Approximations to Piecewise Continuous Functions
|
|
- Κυπριανός Λιακόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Approximations to Piecewise Continuous Functions Univ.-Prof. Dr.-Ing. habil. Josef BETTEN RWTH Aachen University Templergraben 55 D A a c h e n, Germany betten@mmw.rwth-aachen.de Abstract This worsheet is concerned with approximations to piecewise continuous functions. It has been illustrated that Maplesoft furnishes powerful tools in finding best approximations to several functions. Some examples are discussed in more detail. Keywords: step functions; HEAVISIDE functions; FOURIER approximation; L-two norm FOURIER Approximation restart: FOURIER_series(x a[0]/2+sum(a[]*cos(*x+b[]*sin(*x,=..infinity; FOURIER_series( x + 2 a 0 ( a cos( x + b sin( x = a[](/pi*int(f(x*cos(*x,x=0..2*pi; a a[0]simplify(subs(=0,%; 0 2 a 0 f( x cos( x 0 2 f( x b[](/pi*int(f(x*sin(*x,x=0..2*pi; 2 b f( x sin( x 0
2 Unit Step Function or HEAVISIDE Unit Function F(xpiecewise(x0 and x<pi,,xpi and x<2*pi,-,x2*pi,; 0 < x and x < F( x - < x and x < 2 2 < x plot(%,x=0..2.*pi,labels=[x,f],color=blac; Alternatively, the piecewise continuous function F(x can be represented as a HEAVISIDE function: alias(h=heaviside: HEAVISIDE[F]convert(F(x,H; HEAVISIDE F H( x 2 H ( x + 2 H( 2 + x plot(%,x=0..2.*pi,color=blac, title="heaviside unit step function"; A[0]value(subs(f(x=F(x,a[0]; A 0 0 A[]simplify(value(subs(f(x=F(x,a[]; A 2 sin( ( + cos( A[]subs(sin(*Pi=0,%; A 0 B[]simplify(value(subs(f(x=F(x,b[]; 2 cos( ( + cos( B B[]simplify(subs(cos(*Pi=(-^,%; 2( (- ( + + (- ( 2 B for i in [,3,5] do y(x,n=isum(b[]*sin(*x,=..i od; 2
3 4 sin( x y ( x, n = 4 sin( x 4 sin( 3 x y ( x, n = sin( x 4 sin( 3 x 4 sin( 5 x y ( x, n = plot({y(x,n=,y(x,n=3,y(x,n=5},x=0..3.5*pi, labels=[x,y],color=blac, title="approximations with n = [, 3, 5]"; for i in [,3,99] do y(x,n=isum(b[]*sin(*x,=..i od: plot({y(x,n=,y(x,n=3,y(x,n=99},x=0..3.5*pi, labels=[x,y],color=blac, title="approximations with n = [, 3, 99]"; L_zwei[n]sqrt((/Pi*Int((F(x_-y(x,n^2,x=0..Pi; L_zwei n ( F( x_ y ( x, n 2 0 for i in [,3,5,99] do L_zwei[n=i] evalf(sqrt((/pi*int((f(x-y(x,n=i^2,x= *pi,4 od; L_zwei n = L_zwei n = L_zwei n = L_zwei n = Example: h(x 3
