμο πληροφορίας ρ Κακός/καλός κώδικας γράφεται σε οποιαδήποτε γλώσσα αν και οι μοντέρνες γλώσσες ενθαρύνουν ιδιότητες καλού κώδικα
4 Η συγγραφή κώδικα είναι στενά συνδεδεμένη με τη δοκιμασία του Η ουσία είναι η έλλειψη ελαττωμάτων (faults) που εκφράζονται σαν αστοχίες (failures)
5 Τεχνικές αξιοπιστίας Αποφυγή ελαττωμάτων (fault avoidance): τεχνικές ανάπτυξης λογισμικού που μειώνουν τα σφάλματα π.χ. καλός σχεδιασμός, ανάπτυξη προτύπων, μαθηματικές προδιαγραφές Εξάλειψη ελαττωμάτων (fault elimination): τεχνικές ανάλυσης που ανακαλύπτουν ελαττώματα δοκιμασία, στατική ανάλυση, επιθεώρηση κώδικα, επαλήθευση Πρόβλεψη ελαττωμάτων (fault prediction): τεχνικές ανάλυση που προβλέπουν την ύπαρξη σφαλμάτων μέτρα ποιότητας, διαδικασίες εκτίμησης Ανοχή ελαττωμάτων (fault tolerance): τεχνικές εκτέλεσης προγράμματος που ανιχνεύουν και διορθώνουν σφάλματα πριν υπάρξει αστοχία κώδικας ανάκαμψης, n-version programming
6 Ορισμοί οκιμασία: συστηματική (;) έρευνα στο χώρο εισόδων του προγράμματος σε αναζήτηση αστοχίας Debugging: ή ερεύνα για το ελάττωμα που προκάλεσε την αστοχία Στατική ανάλυση: η εξέταση ενός προγράμματος με σκοπό την εξαγωγή των χαρακτηριστικών συμπεριφοράς του υναμική ανάλυση: η παρατήρηση της εκτέλεσης ενός προγράμματος με σκοπό την εξαγωγή των χαρακτηριστικών συμπεριφοράς του Επαλήθευση (verification): η χρήση τεχνικών ανάλυσης για αυστηρή απόδειξη της ορθότητας του προγράμματος
7 Η βασική προσέγγιση είναι ίδια προδιαγραφή επιθυμητής συμπεριφοράς (για δοκιμασία και ανάλυση) ιαδικασία ανάπτυξης ιαδικασία εκτίμησης προδιαγραφή πραγματικής συμπεριφοράς αποτέλεσμα Σύγκριση συμπεριφοράς
8 οκιμασία προδιαγραφή επιθυμητής συμπεριφοράς Αναμενόμενες έξοδοι Αποτελέσματα προδιαγραφή πραγματικής συμπεριφοράς σύγκριση γρ η( (από άνθρωπο ή μηχανή) Σύγκριση συμπεριφοράς αποτέλεσμα
9 Ανάλυση Η δοκιμασία μπορεί να τεκμηριώσει μόνο την ύπαρξη ελαττωμάτων, όχι την απουσία τους Η στατική ανάλυση δεν χρειάζεται εκτέλεση μαθηματικό μοντέλο του λογισμικού επεξεργασία του με τυπικές μεθόδους μπορεί να δείξει την απουσία λαθών Λύνει τα προβλήματα της δοκιμασίας δεν χρειάζεται να κάνουμε δειγματοληψία δεν χρειάζεται να ερμηνεύσουμε αποτελέσματα ή να αποφασίσουμε πότε να σταματήσουμε Περιορισμοί τα θεωρήματα που θέλουμε να αποδείξουμε είναι συνήθως πολύ δύσκολα
10 Πολλές διαδικασίες ανάλυσης Επιθεώρηση Συντακτική ανάλυση Σημασιολογική ανάλυση Ανάλυση ροής Επαλήθευση
11 προδιαγραφή επιθυμητής συμπεριφοράς μη-τυπική προδιαγραφή Επιθεώρηση κώδικας προδιαγραφή πραγματικής συμπεριφοράς επιθεώρηση η (από άνθρωπο) Σύγκριση συμπεριφοράς αποτέλεσμα
12 Εύκολοι στατικοί αναλυτές Έλεγχος σύνταξης parser Σημασιολογικός έλεγχος έλεγχος τύπων, κλπ. Παραδείγματα;
13 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Ανάλυση ροής Έλεγχος μοντέλων (model checking) Προδιαγραφή επιθυμητής συμπεριφοράς: ακολουθία από συμβάντα Πραγματική συμπεριφορά: παράγεται από μοντέλο ροής του προγράμματος οι κόμβοι ονοματίζουν ενδιαφέροντα συμβάντα όλες οι δυνατές εκτελέσεις αναπαριστώνται σαν ακολουθίες συμβάντων κατά μήκος ενός μονοπατιού ροής Σύγκριση: ανάλογα με την ερώτηση μπορεί να είναι προφανής ή αναλυτική/δύσκολη λ Παραδείγματα: κανένα αρχείο δεν διαβάζεται πριν ανοιχτεί το ασανσέρ δεν κινείται πριν κλείσουν οι πόρτες
14 Έλεγχος μοντέλων προδιαγραφή επιθυμητής συμπεριφοράς σειρά συμβάντων μοντέλο συμπεριφοράς προδιαγραφή πραγματικής συμπεριφοράς αλγόριθμοι σύγκρισης αποτέλεσμα Σύγκριση συμπεριφοράς
15 Παράδειγμα totalpay := 0.0; for i = 1 to last_employee if salary[i] < then salary[i] := salary[i] * 1.05; else salary[i] := salary[i] * 1.10; totalpay := totalpay + salary[i]; end loop; print totalpay; totalpay := 0.0; for i = 1 to last_employee salary[i] := salary[i] * if salary[i] < salary[i] := salary[i] * 1.10 totalpay := totalpay + salary[i] end loop print totalpay
16 Σκελετός διαγράμματος ροής Do If
