Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός
|
|
- Θεοφάνης Αναγνωστάκης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Ανάκληση Πληποφοπίαρ Διδάζκων Δημήηριος Καηζαρός Διάλεξη 18η: 17/05/2017 1
2 Η μέθοδος BrowseRank 2
3 Εισαγωγή Η page importance, που αναπαριστά την αξία μιας σελίδας του Web, είναι παράγων-κλειδί για την αναζήτηση στο Web, επειδή οι σύγχρονες μηχανές αναζήτησης, ο ερπυσμός (crawling), το indexing, και η διαβάθμιση (ranking) συνήθως καθοδηγούνται από αυτή τη μετρική Προς το παρόν, η page importance υπολογίζεται με χρήση του link graph του Web και αυτή η διαδικασία λέγεται link analysis Παρουσιάσαμε ήδη αλγορίθμους για link analysis: τον HITS και PageRank 3
4 Google PageRank Ο PageRank βασίζεται σε μια discrete-time Markov διαδικασία πάνω στον Web link graph για να υπολογίσει την page importance, και στην ουσία υλοποιεί έναν τυχαίο περίπατο (random walk) ενός Web surfer πάνω στους υπερσυνδέσμους (hyperlinks) του Web Περιορισμοί του PageRank Ο link graph, πάνω στον οποίο βασίζεται ο PageRank, δεν είναι αξιόπιστη πηγή δεδομένων, επειδή τα hyperlinks του Web μπορούν να προστεθούν/διαγραφούν συχνά από τους δημιουργούς περιεχομένου Ο PageRank μοντελοποιεί απλά έναν random walk πάνω στον link graph, αλλά ΔΕΝ λαμβάνει υπόψην του την διάρκεια του χρόνου που ξοδεύει ο surfer πάνω στις Web σελίδες κατά την διάρκεια του random walk 4
5 User Browsing Graph Μπορούμε να βρούμε μια καλύτερη πηγή δεδομένων αντί του link graph? Χρήση του user browsing graph, που προκύπτει από τα user behavior data Τα δεδομένα συμπεριφοράς των χρηστών (user behavior data) μπορούν να καταγραφούν από τους browsers και να συλλεγούν από τους web servers 5
6 Continuous-time Markov chain Τι είδους αλγορίθμους πρέπει να χρησιμοποιήσουμε για να αξιοποιήσουμε την νέα πηγή δεδομένων; Η χρήση μιας discrete-time Markov process δεν είναι πλάον επαρκής Ορίζουμε μια continuous-time Markov process ως το μοντέλο για τον user browsing graph Υποθέτουμε ότι η διαδικασία είναι time-homogenous Η stationary probability distribution της διαδικασίας μπορεί να χρησιμοποιηθεί για να ορίσουμε την importance των Web pages Εφαρμόζουμε τον αλγόριθμο BrowseRank, για να υπολογίσουμε αποδοτικά την stationary probability distribution της continuous-time Markov process Κάνουμε χρήση ενός μοντέλου προσθετικού θορύβου (additive noise) για να αναπαραστήσουμε τις παρατηρήσεις σε σχέση με την Markov process και για να εκτιμήσουμε τις παραμέτρους τις διαδικασίας Υιοθετούμε μια embedded Markov chain για να επιταχύνουμε τον υπολογισμό της stationary distribution 6
7 User Behavior Data Τα user behavior data μπορούν να καταγραφούν και να αναπαρασταθούν με τριάδες της μορφής <URL, TIME, TYPE> Από τα δεδομένα, εξάγουμε μεταβάσεις των χρηστών από σελίδα σε σελίδα καθώς και τον χρόνο που ξοδεύουν οι χρήστες στις σελίδες ως ακολούθως: Κατακερματισμός των sessions (διάσπαση με: time rule & type rule) Κατασκευή των URL pair Εκτίμηση της reset probability Εξαγωγή του staying time 7