4 h(xpiecewise(x0 and x<pi,pi,xpi and x<2*pi,x-pi, x2*pi and x<3*pi,pi; h( x 0 < x and x < x < x and x < 2 2 < x and x < 3 plot(%,x=0..3*pi,color=blac,labels=[x,h]; alias(h=heaviside: HEAVISIDE[h]convert(h(x,H; HEAVISIDE h H( x 2 H ( x + x H ( x x H( 2 + x + 2 H( 2 + x H( 3 + x plot(%,x=0..3*pi,color=blac, title="heaviside Function for h(x"; A[0]value(subs(f(x=h(x,a[0]; 3 A 0 2 A[]simplify(value(subs(f(x=h(x,a[]: A[]subs({sin(*Pi=0,cos(*Pi=(-^,(cos(*Pi^2=},%; (- A 2 B[]simplify(value(subs(f(x=h(x,b[]: B[]subs({sin(*Pi=0,cos(*Pi=(-^,(cos(*Pi^2=},%; B (- y(x,na[0]/2+sum(a[]*cos(*x+b[]*sin(*x,=..n; n 3 y ( x, n + 4 ( (- cos( x (- sin( x = 2 4
5 for i in [,2,3] do y(x,n=ia[0]/2+sum(a[]*cos(*x+b[]*sin(*x,=..i od; 3 2 cos( x y ( x, n = + + sin( x cos( x y ( x, n = sin( x sin( 2 x cos( x 2 cos( 3 x y ( x, n = sin( x sin( 2 x + + sin( 3 x alias(h=heaviside,co=color: p[]plot({y(x,n=,y(x,n=2,y(x,n=3},x=0..3*pi,co=blac: p[2]plot(.72*h(x-3*pi,x=0..3.0*pi,co=blac: p[3]plot(h(x,x=0..3*pi, title="approximations with n = [, 2, 3]" : plots[display]({seq(p[],=..3}; for i in [,2,50] do y(x,n=ia[0]/2+sum(a[]*cos(*x+b[]*sin(*x,=..i od: p[4]plot({y(x,n=,y(x,n=2,y(x,n=50},x=0..3*pi,co=blac: p[5]plot(.72*h(x-3*pi,x=0..3.0*pi,co=blac, title="approximations with n = [, 2, 50]": plots[display]({p[4],p[5]}; Smoothing of the FOURIER-Series y(x, n=3: g(,nsin(pi*/n/(pi*/n; # smoothing factor 5
6 sin N N g (, N G(x,n,NA[0]/2+ sum(g(appa,nu*(a[appa]*cos(appa*x+b[appa]*sin(appa*x, appa=..n; # smoothing function n 3 G ( x, n, N + 4 g ( κ, Ν ( A κ cos( κ x + B κ sin( κ x κ = g(,4subs(n=4,g(,n; # N n + 4 sin 4 g (, 4 G(x,n=3,N=4subs({n=3,Nu=4,appa=,g(appa,Nu=g(,4, A[appa]=A[],B[appa]=B[]},G(x,n,N; 3 4 sin ( (- cos( x ( 3 4 G ( x, n = 3, N = = alias(h=heaviside,co=color: p[6]plot({y(x,n=3,g(x,n=3,n=4},x=0..3*pi,co=blac: p[7]plot(.72*h(x-3*pi,x=0..3.0*pi,co=blac: p[8]plot(h(x,x=0..3*pi, title="approximation with n = 3 and its Smoothing": plots[display](seq(p[],=6..8; - sin( x Smoothing of the FOURIER-Series y(x, n = 2: g(,3subs(n=3,g(,n; 3 sin 3 g (, 3 G(x,n=2,N=3evalf(A[0]/2+ sum(g(,3*(a[]*cos(*x+b[]*sin(*x,=..2,4; G ( x, n = 2, N = cos( x sin( x sin( 2. x 6
7 alias(h=heaviside,co=color: p[9]plot({h(x,y(x,n=2,g(x,n=2,n=3},x=0..3*pi,co=blac, title="approximation with n = 2 and its Smoothing": plots[display]({p[7],p[9]}; The above Figures illustrate the good approximations to the given function h(x. Example: K(x K(xpiecewise(x-Pi and x<0,3,x0 and x</2,0, x/2 and x<pi,/x; 3 < x and x < 0 K( x 0 0 < x and x < 2 < x and x < x 2 plot(%,x=-pi..pi,color=blac,labels=[x,k]; alpha[0](/pi*int(f(x,x=-pi..pi; α 0 f( x alpha[](/pi*int(f(x*cos(*x,x=-pi..pi; α f( x cos( x beta[](/pi*int(f(x*sin(*x,x=-pi..pi; β f( x sin( x 7