17 Σκελετός διαγράμματος με ενδιαφέροντα συμβάντα X := 6 5 Do If 7 1 X :=
18 Κάτι δεν πάει 1 καλά 6 Do 2 := X 5 3 If 7 4 X :=
19 Καλύτερο := X 6 5 Do If 7 1 X :=
20 Πιο δύσκολο Do If 7 X:= := X
21 Πιο σοβαρό 1 πρόβλημα Open Door Move Elevator 6 5 Do Close Door If
22 Πρόβλημα Do 2 3 If 7 4 Open Door Move 8 9 Elevator Close Door 10 11
23 Άλλο πρόβλημα; Close CoseDoor 6 5 Do 2 1 Open Door 3 4 If 7 Move 8 9 Elevator 10 11
24 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Απόδειξη ορθότητας xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Τυπική επαλήθευση Επιθυμητή συμπεριφορά: συνήθως σε κάποια μαθηματική λογική Συμπεριφορά: συνήθως συνάγεται από τη σημασιολογία της γλώσσας προγραμματισμού Σύγκριση: απόδειξη θεωρήματος, χρησιμοποιώντας τα αξιώματα της λογικής το αποτέλεσμα είναι σίγουρα «απόδειξη» αλλά όχι απαραίτητα «ορθότητας»
25 Τυπική επαλήθευση προδιαγραφή επιθυμητής συμπεριφοράς assertions σε λογική 1ής τάξεως σημασιολογία προγράμματος προδιαγραφή πραγματικής συμπεριφοράς απόδειξη (με το χέρι ή μηχανή) Σύγκριση συμπεριφοράς αποτέλεσμα
26 Η μέθοδος του Floyd (επαγωγικά assertions) είξε ότι κάθε τμήμα του προγράμματος συμπεριφέρεται ρ σωστά είξε με επαγωγή ότι όλες οι ακολουθίες εκτέλεσης είναι σωστές είξε ότι το πρόγραμμα σταματάει
27 Assertions Assertion: προδιαγραφή μιας συνθήκης που είναι αληθής σε κάποιο σημείο του προγράμματος Στη μέθοδο του Floyd γράφουμε assertions σε λογική πρώτης τάξης Τρεις τύποι assertions: o Αρχικό, As: στο αρχικό σημείο του προγράμματος o Τελικό,AF: στο τελικό o ενδιάμεσό,ai: ("loop invariants") σε διάφορα ενδιάμεσα σημεία του προγράμματος με βάση τον κανόνα: Κάθε επανάληψη του loop περνάει από τουλάχιστον ένα ενδιάμεσο assertion Αποτέλεσμα: Κάθε εκτέλεση του προγράμματος μπορεί να διαιρεθεί σε πεπερασμένο αριθμό τμημάτων κώδικα χωρίς loop που αρχίζει και τελειώνει με assertion
28 Θεώρημα: Μαθηματική επαγωγή: π.χ. πόσες ακμές μςστο C n Αν C n = (V n, E n ) είναι ένα πλήρες γράφημα με n κόμβους, τότε E n = n * (n-1)/2 Πώς το αποδεικνύουμε;
29 Βασικό συστατικό της μεθόδου του Floyd Αποδεικνύουμε ότι σε κάθε εκτέλεση αν το assertion Ai είναι αληθές τότε το Ai+1 είναι αληθές A i (C i A i+1) A i A i+1 C i κώδικας χωρίς loop Τελική υποχρέωση: αποδεικνύουμε ότι το πρόγραμμα σταματάει
30 Με σχήμα ενδιάμεσα assertions αρχικό assertion A i A i+1 τελικό assertion C i κώδικας χωρίς loop
31 Loop Invariants Το πρόβλημα είναι ότι οι πιθανές ακολουθίες εντολών σε ένα πρόγραμμα είναι άπειρες λόγω loops Λύση: το loop invariant assertion Ai αληθές για κάθε εκτέλεση του loop συνδέει με διπλανά assertions To loop invariant πρέπει να αναπαριστά την ουσία της δουλειάς που κάνει το loop
32 Παράδειγμα ταξινόμησης procedure sort(values, size); declare values real array[1000], temp real, i, j, size integer; ASSERT INITIAL do for i = 1 to size-1 do for j = i+1 to size if values[j] > values[i] then temp := values[i]; values[i] := values[j]; values[j] := temp; ASSERT INNER end do; ASSERT OUTER end do; ASSERT FINAL end sort;
33 Παράδειγμα ταξινόμησης procedure sort(values, size); declare values real array[1000], temp real, i, j, size integer; ASSERT INITIAL do for i = 1 to size-1 do for j = i+1 to size if values[j] > values[i] then temp := values[i]; values[i] := values[j]; values[j] := temp; ASSERT INNER end do; ASSERT OUTER end do; ASSERT FINAL end sort;
34 ASSERT OUTER values[i] values[k] for all k such that i < k size
35 Παράδειγμα ταξινόμησης procedure sort(values, size); declare values real array[1000], temp real, i, j, size integer; ASSERT INITIAL do for i = 1 to size-1 do for j = i+1 to size if values[j] > values[i] then temp := values[i]; values[i] := values[j]; values[j] := temp; ASSERT INNER end do; ASSERT OUTER end do; ASSERT FINAL end sort;
36 ASSERT INNER values[i] values[k] for all k such that i < k j
37 Παράδειγμα ταξινόμησης procedure sort(values, size); declare values real array[1000], temp real, i, j, size integer; ASSERT INITIAL do for i = 1 to size-1 do for j = i+1 to size if values[j] > values[i] then temp := values[i]; values[i] := values[j]; values[j] := temp; ASSERT INNER end do; ASSERT OUTER end do; ASSERT FINAL end sort;
38 ASSERT FINAL For all i, j, if i < j size, values[i] values [j]
39 Παράδειγμα ταξινόμησης procedure sort(values, size); declare values real array[1000], temp real, i, j, size integer; ASSERT INITIAL do for i = 1 to size-1 do for j = i+1 to size if values[j] > values[i] then temp := values[i]; values[i] := values[j]; values[j] := temp; ASSERT INNER end do; ASSERT OUTER end do; ASSERT FINAL end sort;
40 ASSERT INITIAL size > 0 and size 1000
41 Loop Invariants Αν θέλετε να γίνετε σοβαροί προγραμματιστές είναι απαραίτητο να σκέφτεστε τα loop invariants για κάθε loop που γράφετε Όχι αναγκαία σε αυστηρά μαθηματικά Αλλά απαραίτητο να καταλαβαίνετε πώς το invariant στηρίζει την όλη λογική του προγράμματός σας
42 Παρατηρήσεις Οι αποδείξεις είναι μακριές και συχνά σχολαστικές και δύσκολες πολύ συχνά χρειάζονται ιδιότητες μαθηματικών, κλπ. Τα assertions δεν είναι εύκολα να παραχθούν σωστά χρειάζονται βαθιά κατανόηση του προγράμματος Αυτόματα εργαλεία μπορούν να μας βοηθήσουν
43 Αυτόματα εργαλεία Τα εργαλεία τυπικής επαλήθευσης ή αποδείξεως θεωρημάτων είναι πιο παραγωγικά σε συνεργασία με το χρήστη η δομή της απόδειξης έρχεται από τον άνθρωπο το σύστημα επαληθεύει και κάνει «εύκολα» βήματα ο άνθρωπος επεμβαίνει συχνά και καθοδηγεί
44 Αποτελέσματα Έχει επιτευχθεί η τυπική επαλήθευση πολύ μεγάλων προγραμμάτων σημαντικό για πρωτόκολλα, μεταγλωττιστές, κλπ. Περιοχή με εξαιρετικά έντονη δραστηριότητα Η έρευνα σε δοκιμασία, ανάλυση, επαλήθευση προγραμμάτων είναι πλέον ένα συνεχές δοκιμασία -> επαλήθευση model checking -> δοκιμασία > επαλήθευση model checking > τυπική επαλήθευση
οκιμασία και πλάνο δοκιμασίας
οκιμασία και πλάνο ς Γιάννης Σμαραγδάκης Η επιχειρεί να απαντήσει Κάνει το λογισμικό αυτό που υποτίθεται; Πότε μπορεί να έχει πρόβλημα; Πόσο γρήγορα τρέχει; Πόσο ακριβή είναι τα αποτελέσματα; Όταν έχει
Εισαγωγή στην. Γιάννης Σμαραγδάκης
Εισαγωγή στην Τεχνολογία Λογισμικού Γιάννης Σμαραγδάκης Γιατί μελετάμε την Τεχνολογία Λογισμικού Λογισμικό υπάρχει παντού σε όλους τους τεχνικούς τομείς (π.χ. αεροδιαστημική) σε όλες τις επιστήμες στον
Προδιαγραφές Απαιτήσεων Γιάννης Σμαραγδάκης
Προδιαγραφές Απαιτήσεων Γιάννης Σμαραγδάκης Τα κυριότερα παραδοτέα/προϊόντα μιας διεργασίας ανάπτυξης λογισμικού Άρθρωση του προβλήματος, κατανόηση (προδιαγραφές απαιτήσεων) α ) Ποιο πρόβλημα λύνουμε;
Ανάπτυξη & Σχεδίαση Λογισμικού (ΗΥ420)
Ανάπτυξη & Σχεδίαση Λογισμικού (ΗΥ420) Έλεγχος Λογισμικού Προβλήματα Λογισμικού 2 Μια ματιά στα παλιά: Σφάλμα: Ελάττωμα: Ανθρώπινο λάθος (σε προδιαγραφές, τεκμηρίωση κλπ) «Κωδικοποίηση του σφάλματος» στο
ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δρ. Κόννης Γιώργος Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Προγραμματισμός Στόχοι 1 Να περιγράψουμε τις έννοιες του Υπολογιστικού Προβλήματος και του Προγράμματος/Αλγορίθμου
Προβλήματα, αλγόριθμοι, ψευδοκώδικας
Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι
Κεφάλαιο 5 Αξιωματική Σημασιολογία και Απόδειξη Ορθότητας Προγραμμάτων
Κεφάλαιο 5 Αξιωματική Σημασιολογία και Απόδειξη Ορθότητας Προγραμμάτων Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Εισαγωγή Τα προγράμματα μιας (κλασικής) γλώσσας προγραμματισμού
Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού Πολυπλοκότητα
Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού Πολυπλοκότητα Τµήµα Διοίκησης Επιχειρήσεων Τει Δυτικής Ελλάδας Μεσολόγγι Δρ. Α. Στεφανή Διάλεξη 5 2 Εγκυροποίηση Λογισµικού Εγκυροποίηση Λογισµικού
ιδάσκων: ηµήτρης Ζεϊναλιπούρ
Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?
ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ
ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΟ ΛΥΚΕΙΟ Εισαγωγή Η μεγάλη ανάπτυξη και ο ρόλος που
Κεφάλαιο : Εισαγωγή Στον Προγραμματισμό. (Διάλεξη 2) ΕΠΛ 032: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕΘΟΔΩΝ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ. Περιεχόμενα
Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραμματισμό (Διάλεξη 2) Περιεχόμενα Εισαγωγικές Έννοιες - Ορισμοί Ο κύκλος ανάπτυξης προγράμματος Παραδείγματα 1 Πότε χρησιμοποιούμε υπολογιστή? Χρήση υπολογιστή αν:
Ασφαλή Συστήματα Μέθοδοι ελέγχου και εξακρίβωσης ορθής λειτουργίας
Λειτουργικά Συστήματα Πραγματικού Χρόνου 2006-07 Ασφαλή Συστήματα Μέθοδοι ελέγχου και εξακρίβωσης ορθής λειτουργίας Μ.Στεφανιδάκης Ενσωματωμένα Συστήματα: Απαιτήσεις Αξιοπιστία (reliability) Χρηστικότητα
5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ
5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5.1 Εισαγωγή στους αλγορίθμους 5.1.1 Εισαγωγή και ορισμοί Αλγόριθμος (algorithm) είναι ένα πεπερασμένο σύνολο εντολών οι οποίες εκτελούν κάποιο ιδιαίτερο έργο. Κάθε αλγόριθμος
Εισαγωγή στην πληροφορική
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Εισαγωγή στην πληροφορική Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Η γλώσσα προγραμματισμού
FORTRAN και Αντικειμενοστραφής Προγραμματισμός
FORTRAN και Αντικειμενοστραφής Προγραμματισμός Παραδόσεις Μαθήματος 2016 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών
ΚΕΦΑΛΑΙΑ XIII, XIV. Εκσφαλμάτωση προγράμματος - Κύκλος Ζωής Λογισμικού
ΚΕΦΑΛΑΙΑ XIII, XIV Ένας προγραμματιστής ανεξάρτητα από το πόσο ικανός είναι, όταν δημιουργεί ένα πρόγραμμα, είναι φυσικό να κάνει ορισμένα λάθη. Σε ένα πρόγραμμα είναι δυνατό να παρουσιαστούν διαφορετικής
Μεταγλωττιστές Βελτιστοποίηση
Μεταγλωττιστές Βελτιστοποίηση Νίκος Παπασπύρου nickie@softlab.ntua.gr Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Εργαστήριο Τεχνολογίας Λογισμικού Πολυτεχνειούπολη, 15780
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 4: Λογισμικό Υπολογιστή (2/3), 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί στόχοι Η Ενότητα 4 διαπραγματεύεται
Προγραμματισμός Η/Υ. Προτεινόμενα θέματα εξετάσεων Εργαστήριο. Μέρος 1 ό. ΤΕΙ Λάρισας- Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Έργων Υποδομής
Προγραμματισμός Η/Υ Προτεινόμενα θέματα εξετάσεων Εργαστήριο Μέρος 1 ό ΤΕΙ Λάρισας- Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Έργων Υποδομής Ιανουάριος 2011 Καλογιάννης Γρηγόριος Επιστημονικός/ Εργαστηριακός
Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού
Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Εισαγωγή Γνώση γλώσσας από τη σκοπιά Του συντακτικού (syntax) Περιγραφή με γραμματικές
Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Εισαγωγικές Έννοιες ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος
Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες
Τεχνολογία Λογισµικού Ι Κεφάλαιο 5
ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα σπουδών "ΠΛΗΡΟΦΟΡΙΚΗ" - Θ.Ε. ΠΛΗ11 Τεχνολογία Λογισµικού Ι Κεφάλαιο 5 Βασίλειος Βεσκούκης ιδάκτωρ Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών v.vescoukis@cs.ntua.gr
Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)
Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες
Κεφάλαιο 7 : Είδη, Τεχνικές, και Περιβάλλοντα Προγραµµατισµού
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 7 : Είδη, Τεχνικές, και Περιβάλλοντα Προγραµµατισµού ( Απαντήσεις & Λύσεις Βιβλίου) 1. Σκοποί κεφαλαίου Κύκλος ανάπτυξης προγράµµατος Κατηγορίες γλωσσών προγραµµατισµού
Περιεχόµενα. Ανασκόπηση - Ορισµοί. Ο κύκλος ανάπτυξης προγράµµατος. Γλώσσες Προγραµµατισµού Ασκήσεις
Προγραµµατισµός Η/Υ Ανασκόπηση - Ορισµοί Περιεχόµενα Ο κύκλος ανάπτυξης προγράµµατος Περιγραφή προβλήµατος Ανάλυση προβλήµατος Λογικό ιάγραµµα Ψευδοκώδικας Κωδικοποίηση Συντήρηση Γλώσσες Προγραµµατισµού
ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών
44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.
Σου προτείνω να τυπώσεις τις επόμενες τέσσερις σελίδες σε ένα φύλο διπλής όψης και να τις έχεις μαζί σου για εύκολη αναφορά.
AeppAcademy.com facebook.com/aeppacademy Γεια. Σου προτείνω να τυπώσεις τις επόμενες τέσσερις σελίδες σε ένα φύλο διπλής όψης και να τις έχεις μαζί σου για εύκολη αναφορά. Καλή Ανάγνωση & Καλή Επιτυχία
Δομές Δεδομένων & Αλγόριθμοι
Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν
2 n N: 0, 1,..., n A n + 1 A
Θεωρία Υπολογισμού Ενότητα 5: Τεχνικές απόδειξης & Κλειστότητα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 2: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Συναρτήσεις & Σχέσεις (0.2.3) Γράφοι (Γραφήματα) (0.2.4) Λέξεις και Γλώσσες (0.2.5) Αποδείξεις (0.3) 1
ΛΟΓΙΚΑ ΔΙΑΓΡΑΜΜΑΤΑ. Γ Λυκείου Κατεύθυνσης Mike Trimos
ΛΟΓΙΚΑ ΔΙΑΓΡΑΜΜΑΤΑ Γ Λυκείου Κατεύθυνσης Mike Trimos Βήματα Ανάπτυξης ενός Συστήματος 1.Ορισμός και κατανόηση του προβλήματος 2.Ανάλυση του προβλήματος 3.Σχεδιασμός Αλγοριθμικής Λύσης 4.Κωδικοποίηση 5.Διόρθωση
2. Εισαγωγή στον Προγραμματισμό
Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων 2. Εισαγωγή στον Προγραμματισμό Ιωάννης Κατάκης Σήμερα o Εισαγωγικές έννοιες - ορισμοί o Ο κύκλος ανάπτυξης προγράμματος o Παραδείγματα Πότε χρησιμοποιούμε
Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 8 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Γιώργος Δημητρίου Μάθημα 8 ο Μετάφραση Οδηγούμενη από τη Σύνταξη Ο ΣΑ καλεί τις ρουτίνες που εκτελούν τη σημασιολογική ανάλυση και παράγουν τον ενδιάμεσο κώδικα Σημασιολογικές πληροφορίες μπορούν να μεταφέρονται
Κωδικοποίηση και Έλεγχος Ορθότητας
Κωδικοποίηση και Έλεγχος Ορθότητας περιεχόμενα περουσίασης Κωδικοποίηση Πρότυπα και διαδικασίες κωδικοποίησης Τεκμηρίωση Διαχείριση εκδόσεων Έλεγχος ορθότητας λογισμικού κωδικοποίηση διαχείριση εκδόσεων
Διάλεξη 2η: Αλγόριθμοι και Προγράμματα
Διάλεξη 2η: Αλγόριθμοι και Προγράμματα Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Αλγόριθμοι και Προγράμματα
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 9 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Η λειτουργία του υπολογιστή Κατηγορίες Εντολών Μορφή Εντολών
Υπολογιστικό Πρόβληµα
Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις
Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL)
Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Pascal- Εισαγωγή Η έννοια του προγράμματος Η επίλυση ενός προβλήματος με τον υπολογιστή περιλαμβάνει, όπως έχει ήδη αναφερθεί, τρία εξίσου
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 1 Ο. Εισαγωγή στις έννοιες Πρόβλημα, Αλγόριθμος, Προγραμματισμός, Γλώσσες Προγραμματισμού
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 1 Ο Εισαγωγή στις έννοιες Πρόβλημα, Αλγόριθμος, Προγραμματισμός, Γλώσσες Προγραμματισμού ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 Πρόβλημα Ως πρόβλημα θεωρείται μια κατάσταση που πρέπει
ΚΕΝΤΡΙΚΗ ΟΡΓΑΝΩΤΙΚΗ ΕΠΙΤΡΟΠΗ 8 ου ΠΑΝΕΛΛΗΝΙΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ 1996 ΠΡΟΚΑΤΑΡΚΤΙΚΗ ΦΑΣΗ ΠΑΝΕΛΛΗΝΙΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΘΕΜΑΤΑ ΓΥΜΝΑΣΙΟΥ
ΚΕΝΤΡΙΚΗ ΟΡΓΑΝΩΤΙΚΗ ΕΠΙΤΡΟΠΗ 8 ου ΠΑΝΕΛΛΗΝΙΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ 1996 ΠΡΟΚΑΤΑΡΚΤΙΚΗ ΦΑΣΗ ΠΑΝΕΛΛΗΝΙΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΘΕΜΑΤΑ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑ 1 Χρησιμοποιείστε τις παρακάτω τυποποιημένες εκφράσεις για να
1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ (Προγραμματισμός & MATLAB)
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΕ Η/Υ 1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ (Προγραμματισμός & MATLAB) Ν.Δ. Λαγαρός Μ. Φραγκιαδάκης Α. Στάμος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2016
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2016 M7 Δομές δεδομένων: Πίνακες Δρ. Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr ΕΜΠ/ΣΝΜΜ
Μεταγλωττιστές Βελτιστοποίηση
Βελτιστοποίηση (i) Μεταγλωττιστές Βελτιστοποίηση Νίκος Παπασπύρου nickie@softlab.ntua.gr Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Εργαστήριο Τεχνολογίας Λογισμικού Πολυτεχνειούπολη,
8 Τεχνικός Εφαρμογών Πληροφορικής με Πολυμέσα
Περιεχόμενα Πρόλογος... 9 Κεφάλαιο 1: Δομή και λειτουργία του υπολογιστή... 11 Κεφάλαιο 2: Χρήση Λ.Σ. DOS και Windows... 19 Κεφάλαιο 3: Δίκτυα Υπολογιστών και Επικοινωνίας... 27 Κεφάλαιο 4: Unix... 37
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η
Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια)
Μορφές αποδείξεων Μαθηματικά Πληροφορικής 2ο Μάθημα Αρχικός συγγραφέας: Ηλίας Κουτσουπιάς Τροποποιήσεις: Σταύρος Κολλιόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υπάρχουν πολλά είδη
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 M5 Ασκήσεις Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr ΕΜΠ/ΣΝΜΜ Εργαστήριο Ναυτικής
10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.
1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.
Προδιαγραφές Απαιτήσεων Επικύρωση Απαιτήσεων
Προδιαγραφές Απαιτήσεων Επικύρωση Απαιτήσεων περιεχόμενα παρουσίασης Προδιαγραφές Απαιτήσεων Έγγραφο Προδιαγραφών Απαιτήσεων λογισμικού (ΕΠΑΛ) Επικύρωση απαιτήσεων Ιχνηλάτηση απαιτήσεων προδιαγραφές απαιτήσεων
Εισαγωγή στις Αρχές της επιστήμης των ΗΥ
Εισαγωγή στις Αρχές της επιστήμης των ΗΥ Ερωτήσεις και ασκήσεις για επανάληψη 1. Τι είναι πρόβλημα (σελ 14) 2. Ποιες είναι οι κατηγορίες προβλημάτων με βάση την επίλυση; Δώστε τον ορισμό για κάθε μια κατηγορία.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΚΑΙ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 28 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ
Αρχές Προγραμματισμού Υπολογιστών
Αρχές Προγραμματισμού Υπολογιστών Ανάπτυξη Προγράμματος Β ΕΠΑΛ Τομέας Πληροφορικής Βελώνης Γεώργιος Καθηγητής Πληροφορικής ΠΕ20 Κύκλος ανάπτυξης προγράμματος/λογισμικού Η διαδικασία ανάπτυξης λογισμικού,
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α :
Σημειωματάριο Δευτέρας 4 Δεκ. 2017
Σημειωματάριο Δευτέρας 4 Δεκ. 2017 Ο αλγόριθμος Floyd-Warshall για την έυρεση όλων των αποστάσεων σε ένα γράφημα με βάρη στις ακμές Συνεχίσαμε σήμερα το θέμα της προηγούμενης Τετάρτης. Έχουμε ένα γράφημα
Κεφάλαιο 6 Υλοποίηση Γλωσσών Προγραμματισμού
Κεφάλαιο 6 Υλοποίηση Γλωσσών Προγραμματισμού Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Μεταγλωττιστής Πρόγραμμα Διαβάζει προγράμματα δεδομένης γλώσσας (πηγαία γλώσσα) και τα μετατρέπει
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΗΣ
Το αναλυτικό πρόγραμμα στο οποίο βασίζεται η εξέταση είναι το αναλυτικό πρόγραμμα του Μαθήματος Κατεύθυνσης Πληροφορική Επιστήμη Η.Υ της Γ Ενιαίου Λυκείου Γενικός Σκοπός Το μάθημα κατεύθυνσης της στη Γ'
Αναλύσεις Προγραμμάτων και Ψηφιακά Νομίσματα. Γιάννης Σμαραγδάκης, ΕΚΠΑ
Αναλύσεις Προγραμμάτων και Ψηφιακά Νομίσματα Γιάννης Σμαραγδάκης, ΕΚΠΑ Κρυπτονομίσματα/ Ψηφιακά Νομίσματα Γιάννης Σμαραγδάκης, ΕΚΠΑ 2 Κρυπτονομίσματα Κάτι σαν νομίσματα σε μεγάλο online βιντεοπαιχνίδι;
ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης
Ακολουθιακές εντολές. (Peter Ashenden, The Students Guide to VHDL)
Ακολουθιακές εντολές (Peter Ashenden, The Students Guide to VHDL) Εντολή If Τα βασικά χαρακτηριστικά της είναι τα εξής: Μπορεί να χρησιµοποιηθεί για τον έλεγχο µίας ή περισσοτέρων συνθηκών. Η πρώτη συνθήκη
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ. ΚΑΤΕΥΘΥΝΣΗ ΔΙΟΙΚΗΣΗΣ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ Πληροφορική I "Προγραμματισμός" B. Φερεντίνος
ΗΥ Λογική. Διδάσκων: Δημήτρης Πλεξουσάκης Καθηγητής
ΗΥ 180 - Λογική Διδάσκων: Καθηγητής E-mail: dp@csd.uoc.gr Ώρες διδασκαλίας: Δευτέρα, Τετάρτη 4-6 μμ, Αμφ. Β Ώρες φροντιστηρίου: Πέμπτη 4-6 μμ, Αμφ. Β Ώρες γραφείου: Δευτέρα, Τετάρτη 2-4 μμ, Κ.307 Web site:
Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/
Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Άσκηση 1 (α) Να διατυπώσετε την πιο κάτω λογική έκφραση στη Visual Basic κάνοντας χρήση μεταβλητών:
Άσκηση 1 (α) Να διατυπώσετε την πιο κάτω λογική έκφραση στη Visual Basic κάνοντας χρήση μεταβλητών: (Μον.2) Η ηλικία είναι μεταξύ των 15 και 18 συμπεριλαμβανομένων (β) Αν Χ= 4, Υ=2, Κ=2 να βρείτε το αποτέλεσμα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Ενότητα 1: Εισαγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Ενότητα 1: Εισαγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons
ΜΕΘΟΔΟΛΟΓΙΕΣ ΑΝΑΠΤΥΞΗΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΜΕΘΟΔΟΛΟΓΙΕΣ ΑΝΑΠΤΥΞΗΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Μεθοδολογίες Ανάπτυξης Συστημάτων Πληροφορικής Απαντούν στα εξής ερωτήματα Ποιά βήματα θα ακολουθηθούν? Με ποιά σειρά? Ποιά τα παραδοτέα και πότε? Επομένως,
Αλγόριθμοι. Χαρίκλεια Τσαλαπάτα 29/2/2012
Αλγόριθμοι Χαρίκλεια Τσαλαπάτα 29/2/2012 Αλγόριθμος Θεμελιώδης έννοια της πληροφορικής Είναι πεπερασμένη σειρά βημάτων για την επίλυση δεδομένου προβλήματος Αλγοριθμική σκέψη: η διαδικασία ανάπτυξης αλγορίθμων
Πρόβλημα είναι μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής.
Κεφάλαιο 2 - Πρόβλημα 2.1.1. Η έννοια του προβλήματος Πρόβλημα είναι μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής. 2.1.2. Κατηγορίες προβλημάτων
ΕΞΕΤΑΣΤΕΑ ΥΛΗ (SYLLABUS) ADVANCED αντικειμενοστραφής προγραμματισμός ΕΚΔΟΣΗ 1.0. Σόλωνος 108,Τηλ Φαξ
ΕΞΕΤΑΣΤΕΑ ΥΛΗ (SYLLABUS) ADVANCED αντικειμενοστραφής προγραμματισμός ΕΚΔΟΣΗ 1.0 ΤΙ ΕΙΝΑΙ ΤΟ ADVANCED Οι Advanced θεματικές ενότητες είναι κατάλληλες για άτομα που επιθυμούν να συνεχίσουν σπουδές στο χώρο
ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ
ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΟΔΗΓΙΕΣ: ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΣΕ ΟΛΕΣ ΤΙΣ ΕΡΩΤΗΣΕΙΣ. Το εξεταστικό δοκίμιο αποτελείται από δύο Ενότητες Α και Β. ΕΝΟΤΗΤΑ Α - Αποτελείται από δέκα (10) ερωτήσεις. Κάθε ορθή απάντηση
Γ-ΓΥΜΝΑΣΙΟΥ (1) ΣΕΛ 1 / 6
Γ-ΓΥΜΝΑΣΙΟΥ (1) ΣΕΛ 1 / 6 1) ΘΕΜΑ : Ποιο αποτέλεσμα εμφανίζετε στην οθόνη όταν εκτελούμε τις παρακάτω εντολές στην LOGO ; (Στις περιπτώσεις που ανοίγει παράθυρο επικοινωνίας να το ζωγραφίσετε. Στις περιπτώσεις
Πίνακας Περιεχομένων. μέρος A 1 Εισαγωγή στην Τεχνολογία Λογισμικού
Πρόλογος...21 μέρος A Εισαγωγή στην Τεχνολογία Λογισμικού 1 Εισαγωγή στην Τεχνολογία Λογισμικού 1.1 Το λογισμικό...25 1.1.1 Ο ρόλος και η σημασία του λογισμικού...26 1.1.2 Οικονομική σημασία του λογισμικού...28
<<ΔΗΜΗΤΡΗΣ ΜΑΝΩΛΗΣ ΦΥΣΙΚΟΣ ΜCs>> 1
ΚΕΦΑΛΑΙΟ 7 ο ΠΡΟΓΡΑΜΜΑ : Το πρόγραμμα αποτελείται από μια σειρά οδηγιών, που ονομάζονται εντολές, για την εκτέλεση τέτοιου είδους πράξεων, καθώς επίσης και από ένα σύνολο πρόσθετων οδηγιών ελέγχου, που
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 4: Εισαγωγή / Σύνολα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες
Εισαγωγή στην πληροφορική
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Εισαγωγή στην πληροφορική Βασίλειος Βεσκούκης ρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Η γλώσσα προγραµµατισµού
11/23/2014. Στόχοι. Λογισμικό Υπολογιστή
ονάδα Δικτύων και Επικοινωνιών ΗΥ Τομέας Πληροφορικής, αθηματικών και Στατιστικής ΓΕΩΠΟΙΚΟ ΠΑΕΠΙΣΤΗΙΟ ΑΘΗΩ Εισαγωγή στην Επιστήμη των ΗΥ άθημα-4 url: http://openeclass.aua.gr (AOA0) Λογισμικό Υπολογιστή
Τεχνικές σχεδίασης προγραμμάτων, Προγραμματιστικά Περιβάλλοντα
Τεχνικές σχεδίασης προγραμμάτων, Προγραμματιστικά Περιβάλλοντα Ενότητες βιβλίου: 6.4, 6.7 Ώρες διδασκαλίας: 1 Τεχνικές σχεδίασης προγραμμάτων Στο βιβλίο γίνεται αναφορά σε μία τεχνική για την ανάπτυξη
Ανάλυση της Ορθότητας Προγραμμάτων
Ανάλυση της Ορθότητας Προγραμμάτων Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων ΚανόνεςΑπόδειξηςΜερικήςΟρθότητας
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ
Μαθηματικά Πληροφορικής 4ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.
Παράλληλη Επεξεργασία Κεφάλαιο 2 Παραλληλισμός Δεδομένων
Παράλληλη Επεξεργασία Κεφάλαιο 2 Παραλληλισμός Δεδομένων Κωνσταντίνος Μαργαρίτης Καθηγητής Τμήμα Εφαρμοσμένης Πληροφορικής Πανεπιστήμιο Μακεδονίας kmarg@uom.gr http://eos.uom.gr/~kmarg Αρετή Καπτάν Υποψήφια
Σχέδια μαθημάτων για την δημιουργία συναρτήσεων υπολογισμού του ΜΚΔ και του ΕΚΠ στην MSWLogo
Σχέδια μαθημάτων για την δημιουργία συναρτήσεων υπολογισμού του Μέγιστου Κοινού Διαιρέτη (ΜΚΔ) και του Ελάχιστου Κοινού Πολλαπλασίου (ΕΚΠ) δύο αριθμών, με την γλώσσα προγραμματισμού Logo Κογχυλάκης Σ.
Κεφάλαιο : Εισαγωγή Στον Προγραμματισμό. (Διάλεξη 2) ΕΠΛ 032: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕΘΟΔΩΝ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ
Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραμματισμό (Διάλεξη 2) Περιεχόμενα Εισαγωγικές Έννοιες - Ορισμοί Ο κύκλος ανάπτυξης προγράμματος Παραδείγματα Πότε χρησιμοποιούμε υπολογιστή? Χρήσηυπολογιστήαν: Έχουμε
Γλώσσες Προγραμματισμού Μεταγλωττιστές. Σημασιολογική Ανάλυση
Γλώσσες Προγραμματισμού Μεταγλωττιστές Σημασιολογική Ανάλυση Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακελλαρίου Δομή Σημασιολογικής Ανάλυσης Στατική και Δυναμική Σημασιολογία Σημασιολογικοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ ΔΙΑΔΙΚΑΣΙΕΣ ΠΑΡΑΓΩΓΗΣ ΛΟΓΙΣΜΙΚΟΥ Διδάσκων: Γ. Χαραλαμπίδης,
ιαφάνειες παρουσίασης #1
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επανάληψης. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Δομή Επανάληψης Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Δομή Επανάληψης Επανάληψη με αρίθμηση DO = ,
Βασικές Έννοιες Αλγορίθμων. Βασικές Εντολές Αλγορίθμων (Κεφ. 2ο Παρ. 2.4)
Βασικές Έννοιες Αλγορίθμων Βασικές Εντολές Αλγορίθμων (Κεφ. 2ο Παρ. 2.4) Δομές εντολών Υπάρχουν διάφορα είδη εντολών όπως, ανάθεσης ή εκχώρησης τιμής, εισόδου εξόδου, κ.ά., αλλά γενικά χωρίζονται σε τρείς
Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος
Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος
Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr
Θεωρία Υπολογισμού Άρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Περιγραφή μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: ΠΛΗΡΟΦΟΡΙΚΗ Ημερομηνία και ώρα εξέτασης: Τρίτη, 6 Ιουνίου 2006 07:30 10:30
ΔΙΑΛΕΞΗ ΙΙ ΕΝΑ ΒΗΜΑ ΠΑΡΑΠΑΝΩ ΜΕ SCRATCH ΕΠΙΛΕΓΩΝΤΑΣ & ΕΠΑΝΑΛΑΜΒΑΝΟΝΤΑΣ
Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΛΕΞΗ ΙΙ ΕΝΑ ΒΗΜΑ ΠΑΡΑΠΑΝΩ ΜΕ SCRATCH ΕΠΙΛΕΓΩΝΤΑΣ & ΕΠΑΝΑΛΑΜΒΑΝΟΝΤΑΣ Γ ι ά ν ν η ς Ε. Τ ζ ή μ α ς Μάθημα: ΤΕΧΝΙΚΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Το πρώτο πράγμα
Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης
Εργαστήριο 6 Εντολές Επανάληψης Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL. Ρεύμα Εισόδου / Εξόδου.. Ρεύμα Εισόδου / Εξόδου. To πρόγραμμα γραφικών gnuplot. Γραφικά στη PASCAL. Σκοπός 6.1 ΕΠΙΔΙΩΞΗ
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Σημειώσεις στο μάθημα «Στοιχεία Προγραμματισμού σε Γραφικό Περιβάλλον»
1. Κύκλος ζωής λογισμικού Ο κύκλος ζωής λογισμικού είναι οι φάσεις (τα στάδια) από τις οποίες διέρχεται μία εφαρμογή λογισμικού, από την σύλληψη της ιδέας, τη διαδικασία κατασκευής / ανάπτυξης, τη λειτουργία
Έλεγχος Προγραμμάτων και Συστήματος
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Τεχνολογίες και Εφαρμογές Διαδικτύου και Συστήματος Κατερίνα Πραματάρη Τεχνολογίες και Εφαρμογές Διαδικτύου Τύποι Σφαλμάτων (1)
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ-ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΠΑΛ- ΚΑΝΙΓΓΟΣ 13- ΤΗΛ
ΘΕΜ 1.. Χαρακτηρίστε τις προτάσεις που ακολουθούν ως Σωστό, αν οι προτάσεις είναι σωστές και ως Λάθος αν οι προτάσεις είναι λάθος. 1.Είναι πάντα δυνατή η μετατροπή της εντολής WHILE DO σε FOR DO. 2. Στην
Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο
Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία
Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος
Μορφές αποδείξεων Μαθηματικά Πληροφορικής ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.
Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ
Περιεχόμενα Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23 Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ 1. Επαναληπτικοί αλγόριθμοι: Μέτρα προόδου και αναλλοίωτες συνθήκες.....................................................29