8 Εξαγωγή του staying time Για κάθε ζεύγος URL, χρησιμοποιούμε την διαφορά μεταξύ του χρόνου της δεύτερης σελίδας και αυτού της πρώτης σελίδας, ως εκτίμηση του χρόνου παραμονής στην πρώτη σελίδα Για την τελευταία σελίδα του session, χρησιμοποιούμε το ακόλουθο ευρεστικό για να εκτιμήσουμε τον χρόνο παραμονής Εάν το session κατακερματιστεί με τον time rule, παίρνουμε ένα τυχαίο (!?) δείγμα από την κατανομή των χρόνων των παρατηρημένων staying time των σελίδων σε όλες τις εγγραφές Εάν η session κατακερματιστεί με τον type rule, χρησιμοποιούμε την διαφορά μεταξύ του χρόνου της τελευταίας σελίδας στο session και του χρόνου της πρώτης σελίδας του επόμενου session (INPUT page) 8
9 Χτίσιμο ενός user browsing graph Κάθε κόμβος στο γράφημα αναπαριστά ένα URL στα user behavior data, και συσχετίζεται με: reset probability, και staying time ως μεταδεδομένα Κάθε κατευθυνόμενη ακμή αναπαριστά μια μετάβαση μεταξύ δυο κόμβων, και συσχετίζεται με τον αριθμό των μεταβάσεων που αποτελεί το βάρος της Ο user browsing graph είναι ένα γράφημα με βάρη στις ακμές που οι κόμβοι του περιέχουν μεταδεδομένα 9
10 Υποθέσεις Ανεξαρτησία χρηστών και sessions Οι διαδικασίες browsing διαφορετικών χρηστών σε διαφορετικές sessions είναι ανεξάρτητες. Με άλλα λόγια, θεωρούμε το web browsing ως μια στοχαστική διαδικασία, με τα παρατηρούμενα δεδομένα σε κάθε session του κάθε χρήστη να είναι ένα I.I.D. δείγμα από αυτήν την διαδικασία Ιδιότητα του Markov Η επόμενη σελίδα που επιλέγει να επισκεφτεί κάποιος χρήστης εξαρτάται μόνο από την τρέχουσα σελίδα, και είναι ανεξάρτητη από τις σελίδες που επισκέφτηκε προηγουμένως Αυτή η υπόθεση είναι επίσης βασική στον PageRank Time-homogeneity Οι συμπεριφορές browsing των χρηστών (π.χ., μεταβάσεις και staying time) δεν εξαρτώνται από τον χρόνο. Παρόλο που αυτή η υπόθεση δεν είναι απαραιτήτως αληθής στην πράξη, την υιοθετούμε για τεχνικούς λόγους Αυτή η υπόθεση είναι επίσης βασική στον PageRank 10
11 Το continuous-time Markov μοντέλο Έστω ένας Web surfer που περιηγείται σε όλες τις Webpages Έστω ότι X s είναι η σελίδα την οποία επισκέπτεται ο surfer την χρονική στιγμή s, s>0 Τότε, με τις τρεις υποθέσεις, η διαδικασία X = {X s, s 0} σχηματίζει μια continuous-time time-homogenous Markov process Έστω ότι p ij (t) είναι η transition probability από την σελίδα i στην j για το χρονικό διάστημα t σε αυτήν την διαδικασία Μπορεί ν αποδειχτεί ότι υπάρχει μια stationary probability distribution π, η οποία είναι μοναδική και ανεξάρτητη του t, και συσχετίζεται με την P(t) = [p ij (t)] NΧN, τέτοια ώστε για οποιονδήποτε t > 0 π = πp(t) Το i th κελί της κατανομής π είναι το κλάσμα του χρόνου που ο surfer περνά στην i th σελίδα προς τον χρόνο που περνά σε όλες τις σελίδες όταν το χρονικό διάστημα t τείνει στο άπειρο Με αυτήν την λογική, η κατναομή π μπορεί ν αποτελέσει μια μετρική της page importance 11
12 Μηχανισμός Για να υπολογίσουμε αυτήν την stationary probability distribution, χρειάζεται να εκτιμήσουμε την πιθανότητα κάθε κελιού του matrix P(t) Στην πράξη, είναι δύσκολο να έχουμε αυτόν τον πίνακα, επειδή είναι δύσκολο να πάρουμε την πληροφορίας για όλα τα πιθανά χρονικά διαστήματα Για να επιλύσουμε αυτό το πρόβλημα, προτείνεται ένας νέος λαόγριθμος που βασίζεται στον transition rate matrix Ο transition rate matrix ορίζεται ως η παράγωγος της P(t) όταν t τείνει στο 0, εάν υπάρχει Q = P (0) Αποκαλούμε τον πίνακα Q = (q ij ) NXN ως ο Q-matrix 12