8 Alpha[0]value(subs(f(x=K(x,alpha[0]; 3 + ln( 2 + ln( Α 0 Alpha[]simplify(value(subs(f(x=K(x,alpha[]; 3 sin( + Ci 2 Ci( Α A[]subs(sin(*Pi=0,%; Ci 2 Ci( A BETA[]simplify(value(subs(f(x=K(x,beta[]; 3 cos( 3 Si + 2 Si( BETA BETA[]subs(cos(*Pi=(-^,%; 3( - 3 Si + 2 Si( BETA y(x,nalpha[0]/2+ sum(alpha[]*cos(*x+beta[]*sin(*x,=..n: y(x,nsubs(sin(*pi=0,%; 3 + ln( 2 + ln( y ( x, n 2 n Ci 2 Ci( ( cos x 3( - 3 Si + 2 Si( sin ( x + + = y(x,subs(n=,y(x,n: Y(x,evalf(%,4; Y ( x, cos( x.477 sin( x y(x,3subs(n=3,y(x,n: Y(x,3evalf(%,4; Y ( x, cos( x.477 sin( x 0.46 cos( 2. x sin( 2. x cos( 3. x sin( 3. x y(x,49subs(n=49,y(x,n: Y(x,49evalf(%: plot({y(x,,y(x,3,y(x,49},x=-pi..pi,co=blac, title="approximations with n = [, 3, 49]"; 8
9 L_two[n]sqrt((/2/Pi*Int((K(x_-Y(x,n^2,x=-Pi..Pi; L_two n 2 2 ( K( x_ Y ( x, n 2 for i in [,3,49] do L_two[n=i]evalf(sqrt((/2/Pi*int((K(x-Y(x,i^2,x=-3..3,4 od; L_two n = L_two n = L_two n = Example: M(x restart: M(xpiecewise(-Pi<x and x<0,, x0 and x</2,2, x/2 and x<pi,/x; < x and x < 0 M( x 2 0 < x and x < 2 < x and x < x 2 plot(%,x=-pi..pi,color=blac,labels=[x,m]; 9
10 a[0](/pi*int(f(x,x=-pi..pi; a 0 f( x a[](/pi*int(f(x*cos(*x,x=-pi..pi; a f( x cos( x b[](/pi*int(f(x*sin(*x,x=-pi..pi; b f( x sin( x A[0]value(subs(f(x=M(x,a[0]; + + ln( 2 + ln( A 0 A[]simplify(value(subs(f(x=M(x,a[]; sin( 2 sin + Ci 2 2 Ci( A A[]subs(sin(Pi*=0,%; 2 sin + Ci 2 2 Ci( A B[]simplify(value(subs(f(x=M(x,b[]; cos( + 2 cos Si Si( B B[]subs(cos(Pi*=(-^,%; (- + 2 cos Si Si( B for i in [,2,3,0] do y(x,n=ievalf(a[0]/2+ sum(a[]*cos(*x+b[]*sin(*x,=..i,4 od; y ( x, n = cos( x sin( x y ( x, n = cos( x sin( x cos( 2. x sin( 2. x y ( x, n = cos( x sin( x cos( 2. x sin( 2. x cos( 3. x sin( 3. x y ( x, n = cos( x sin( x cos( 2. x sin( 2. x cos( 3. x sin( 3. x cos( 4. x sin( 4. x cos( 5. x sin( 5. x cos( 6. x sin( 6. x cos( 7. x sin( 7. x cos( 8. x sin( 8. x cos( 9. x sin( 9. x cos( 0. x sin( 0. x 0
11 alias(h=heaviside,th=thicness,co=color: p[]plot({seq(y(x,n=i,i=..3},x=-pi..pi,co=blac: p[2]plot(m(x,x=-pi..pi,th=2,co=blac: p[3]plot(0.79*h(x+pi,x=-.00*pi *pi,co=blac: p[4]plot(0.796*h(x-pi,x=0.999*pi...00*pi,co=blac, title="approximations with n = [, 2, 3]": plots[display]({seq(p[],=..4}; y(x,n=99evalf(a[0]/2+ sum(a[]*cos(*x+b[]*sin(*x,=..99,4: plot({m(x,y(x,n=99},x=-pi..pi,color=blac, title="m(x and y(x, n = 99"; L_two[n]sqrt((/2/Pi*Int((M(x_-y(x,n^2,x=-Pi..Pi; L_two n 2 2 ( M( x_ y ( x, n 2 for i in [,2,3,99] do L_two[n=i]evalf(sqrt((/2/Pi*int((M(x-y(x,n=i^2, x=-3..3,4 od; L_two n = L_two n =