13 Ο Q-πίνακας Όταν ο χώρος καταστάσεων είναι πεπερασμένος, υπάρχει μια έναπρος-ένα αντιστοιχία μεταξύ του Q-πίνακα και του P(t), και ισχύει INF < q ii < +INF και SUM j q ij = 0 Εξαιτίας αυτής της αντιστοιχίας, μπορούμε να χρησιμοποιήσουμε την Q-Process για να αναπαραστήσουμε την αρχική continuoustime Markov process, δηλαδή, η browsing process X = {X s, s 0} που ορίστηκε προηγουμένως είναι μια Q-Process εξαιτίας του πεπερασμένου χώρου καταστάσεων Τα πλεονεκτήματα της χρήσης του Q-πίνακα Οι παράμετροι του Q-matrix μπορούν να εκτιμηθούν από τα δεδομένα Βασιζόμενοι στον Q-matrix, υπάρχει ένα αποδοτικός τρόπος για να υπολογίσουμε την stationary probability distribution του P(t) Η αποκαλούμενη EMC είναι μια discrete-time Markov process που έχει πίνακα πιθανοτήτων μεταβάσεων με μηδενικά σε όλες τις θέσεις της διαγωνίου, και -q ij /q ii στις θέσεις εκτός της διαγωνίου 13
14 Το βασικό θεώρημα Η διαδικασία Y είναι μια discrete-time Markov chain, και έτσι η stationary probability distribution π μπορεί να υπολογιστεί από απλές μεθόδους, π.χ., την power method Κατόπιν, θα εξηγήσουμε πώς να εκτιμήσουμε τις παραμέτρους στον Q-πίνακα, ή ισοδύναμα, τις παραμέτρους q ii και τις transition probabilities -q ij /q ii (-q ij /q ii > 0, αφού q ii <0) 14
15 Εκτίμηση των q ii Για μια Q-Process, ο staying time T i πάνω στον i th κόμβο καθορίζεται από μια exponential distribution με παραμέτρους q ii : P(Ti > t) = exp(q ii t) Αυτό υπονοεί ότι μπορούμε να εκτιμήσουμε τα q ii από μεγάλους αριθμούς παρατηρήσεων του staying time στα the user behavior data Αυτή η εργασία δεν είναι απλή, επειδή οι παρατηρήσεις των user behavior data συνήθως περιέχουν θόρυβο εξαιτίας της ταχύτητας σύνδεσης του Internet, μέγεθος page, δομή page, και άλλων παραμέτρων, δηλαδή, οι παρατηρούμενες τιμές δεν ικανοποιούν την exponential distribution Υποθέτουμε ότι η Z είναι συνδυασμός του πραγματικού staying time T i και του θορύβου U, δηλαδή: Z = U + T i 15
16 Εκτίμηση της Transition Probability στην EMC Οι πιθανότητες μετάβασης στην EMC περιγράφουν τις καθαρές μεταβάσεις του surfer πάνω στον user browsing graph Η εκτίμηση αυτών μπορεί να βασιστεί στις παρατηρημένες μεταβάσεις μεταξύ σελίδων στα user behavior data Χρησιμοποιούμε την ακόλουθη μέθοδο για την εκτίμηση 16
17 Εκτίμηση της Transition Probability στην EMC 17
18 Εκτίμηση της Transition Probability στην EMC Η διαισθητική ερμηνεία της μετάβασης έχει ως εξής: Όταν ο surfer περιηγείται πάνω στον user browsing graph, μπορεί να ακολουθήσει έναν σύνδεσμο με ποιθανότητα α, ή να επιλέξει να ξεκινήσει από μια νέα σελίδα με πιθανότητα (1-α) Η επιλογή της νέας σελίδας καθορίζεται από την reset probability Πλεονεκτήματα της χρήσης της Εξίσωσης (8) για την εκτίμηση αυτή η εκτίμηση δεν θα είναι πολωμένη λόγω του περιορισμένου αριθμού των παρατηρημένων μεταβάσεων η αντίστοιχη EMC είναι πρωτογενής, και συνεπώς έχει μια μοναδική stationary distribution Επομένως, μπορούμε να χρησιμοποιήσουμε την power method για να υπολογίσουμε την stationary distribution με αποδοτικό τρόπο 18
19 Ο αλγόριθμος BrowseRank 19
20 Top-20 Websites από τους 3 αλγορίθμους 20
21 Αποτελέσματα-1 21
22 Αποτελέσματα-2 22
Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός
Ανάκληση Πληποφοπίαρ Διδάζκων Δημήηριος Καηζαρός Διάλεξη 17η: 23/05/2016 1 Spamming PageRank 2 (Link Spam Farms) Spamming: Παξαπιάλεζε ησλ κεραλώλ αλαδήηεζεο γηα λα απνθηεζεί πςειόηεξε δηάηαμε (ranking)
Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός
Ανάκληση Πληροφορίας Διδάσκων Δημήτριος Κατσαρός Διάλεξη 17η: 21/05/2014 1 ΗμέθοδοςHITS Hypertext Induced Topic Search 2 Hypertext Induced Topic Search (HITS) Επινοήθηκε από τον Jon Kleinberg το 1998 Διαφορές
Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός
Ανάκληση Πληροφορίας Διδάσκων Δημήτριος Κατσαρός Διάλεξη 13η: 28/04/2014 1 Παράμετροι του μοντέλου PageRank 2 Ηπαράμετροςα(1/2) Η παράμετρος αυτή ελέγχει στην ουσία την προτεραιότητα που δίνεται στη δομή
Κοινωνικά Δίκτυα Αναζήτηση Πληροφοριών σε Δίκτυα
Κοινωνικά Δίκτυα Αναζήτηση Πληροφοριών σε Δίκτυα Ν. Μ. Σγούρος Τμήμα Ψηφιακών Συστημάτων, Παν. Πειραιώς sgouros@unipi.gr Δομή του WWW Ορισμός Προβλήματος Υποθέτουμε ότι οι πηγές πληροφοριών αναπριστώνται
Web Mining. Χριστίνα Αραβαντινού Ιούνιος 2014
Web Mining Χριστίνα Αραβαντινού aravantino@ceid.upatras.gr Ιούνιος 2014 1 / 34 Χριστίνα Αραβαντινού Web Mining Περιεχόµενα 1 2 3 4 5 6 2 / 34 Χριστίνα Αραβαντινού Web Mining Το Web Mining στοχεύει στην
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ ΔΟΥΒΛΕΤΗΣ ΧΑΡΑΛΑΜΠΟΣ ΕΠΙΒΛΕΠΟΝΤΕΣ ΚΑΘΗΓΗΤΕΣ Μαργαρίτης Κωνσταντίνος Βακάλη
Μελέτη Περίπτωσης: Random Surfer
Μελέτη Περίπτωσης: Random Surfer Introduction to Programming in Java: An Interdisciplinary Approach Robert Sedgewick and Kevin Wayne Copyright 2008 March 1, 2016 11:10 tt Memex Memex. [Vannevar Bush, 1936]
Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός
Ανάκληση Πληροφορίας Διδάσκων Δημήτριος Κατσαρός Διάλεξη 14η: 07/05/2014 1 Ευαισθησία του PageRank 2 Ευαισθησία του PageRank: Εισαγωγικά Η ευαισθησία του PageRank μπορεί να αναλυθεί εξετάζοντας ξεχωριστά
ΜΑΘΗΜΑ 3ο. Βασικές έννοιες
ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1 Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 15/3/2017 Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ
Διαδικασίες Markov Υπενθύμιση
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Διαδικασίες Markov Υπενθύμιση Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
Έξι βαθμοί διαχωρισμού
Έξι βαθμοί διαχωρισμού Βασισμένα στα 1. http://snap.stanford.edu/class/cs224w-readings/kleinberg99smallworld.pdf 2. http://snap.stanford.edu/class/cs224w-readings/kleinberg01smallworld.pdf Το πείραμα του
Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός
Ανάκληση Πληποφοπίαρ Διδάζκων Δημήηριος Καηζαρός Διάλεξη 17η: 15/05/2017 1 Spamming PageRank 2 (Link Spam Farms) Spamming: Παξαπιάλεζε ησλ κεραλώλ αλαδήηεζεο γηα λα απνθηεζεί πςειόηεξε δηάηαμε (ranking)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων Κατανομή Poisson & Εκθετική Κατανομή Διαδικασία Markov Γεννήσεων Θανάτων (Birth Death Markov Processes) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr
Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής
Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης
Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Τυχαία Σήματα Γενίκευση τυχαίων διανυσμάτων Άπειρο σύνολο πιθανά αριθμήσιμο από τυχαίες μεταβλητές Παραδείγματα τυχαίων σημάτων: Τηλεπικοινωνίες: Σήμα πληροφορίας
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Μοντέλα Στατιστικής Μηχανικής, Κινητικότητα & Ισορροπία Αλυσίδες Markov: Καταστάσεις, Εξισώσεις Μεταβάσεων καθ. Βασίλης Μάγκλαρης