12 L_two n = L_two n = Smoothing of the FOURIER-Series y(x, n = 3: g(,nn*sin(*pi/n//pi; N sin N g (, N g(,4subs(n=4,%; 4 sin 4 g (, 4 G(x,n=3,N=4evalf(A[0]/2+ sum(g(,4*(a[]*cos(*x+b[]*sin(*x,=..3,4; G ( x, n = 3, N = cos( x 0.34 sin( x cos( 2. x sin( 2. x cos( 3. x sin( 3. x plot({m(x,y(x,n=3,g(x,n=3,n=4},x=-pi..pi,color=blac, title="smoothing of the FOURIER-Series y(x, n = 3"; g(,subs(n=,g(,n; sin g (, G(x,n=0,N=evalf(A[0]/2+ sum(g(,*(a[]*cos(*x+b[]*sin(*x,=..0,4; G ( x, n = 0, N = cos( x sin( x cos( 2. x sin( 2. x cos( 3. x sin( 3. x cos( 4. x 2
13 sin( 4. x cos( 5. x sin( 5. x cos( 6. x sin( 6. x cos( 7. x sin( 7. x cos( 8. x sin( 8. x cos( 9. x sin( 9. x cos( 0. x sin( 0. x plot({m(x,y(x,n=0,g(x,n=0,n=},x=-pi..pi,color=blac, title="fourier-series y(x, n = 0 and its Smoothing"; Résumé In this worsheet it has been illustrated that Maplesoft furnishes powerful tools in finding best approximations to several piecewise continuous functions. 3
FOURIER Series. This worksheet is concerned with FOURIER series. Some examples are discussed using MAPLE V, Release 10.
FOURIER Series Uiv.-Prof. Dr.-Ig. habil. Josef BETTEN RWTH Aache Uiversity Templergrabe 55 D-52056 A a c h e, Germay bette@mmw.rwth-aache.de Abstract This worksheet is cocered with FOURIER series. Some
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
ΒΙΟΛΟΓΙΚΗ ΚΑΛΛΙΕΡΓΕΙΑ ΤΗΣ ΕΛΙΑΣ
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ: ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΙΟΛΟΓΙΚΗ ΚΑΛΛΙΕΡΓΕΙΑ ΤΗΣ ΕΛΙΑΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΠΑΛΑΤΟΣ ΑΘ. ΓΕΩΡΓΙΟΣ
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
(Biomass utilization for electric energy production)
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ T.Ε.I. ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ Επιβλέπων: ΠΕΤΡΟΣ Γ. ΒΕΡΝΑΔΟΣ, Ομότιμος Καθηγητής Συνεπιβλέπουσα: ΕΡΙΕΤΤΑ Ι. ΖΟΥΝΤΟΥΡΙΔΟΥ, Παν. Υπότροφος
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Άσκηση αυτοαξιολόγησης 4 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών CS-593 Game Theory 1. For the game depicted below, find the mixed strategy
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
Η ΕΡΕΥΝΑ ΤΗΣ ΓΛΩΣΣΙΚΗΣ ΑΛΛΑΓΗΣ ΣΤΑ ΚΕΙΜΕΝΑ ΤΗΣ ΜΕΣΑΙΩΝΙΚΗΣ ΕΛΛΗΝΙΚΗΣ: ΜΕΘΟΔΟΛΟΓΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ
Η ΕΡΕΥΝΑ ΤΗΣ ΓΛΩΣΣΙΚΗΣ ΑΛΛΑΓΗΣ ΣΤΑ ΚΕΙΜΕΝΑ ΤΗΣ ΜΕΣΑΙΩΝΙΚΗΣ ΕΛΛΗΝΙΚΗΣ: ΜΕΘΟΔΟΛΟΓΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΗΓΩΝ Θεόδωρος Μαρκόπουλος University of Uppsala thodorismark@yahoo.gr Abstract This paper discusses methodological
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.
Η πρώιμη παρέμβαση σε παιδιά με διαταραχές όρασης και πρόσθετες αναπηρίες στην Ελλάδα
Παιδιατρική ΒΟΡΕΙΟΥ ΕΛΛΑΔΟΣ, 23, 3 71 Η πρώιμη παρέμβαση σε παιδιά με διαταραχές όρασης και πρόσθετες αναπηρίες στην Ελλάδα Κ. Νεοφωτίστου, Ε. Φωτιάδου Εργαστήριο Αναπτυξιακής Ιατρικής και Ειδικής Αγωγής,
A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering
Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix
ECE 468: Digital Image Processing. Lecture 8
ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions
ΑΚΑΓΗΜΙΑ ΔΜΠΟΡΙΚΟΤ ΝΑΤΣΙΚΟΤ ΜΑΚΔΓΟΝΙΑ ΥΟΛΗ ΜΗΥΑΝΙΚΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ
ΑΚΑΓΗΜΙΑ ΔΜΠΟΡΙΚΟΤ ΝΑΤΣΙΚΟΤ ΜΑΚΔΓΟΝΙΑ ΥΟΛΗ ΜΗΥΑΝΙΚΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ ΘΔΜΑ: Μειέηε θαη θαηαζθεπή κεηαηξνπέα DC DC γηα ην εξγαζηήξην ειεθηξηθώλ κεραλώλ. ΠΟΤΓΑΣΔ :Βαιαβαλίδεο Υξήζηνο Δπζηαζίνπ Βαζίιεηνο ΔΠΙΒΛΔΠΩΝ
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
CYPRUS UNIVERSITY OF TECHNOLOGY. Faculty of Engineering and Technology. Department of Civil Engineering and Geomatics. Dissertation Thesis
CYPRUS UNIVERSITY OF TECHNOLOGY Faculty of Engineering and Technology Department of Civil Engineering and Geomatics Dissertation Thesis GEOSPATIAL TECHNOLOGIES FOR REAL ESTATE AND LAND VALUATION IN CYPRUS
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Ζ ΔΠΗΓΡΑΖ ΣΩΝ ΑΝΟΗΓΜΑΣΩΝ ΣΟ ΦΤΗΚΟ ΦΩΣΗΜΟ ΘΑΛΑΜΟΤ ΝΟΖΛΔΗΑ
ΔΘΝΗΚΟ ΜΔΣΟΒΗΟ ΠΟΛΤΣΔΥΝΔΗΟ ΥΟΛΖ ΠΟΛΗΣΗΚΩΝ ΜΖΥΑΝΗΚΩΝ ΣΟΜΔΑ ΓΟΜΟΣΑΣΗΚΖ ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ Ζ ΔΠΗΓΡΑΖ ΣΩΝ ΑΝΟΗΓΜΑΣΩΝ ΣΟ ΦΤΗΚΟ ΦΩΣΗΜΟ ΘΑΛΑΜΟΤ ΝΟΖΛΔΗΑ ΚΤΡΓΔΩΡΓΗΟΤ ΑΘΖΝΑ ΛΔΤΚΑΓΗΣΖ ΟΦΗΑ Επόπτης Διπλωματικής Εργασίας:
Introduction to Time Series Analysis. Lecture 16.
Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
CORDIC Background (4A)
CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x
CYLINDRICAL & SPHERICAL COORDINATES
CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα
[ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΔΟΥΚΑ ΒΙΟΛΕΤΤΑ - ΔΕΣΠΟΙΝΑ. Η Τέχνη της Πώλησης στη Φαρμακευτική Αγορά
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΔΙΟΙΚΗΣΗ ΤΗΣ ΥΓΕΙΑΣ ΤΕΙ ΠΕΙΡΑΙΑ ΔΟΥΚΑ ΒΙΟΛΕΤΤΑ - ΔΕΣΠΟΙΝΑ Η Τέχνη της Πώλησης στη Φαρμακευτική Αγορά Διπλωματική Εργασία για την απόκτηση Μεταπτυχιακού
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola
Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)
On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University) 1 1 Introduction (E) {1+x 2 +β(x,y)}y u x (x,y)+{x+b(x,y)}y2 u y (x,y) +u(x,y)=f(x,y)
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
CORDIC Background (2A)
CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
ηελ αδεξθή κνπ, Εσή Δαλακούρα Γεωργία, ΑΕΜ: 235 Σελίδα 2
ηελ αδεξθή κνπ, Εσή Δαλακούρα Γεωργία, ΑΕΜ: 235 Σελίδα 2 Περύληψη ην πιαίζην ηεο παξνχζαο εξεπλεηηθήο εξγαζίαο δηεξεπλάηαη ε δπλαηφηεηα ηνπξηζηηθήο αλάπηπμεο ζε πξνζηαηεπφκελεο πεξηνρέο. Πην ζπγθεθξηκέλα,
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας
Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Επιβλέπων Καθηγητής: Δρ. Νίκος Μίτλεττον Η ΣΧΕΣΗ ΤΟΥ ΜΗΤΡΙΚΟΥ ΘΗΛΑΣΜΟΥ ΜΕ ΤΗΝ ΕΜΦΑΝΙΣΗ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΤΥΠΟΥ 2 ΣΤΗΝ ΠΑΙΔΙΚΗ ΗΛΙΚΙΑ Ονοματεπώνυμο: Ιωσηφίνα
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
ΠΕΡΙ ΑΠΕΙΛΟΥΜΕΝΩΝ ΖΩΩΝ...ΑΝΘΡΩΠΩΝ ΕΡΓΑ.
ΠΕΡΙ ΑΠΕΙΛΟΥΜΕΝΩΝ ΖΩΩΝ...ΑΝΘΡΩΠΩΝ ΕΡΓΑ. ΤΣΟΧΑΝΤΑΡΙΔΟΥ Μ. 2 ο Νηπιαγωγείο Αγ. Ι. Ρέντη και Διεύθυνση Πρωτοβάθμιας Εκπαίδευσης Πειραιά e-mail: martha_tso@hotmail.com ΠΕΡΙΛΗΨΗ Η έννοια του περιβάλλοντος είναι
Πτυχιακή Εργασία ΓΝΩΣΕΙΣ KAI ΣΤΑΣΕΙΣ ΤΩΝ ΕΠΑΓΓΕΛΜΑΤΙΩΝ ΥΓΕΙΑΣ ΓΙΑ ΤΗΝ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΕΚΘΕΣΗ ΣΤΟΝ HIV. Στυλιανού Στυλιανή
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία ΓΝΩΣΕΙΣ KAI ΣΤΑΣΕΙΣ ΤΩΝ ΕΠΑΓΓΕΛΜΑΤΙΩΝ ΥΓΕΙΑΣ ΓΙΑ ΤΗΝ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΕΚΘΕΣΗ ΣΤΟΝ HIV Στυλιανού Στυλιανή Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers
2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Μελέτη Επίδρασης Υπεριώδους Ακτινοβολίας σε Λεπτά
Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3