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τι κάνει η Στατιστική Στατιστική (Statistics) Μετατρέπει αριθμητικά δεδομένα σε χρήσιμη πληροφορία. Εξάγει συμπεράσματα για έναν πληθυσμό. Τις περισσότερες
Information Retrieval
Ανάκληση Πληποφοπίαρ Information Retrieval Διδάζκων Δημήηριος Καηζαρός Διάλεξη 13η: 10/05/2016 Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 1 Ερπυστές στον Παγκόσμιο Ιστό Το πρόβλημα της ανενέωσης σελίδων στον index
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 9: Εισαγωγή στους Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Γράφοι - ορισμοί και υλοποίηση Διάσχιση Γράφων Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Ο αλγόριθμος PageRank της Google
Ο αλγόριθμος PageRank της Google 1 Η μηχανή αναζήτησης Google Το Google ξεκίνησε σαν μια κολεγιακή εργασία από τον Larry Page και τον Sergey Brin το 1996 με σκοπό την κατασκευή μιας μηχανής αναζήτησης
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Πολυτεχνείο Κρήτης Σχολή Ηλεκτρονικών Μηχανικών Και Μηχανικών Η/Υ. ΠΛΗ 513 Αυτόνομοι Πράκτορες
Πολυτεχνείο Κρήτης Σχολή Ηλεκτρονικών Μηχανικών Και Μηχανικών Η/Υ ΠΛΗ 53 Αυτόνομοι Πράκτορες Εύρεση του utility χρηστών με χρήση Markov chain Monte Carlo Παπίλαρης Μιχαήλ Άγγελος 29349 Περίληψη Η εργασία
Στοχαστικές Ανελίξεις (3) Αγγελική Αλεξίου
Στοχαστικές Ανελίξεις (3) Αγγελική Αλεξίου alexiou@unipi.gr 1 Αλυσίδες Markov 2 Παράδειγμα 1: παιχνίδι τύχης Στοχαστικές Ανελίξεις Α. Αλεξίου 3 Παράδειγμα 2: μηχανή Έστω μηχανή που παράγει ένα προϊόν με
E-commerce Networks & Applications. Η διαφήμιση στο Internet. Νίκος Κωνσταντίνου
E-commerce Networks & Applications Η διαφήμιση στο Internet Νίκος Κωνσταντίνου Εισαγωγή Ηαπλήδημιουργίαενόςsite δεν είναι πλέον αρκετή Μια επένδυση σε ανάπτυξη και συντήρηση δεν αποδίδει χωρίς διαφήμιση
Προβλήματα Μεταφορών (Transportation)
Προβλήματα Μεταφορών (Transportation) Παραδείγματα Διατύπωση Γραμμικού Προγραμματισμού Δικτυακή Διατύπωση Λύση Γενική Μέθοδος Simplex Μέθοδος Simplex για Προβλήματα Μεταφοράς Παράδειγμα: P&T Co ΗεταιρείαP&T
Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
ΠΛΗ513 - Αυτόνομοι Πράκτορες Αναφορά Εργασίας
ΠΛΗ513 - Αυτόνομοι Πράκτορες Αναφορά Εργασίας Ομάδα εργασίας: LAB51315282 Φοιτητής: Μάινας Νίκος ΑΦΜ: 2007030088 ΠΕΡΙΓΡΑΦΗ ΙΔΕΑΣ Η ιδέα της εργασίας βασίζεται στην εύρεση της καλύτερης πολιτικής για ένα
Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό
Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό ιδάσκων ηµήτριος Κατσαρός, Ph.D. @ Τµ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & ικτύων Πανεπιστήµιο Θεσσαλίας ιάλεξη 9η: 25/04/2007 1 Τα µαθηµατικά του PageRank
καθ. Βασίλης Μάγκλαρης
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ενισχυτική Μάθηση - Δυναμικός Προγραμματισμός: 1. Markov Decision Processes 2. Bellman s Optimality Criterion 3. Αλγόριθμος
Συστήματα Markov Ένα σύστημα Markov διαγράμματος μετάβασης καταστάσεων
Ένα σύστημα Markov (ή διαδικασία Markov ή αλυσίδα Markov) είναι: ένα σύστημα που μπορεί να αποτελείται από πολλές (αριθμημένες) καταστάσεις (states). Στο σύστημα αυτό υπάρχει δυνατότητα μετάβασης από την
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο
Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό
Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό ιδάσκων ηµήτριος Κατσαρός, Ph.D. @ Τµ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & ικτύων Πανεπιστήµιο Θεσσαλίας ιάλεξη 9η: 25/04/2007 1 Τα µαθηµατικά του PageRank
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κλειστά Δίκτυα Ουρών Markov Θεώρημα Gordon Newell Αλγόριθμος Buzen Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 10/5/2017 ΚΛΕΙΣΤΟ ΔΙΚΤΥΟ ΔΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ Μ = 2 Ουρές,
Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο
Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία
Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..
Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 5.10: Θόρυβος (Πηγές Θορύβου, Κατανομή Poisson, Λευκός Θόρυβος, Ισοδύναμο
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,
ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΟΛΙΤΙΣΜΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ 3 ΘΕΜΑ: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ ΓΡΑΦΗΜΑΤΑ Επίκουρος Καθηγητής ΠΕΡΙΕΧΟΜΕΝΟ
Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση
Πίνακες Διασποράς Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση κλειδί k T 0 1 2 3 4 5 6 7 U : χώρος πιθανών κλειδιών Τ : πίνακας μεγέθους
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κλειστά Δίκτυα Ουρών Markov - Αλγόριθμος Buzen Μοντέλο Παράλληλης Επεξεργασίας Έλεγχος Ροής Άκρου σε Άκρο (e2e) στο Internet Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr
Διάλεξη 29: Γράφοι. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 9: Γράφοι Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Γράφοι - ορισμοί και υλοποίηση - Διάσχιση Γράφων Διδάσκων: Παναγιώτης νδρέου ΕΠΛ035 Δομές Δεδομένων και λγόριθμοι για Ηλ. Μηχ.
Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός
Ανάκληση Πληροφορίας Διδάσκων Δημήτριος Κατσαρός Διάλεξη 16η: 14/05/2014 1 Ζητήματα Μεγάλης-Κλίμακας Υλοποίησης του PageRank 2 Αρχιτεκτονική Μηχανής Αναζήτησης 3 Ευρετήρια (Indexes) Ευρετήρια Περιεχομένου
u v 4 w G 2 G 1 u v w x y z 4
Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E
Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες
Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού
Μαρκοβιανές Αλυσίδες
Μαρκοβιανές Αλυσίδες { θ * } Στοχαστική Ανέλιξη είναι μια συλλογή τ.μ. Ο χώρος Τ (συνήθως είναι χρόνος) μπορεί να είναι είτε διακριτός είτε συνεχής και καλείται παραμετρικός χώρος. Το σύνολο των δυνατών
Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Συνοπτική Παρουσίαση Πακέτου Στατιστικών Ιστοσελίδων.
Συνοπτική Παρουσίαση Πακέτου Στατιστικών Ιστοσελίδων. Στην αρχή βλέπουμε τα βασικά στατιστικά, πόσα από το συνολικά έχουμε καταναλώσει. Για πιο αναλυτικά πατάμε view web statistics Στην καινούρια σελίδα
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν
Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας. Ένας αποδεκτός ορισμός της ακμής είναι ο ακόλουθος: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με
Πώς λειτουργεί το Google?
Πώς λειτουργεί το Google? Στα άδυτα του Γίγαντα της Αναζήτησης! Το να ψάξουμε κάτι στο Google είναι κάτι τόσο καθημερινό για τους περισσότερους από εμάς, που το θεωρούμε δεδομένο. Αυτό που ίσως ξεχνάμε
Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..
Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας
Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή:
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά
ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 1: Εκτιμώντας τις πιθανότητες αθέτησης από τις τιμές της αγοράς
ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Πιστωτικός Κίνδυνος Διάλεξη 1: Εκτιμώντας τις πιθανότητες αθέτησης από τις τιμές της αγοράς Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
Social Web: lesson #4
Social Web: lesson #4 looking for relevant information browsing searching monitoring recommendations Information Retrieval the inverted index Google.com the pagerank algorithm the value of words the price
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων 1ο Σετ Ασκήσεων - Λύσεις
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων ο Σετ Ασκήσεων - Λύσεις Νοέμβριος - Δεκέμβριος 205 Ερώτημα (α). Η νοσοκόμα ακολουθεί μια Ομογενή Μαρκοβιανή Αλυσίδα Διακριτού Χρόνου με χώρο καταστάσεων το σύνολο
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 8/3/2017 ΠΑΡΑΜΕΤΡΟΙ (1/4) (Επανάληψη) Ένταση φορτίου (traffic intensity)
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις
Ανάκτηση Κειμένου (εισαγωγικά θέματα) Θέματα σχετικά με Εξόρυξη από τον Παγκόσμιο Ιστό. Εξόρυξη Δεδομένων 2010-2011 1
Θέματα σχετικά με Εξόρυξη από τον Παγκόσμιο Ιστό Εξόρυξη Δεδομένων: Ακ. Έτος 2010-2011 ΑΝΑΛΥΣΗ ΣΥΝΔΕΣΕΩΝ 1 Ανάκτηση Κειμένου (εισαγωγικά θέματα) Εξόρυξη Δεδομένων: Ακ. Έτος 2010-2011 ΑΝΑΛΥΣΗ ΣΥΝΔΕΣΕΩΝ
Ανάκτηση Πληροφορίας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #14 Αναζήτηση στο Web Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια χρήσης
Εισαγωγή στην ανάλυση συνδέσμων
Εισαγωγή στην ανάλυση συνδέσμων Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μαρία Χαλκίδη Why link analysis? Why link analysis? The web is not just a collection of documents its hyperlinks are important!
HY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6
HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο 2015-2016 Φροντιστήριο 6 Α) ΘΕΩΡΙΑ Μέθοδος Επίλυσης (Resolution) Στη μέθοδο της επίλυσης αποδεικνύουμε την ικανοποιησιμότητα ενός συνόλου προτάσεων,
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2014-2015 Πρώτη Σειρά Ασκήσεων (Υποχρεωτική, 25% του συνολικού βαθμού στο μάθημα) Ημερομηνία Ανακοίνωσης: 22/10/2014 Ημερομηνία Παράδοσης: Μέχρι 14/11/2014 23:59
Υπερπροσαρμογή (Overfitting) (1)
Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης
ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012
ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012 Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει
Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου
Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης
Δημιουργία μιας επιτυχημένης παρουσίας στο διαδίκτυο
Δημιουργία μιας επιτυχημένης παρουσίας στο διαδίκτυο 1 Πληροφορική: Τάσεις, Επιχειρηματικές Ευκαιρίες και Έρευνα ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ τμήματος Εφαρμοσμένης Πληροφορικής Πανεπιστημίου Μακεδονίας
Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό
Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό ιδάσκων ηµήτριος Κατσαρός, Ph.D. @ Τµ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & ικτύων Πανεπιστήµιο Θεσσαλίας ιάλεξη 11η: 09/05/2007 1 Ζητήµατα Μεγάλης-Κλίµακας
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Value at Risk (VaR) και Expected Shortfall
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ Value at Risk (VaR) και Expected Shortfall Ορισμός του VaR VaR, Value at Risk, Αξία σε Κίνδυνο. Η JP Morgan εισήγαγε την χρήση του. Μας δίνει σε ένα μόνο νούμερο, την
Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό. Ζητήµατα Μεγάλης-Κλίµακας Υλοποίησης του PageRank. Αρχιτεκτονική Μηχανής Αναζήτησης
Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό ιδάσκων ηµήτριος Κατσαρός, Ph.D. @ Τµ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & ικτύων Πανεπιστήµιο Θεσσαλίας ιάλεξη η: 09/0/00 Ζητήµατα Μεγάλης-Κλίµακας Υλοποίησης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός
Ανάκληση Πληροφορίας Διδάσκων Δημήτριος Κατσαρός Διάλεξη 18η: 28/05/2014 1 Spamming PageRank 2 Link Spam Farms Spamming: Παραπλάνηση των μηχανών αναζήτησης για να αποκτηθεί υψηλότερη διάταξη (ranking)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής ΕΠΛ 132 Αρχές Προγραμματισμού ΙΙ ΑΣΚΗΣΗ 2 Επεξεργασία Πινάκων με Αλγόριθμο PageRank & Επεξεργασία Συμβολοσειρών με Απόσταση SED Διδάσκων: Δημήτρης Ζεϊναλιπούρ Υπεύθυνος
Δομές Δεδομένων (Data Structures)
Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008 1 Τύποι Οικονομικών Δεδομένων Τα οικονομικά δεδομένα που χρησιμοποιούνται για την εξέταση οικονομικών φαινομένων μπορεί να έχουν τις ακόλουθες
HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΕΦΑΡΜΟΓΕΣΔΙΟΙΚΗΤΙΚΗΣΕΠΙΣΤΗΜΗΣ&
Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2017-2018 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής
ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 2: Pricing Defaultable Assets. Μιχάλης Ανθρωπέλος
ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Πιστωτικός Κίνδυνος Διάλεξη 2: Pricing Defaultable Assets Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos Μιχάλης
12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
Μηχανική Μάθηση Μερωνυµιών για Αναγνώριση Γεγονότων
Μηχανική Μάθηση Μερωνυµιών για Αναγνώριση Γεγονότων Αναστάσιος Σκαρλατίδης 1,2 anskarl@iit.demokritos.gr επιβλέπων: Καθ. Βούρος Γ. 1 1 Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων Πανεπιστήµιο
Πληρότητα της μεθόδου επίλυσης
Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο, θα πρέπει να περιέχει τουλάχιστον
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Προσομοίωση Monte Carlo Αλυσίδων Markov: Αλγόριθμοι Metropolis & Metropolis-Hastings Προσομοιωμένη Ανόπτηση Simulated Annealing
Theory Greek (Cyprus) Μη γραμμική δυναμική σε Ηλεκτρικά Κυκλώματα (10 μονάδες)
Q2-1 Μη γραμμική δυναμική σε Ηλεκτρικά Κυκλώματα (10 μονάδες) Παρακαλείστε, να διαβάσετε τις Γενικές Οδηγίες που βρίσκονται σε ξεχωριστό φάκελο πριν ξεκινήσετε την επίλυση αυτού του προβλήματος. Εισαγωγή
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανάλυση Ουράς Αναμονής M/G/1 Αρχές Ανάλυσης Ουράς M/G/1 Ενσωματωμένη Αλυσίδα Markov (Embedded Markov Chain) Τύποι Pollaczeck - Khinchin (P-K) για Ουρές M/G/1 Μέσες Τιμές
/ / 38
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-37: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 205-6 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 0 Επιµέλεια : Σοφία Σαββάκη Ασκηση. Ο Κώστας πηγαίνει
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Σκοποί ενότητας Κατά τη διάρκεια των καθημερινών μας
Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.
Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη
ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Efficient Query Evaluation over Temporally Correlated Probabilistic Streams
ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Efficient Query Evaluation over Temporally Correlated Probabilistic Streams Αλέκα Σεληνιωτάκη Ηράκλειο, 26/06/12 aseliniotaki@csd.uoc.gr ΑΜ: 703 1. Περίληψη Συνεισφοράς
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Δυναμικός Προγραμματισμός με Μεθόδους Monte Carlo: 1. Μάθηση Χρονικών Διαφορών (Temporal-Difference Learning) 2. Στοχαστικός
Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 9 ο Δρ. Βασίλειος Γ. Καμπουρλάζος Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Μια Ενοποιητική Προσέγγιση στην ΥΝ Η Θεωρία Πλεγμάτων στην ΥΝ. Υπολογιστικές Μεθοδολογίες
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εφαρμογές Κλειστών Δικτύων Ουρών Markov: 1. Ανάλυση Window Flow Control σε Δίκτυα Υπολογιστών 2. Αξιολόγηση Συστημάτων Πολύ-προγραμματισμού (Multitasking) Γενίκευση Μοντέλων
Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21
ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις
Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον