Markov Processes and Applications
|
|
- Ὅμηρ Γεωργίου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Markov Processes ad Alcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Alcatos Queug theory Performace aalyss
2 Dscrete-Tme Markov Chas Books - Itroducto to Stochastc Processes (Erha Clar), Cha. 5, 6 - Itroducto to Probablty Models (Sheldo Ross), Cha. 4 - Performace Aalyss of Commucatos Networks ad Systems (Pet Va Meghem), Cha. 9, - Markov Chas (J.R. Norrs), Cha. - Dscrete Stochastc Processes (R. Gallager), Cha. 4 - Elemetary Probablty for Alcatos (Rck Durrett), Cha. 5 - Itroducto to Probablty, D. Bertsekas & J. Tstskls, Cha. 6 2
3 INTRODUCTION : th order df of some stoc. roc. { X } s gve by f ( x, x,..., x ) f ( x x, x,..., x ) f ( x x, x,..., x )... f ( x x ) f ( x ) very dffcult to have t geeral If { X } s t t t t t t t t t t t t t a de. rocess: t t t f ( x, x,..., x ) f ( x ) f ( x )... f ( x ) If { X t t t t t t t 2 } s a rocess wth de. cremets: f ( x, x,..., x ) f ( x ) f ( x x )... f ( x x ) t t t t t t t t 2 2 Note : Frst order df's are suffcet for above secal cases If { X } s a rocess whose evoluto beyod t s (robablstcally) t comletely determed by x ad s de. of x, t t, gve x, the: f ( x, x,..., x ) f ( x x )... f ( x t t t t t t 2 2 t t t x ) f ( x ) Ths s a Markov rocess ( th order df smlfed) t t 3
4 Defto of a Markov Process (MP) A stoch.roc.{ X a MarkovProcess (MP)ff : f ( x or f ( x for all x t t t x x t t t ad all t ; t I} that takes values from a set E s called,..., x,..., x t t t ) ) 2 P( x t f ( x t... t x x t t ) ( E ) ( E ad all. coutable) ucoutable) Notce: The"ext" state x t s de.of rovded that the"reset"s kow. the"ast"{ x t,..., x t 2 } 4
5 Defto of a Markov Cha (MC) (Dscrete- tme & dscrete - value MP) If I s coutable ad E s coutable the a MPs called ad s descrbed by thetrasto robabltes : (, ) P{ X X }, E (de.of for a tme - homogeeou s MC).Assume E a MC {,,2,...}(state-saceof the MC) Trastomatrx : P(,) P(,) P P(,) P s o - egatve, For a gve P(,) P(,) P(,) P(, ) P (stoch.matrx) P(, ) P(, ) P(, ) a, (stochastc matrx) MCmay be costructed 5
6 6 ), ( ), ( ), ( ), ( ), ( } { through teratos) (geeral 3 : For Proof. the trasto matrx of th ower the of etry ), the ( s ), ( ;,, ), ( } {,,...,,, ), ( )..., ( ) ( },...,,, { the, }, { ) ( s.t. PMFo a s If P E l l P E l k k k l P l l P l P X X P k P k P k E P X X P k E N P P X X X X P E X P E N N k - stetrastos : Charule:
7 Chama Kolmogorov Equatos : From revous, P m (, ) P m (, k) P ( k, ), E ke I order for { X } to be after m stes ad startg from, t wll have to be some k after m stes ad move the to the remag stes. 7
8 Bertsekas & Tstskls 8
9 Examle : # of successes Beroull rocess { N ; }, N # of successes trals N Y,, Y de. Beroull, P{ Y } Notce: N N Y evoluto of { N } beyod does ot deed o { N } (gve N ) ad thus { N } s a M.C. P{ N N, N,..., N } P{ Y N N, N,..., N } q... f N... f ad q q N P q... otherwse Notce: { N } s a secal M.C. whose cremet s de. both from reset ad ast (rocess wth de. cremets) 9
10 [Ross]
11 [Ross]
12 [Norrs] 2
13 3
14 [Ross] 4
15 [Ross] 5
16 Examle : Sum of..d. RV's wth PMF { ; k,, 2,...} X Y Y2... Y k X X Y P{ X X,..., X } P{ Y X X,..., X } X Thus { X } s a M.C. wth P(, ) P{ X X } P
17 Examle X P{ X { X Notce that rows are detcal (If, X }s P,...d. wth ( k) a () () P () has : Ideedet trals M.C. all X () () (),..., X } rows detcal, P{ X k the ad X,,2,... P, } ( ) m X P m,... are..d.) 7
18 8 (double - stochastc matrx) (here) colums (stoch.matrx) rows M.C. a }s {, (modulo 5) },,,, { wth {,,2,3,4} }are..d. :{ P X Y X X Y Y Examle
19 Examle : Remag lfetme A equmet s relaced by a detcal as soo as t fals Pr{a ew equ. lasts for k tme uts} k,2,... k X X Z remag lfetme of equ. at tme X( ) f X( ) ( ) Z( ) f X( ) ( ) s the lfetme of equ. stalled at tme It s deedet of X, X,..., X X s a M.C. 9
20 : P(, ) P{ X X } P{ X X } f P{ X X } f : P(, ) P{ X X } P{ Z X } P{ Z } P
21 Theorem : (codtoal de. of future from ast gve reset) Let Y be a bouded fucto of X, X,.... The E{Y X, X,..., X } E{Y X } Proosto : E{ f(x,x,...)x } E{ f(x,x,...)x } Corollary : f a bouded fucto o E E... Let g() E{ f(x,x,...)x }. The N E{ f(x,x,...)x, X,..., X } g(x ) 2
22 Theorem : (codtoal de. of future from ast gve reset) Let Y be a bouded fucto of X, X,.... The E{Y X, X,..., X } E{Y X } 22
23 Proosto : E{ f(x,x,... ) X } E{ f(x,x,... ) X } 23
24 Corollary : f a bouded fucto o E E... Let g() E{ f(x,x,...)x }. The N E{ f(x,x,...)x, X,..., X } g(x ) 24
25 S tog Tmes: Prevous results derved for fxed What f tme s a RV stead? tme N are codtoally roerty s f If If for a RV T T s a stogtme, the above hold true( T s the evet { T, the ast { X m de.gve reset sad to hold at T. ; m } ca be determed T}ad the future{ X X T, the thestrog M arkov by lookg at m ; m a stogtme X, X T},..., X ) 25
26 For ay stog tme T : E{ f ( X, X,...) X, T} E{ f ( X, X,...) X } T T T T T For g( ) E{ f ( X, X,...) X } E{ f ( X, X,...) X ; T} g( X ) T T T f am e.g., f f ( a, a,...) E, m N f am E{ f ( X, X m,...) X } P{ X X } P (, ) m E{ f ( X, X,...) X, T} P{ X X ; T} T T T m Strog Markov roerty at T: m P{ X X ; T} P ( X, ) T m T 26
27 (art of)[norrs] 27
28 Vsts to a state X { X N } MC, State sace E, Trasto matrx P. Notato: P { A} P{ A X } ad E[ Y] E[ Y X ] Let E, ad Defe: N ( ) = total umber of tmes state aears X( ) X ( ). N ( ), X evetually leaves state ever to retur. N ( ), X vsts aga ad aga. Let T( ) T 2( ) the successve dces for whch X( ). If the T ( ) T2 ( ) T ( ) If aears a fte umber of tmes m, the Tm ( ) Tm ( ) Tm 2( ) T m( ) N, { Tm ( ) } s equvalet to aears { X( ) X ( )} at least m tmes. T m s a stog tme. 28
29 Examle T ( ) 4 T ( ) 6 T ( ) 7 T ( ) E 29
30 Proosto: E km { Tm } P Tm Tm k T Tm P{ T k} { Tm } Comutato of P{ T k }. Let Fk( ) P{ T k } k Fk ( ) P{ T } P{ X } P( ) k 2 Fk ( ) P { X X k X k } P{ X b} P{ X X X X b } be {} 2 k k P{ {} } { 2 } X b P b E b X X k X k Thus, P( ) k F ( ) k P( b) Fk ( b ) k 2 be { } 3
31 Examle: Let 3 a the trasto matrx Fd f ( ) F ( ) 23 k k P / 2 /6 /3 /3 3/5 /5 k. I ths case f s the 3rd colum of matrx P. Hece, f() F( ), f(2) F(2 ) 3, f(3) F(3 ) 5 k 2. I ths case F (, ) k be { } k k k be { } be { } P( b) F ( b ) f F (2, ) P(2 b) F ( b ) Q f where k F (3, ) k P(3 b) F ( b ) After some algebra f / 3 f2 /8 f3 /8 f 4 / 648 /5 / 5 / 3 /8 ad geeral k k 5 Fk ( 3) Fk (23) Fk (3 3) k k k k Q / 2 / 6 /3 3/5 3
32 k k 5 Fk ( 3) Fk (23) Fk (3 3) k k Now we ca state: Startg at state, X ever vsts 3 wth robablty: PT { } Startg at state 2, X frst vsts 3 at k wth robablty: () k Startg at state 2, X ever vsts 3 wth robablty: { } { } ( ) k k P T P T Startg at state 3, X ever vsts 3 aga wth robablty: 52 P{ T } P{ T }
33 Now, for every we defe F( ) P{ T } F ( ) k k F( ) exresses the robablty: startg at the MC wll ever vst state. F( ) P( ) P( b) F( b ) E be { } If by N we deote the total umber of vsts to state, the m P { N m} F( ) F( ) ad for, P{ N m} F( ) m m F( ) F( ) F( ) m 2 >From the revous we obta the Corollary: F( ) P{ N } F( ) 33
34 Now, for every we defe m P { N m} m F m ( ) F( ) F( ) P{ T } F ( ) F( ) exresses the robablty: startg at the MC wll ever vst state. F( ) F( ) be { } k F( ) P( ) P( b) F( b ) E m x m k, x x If by N we deote the total umber of vsts to state, the m P { N m} F( ) F( ) ad for, P{ N m} F( ) m m F( ) F( ) F( ) m 2 >From the revous we obta the Corollary: F( ) P{ N } F( ) 34
35 m m Now, for every we defe m P { N m} m F m ( ) F( ) F( ) F( ) P{ T } F ( ) F( ) exresses the robablty: startg at the MC wll ever 2 vst state. 2 F( ) F( ) be { } k F( ) P( ) P( b) F( b ) E If by N we deote the total umber of vsts to state, the m P{ N m} F( ) F( ) If F( ) N w... Therefore, f X E [ N ] If F( ) the N follows geometrc dstrbuto F( wth ) robablty mof success ad for, P{ N m} m F( ). Hece, E ( ) F( ) F( ) m 2 [ N ] F ( ) m m x m k ( x), x >From the revous we obta the Corollary: F( ) P{ N } F( ) 35
36 Let R( ) E [ N ] ( R s called the otetal matrx of X ) The, R( ) F ( ) R( ) F(, ) R( ), ( ) R(, ) F(, ) R(, ) ( F(, )) Comutato of R( ) frst ad the F( ) Defe: k X( ) ( k) ( X( )) k X( ) The, N ( ) R( ) ( X ( )) E ( ) ( ) { } ( ) X E X P X P I matrx otato: 2 2 R I P P RP PR P P R I from whch we obta R( I P) ( I P) R I 36
37 Classfcato of states X: MC, wth state sace E, trasto matrx P T : The tme of frst vst to state N : The total umber of vsts to state Defto State s called recurret f P{ T } State s called traset f P{ T } A recurret state s called ull f E[ T ] A recurret state s called o-ull f E[ T ] A recurret state s called erodc wth erod, f 2 s the greatest teger for whch P { T for some } 37
38 [Gallager] (a) δ=2 (b) δ=2 38
39 If s recurret the startg at the robablty of returg to s. F( ) R( ) E [ N ] P { N } If s traset the there exsts a ostve robablty F( ) of ever returg to. F( ) R( ) E [ N ] P { N } I ths case R( ) F( ) R( ) R( ) ad sce R( ) P ( ) we coclude that lm P ( ) 39
40 Theorem: If traset or recurret ull the E lm P ( ) If recurret o-ull the ( ) lm P ( ) ad E lm P ( ) F( ) ( ) If erodc wth erod, the a retutr to s ossble oly at stes umbered, 2, 3,... P ( ) P { X } oly f { 2 } 4
41 Recurret o-ull Recurret ull Traset P{ T } P{ T } E [ ] T E[ T ] F( ) R( ) E [ N ] P{ N } ( ) lm P ( ) ad E lm P ( ) F( ) ( ) F( ) R( ) E [ N ] P{ N } E lm P ( ) A recurret state s called erodc wth erod, f 2 s the greatest teger for whch P { T for some } If erodc wth erod, the a retur to s ossble oly at stes umbered, 2, 3,... P ( ) P { X } oly f { 2 } 4
42 We say that state ca be reached from state f P ( ) ff F( ) Defto: A set of states s closed f o state outsde t ca be reached from ay state t. A state formg a closed set by tself s called a absorbg state A closed set s called rreducble f o roer subset of t s closed. A MC s called rreducble f ts oly closed set s the set of all states Commets: If s absorbg the P( ). If MC s rreducble the all states ca be reached from each other. If C { c c2 } E s a closed set ad Q( ) P( c c ), cc C, the Q s a Markov matrx. If ad k the k. To fd the closed set C that cotas we work as follows: Startg wth we clude C all states that ca be reached from : P( ). We ext clude C all states k that ca be reached from : P( k ). We reeat the revous ste 42
43 Examle: MC wth state sace E { ab cde } ad trasto matrx P Commets: Closed sets: { ace } ad { ab cde } There are two closed sets. Thus, the MC s ot rreducble. c e 43
44 Examle: MC wth state sace E { ab cde } ad trasto matrx Commets: 2 2 Closed sets: { ace } ad { ab cde } P Q There are two closed sets. Thus, the MC s ot rreducble. If we delete the 2 d ad 4 th rows we obta the Markov matrx: If we relabel the states a, 2 c, 3 e, 4 b ad 5 d we get P
45 Lemma If recurret ad k k. Thus, F( k ). Proof: If k the k s reached wthout returg to wth robablty a. Oce k s reached, the robablty that s ever vsted aga s F( k ). Hece, F( ) a( F( k )) But s recurret, so that F( ) F( k ) As a result: If k but k, the must be traset. Theorem: From recurret states oly recurret states ca be reached. Theorem: I a Marcov cha the recurret states ca be dvded a uque maer, to rreducble closed sets C, C 2,, ad after a arorate arragemet: P P2 P P3 Q Q2 Q3 Q 45
46 Theorem: Let X a rreducble MC. The, oe of the followg holds: All states are traset. All states are recurret ull All states are recurret o-ull Ether all aerodc or f oe s erodc wth erod, all are erodc wth the same erod. Proof: Sce X s rreducble the k ad k, whch meas that rs r s P ( k ) ad P ( k ). Pck the smallest rs ad let r s P ( k) P ( k ). If k recurret recurret. If k traset traset. (If t was recurret the k would be recurret) m If k recurret ull the P ( kk ) as m. But rs P ( kk) P ( ) P ( ) 46
47 Corollary: If C rreducble closed set of ftely may states, the recurret ull states. Proof: If oe s recurret ull the all states are recurret ull. Thus, lm P ( ) C. But, C P ( ) lm P ( ) C C Because, we have fte umber of states lm P ( ) lm P ( ) C C Corollary: If C s a rreducble closed set wth ftely may states the there are o traset states 47
48 Algorthm - Fte umber of states Idetfy rreducble closed sets. All states belogg to a rreducble closed set are recurret ostve The rest of the states are traset Perodcty s checked to each rreducble set 48
49 Examle: The rreducble closed sets are { 3}, {27 9} ad {6}. The states {4 58 } are traset. If we relabel the states we obta P
50 Examle: Let see N the umber of successes the frst Beroull trals. As we have P( ) P{ N N } q otherwse Thus, P q q q we have but => s traset.. Ths meas that s ot recurret 5
51 Examle: Remag lfetme X( ) X( ) Remember: X ( ) Z( ) X( ) from whch we obta: P( ) P{ X X } P{ X X } P( ) P{ X X } P{ Z X } P{ Z } P 2 3 5
52 2 3 P >From state we reach state oe ste. From we ca reach, 2,...,,. Thus, all states ca be reached from each other, whch meas that the MC s rreducble. Sce, P () the MC s aerodc. Retur to state occurs f the lfetme s fte: F() Sce state s recurret, all states are recurret. If the exected lfetme: the state s ull ad all states are recurret ull. If the exected lfetme: the state s o-ull ad all states are recurret o-ull. 52
53 Algorthm - Ifte umber of states Theorem: Let X a rreducble MC, ad cosder the system of lear equatos: ( ) ( ) P( ) E The all states are recurret o-ull ff there exsts a soluto wth ( ) E E Theorem: Let X a rreducble MC wth trasto matrx P, ad let Q be the matrx obtaed from P by deletg the k -row ad k -colum for some k E. The all states are recurret f ad oly f the oly soluto of h( ) Q( ) h( ) h( ) E E s h ( ) for all E. E E {} k. Use frst theorem to determe whether all states are recurret o-ull or ot. I the latter case, use the secod theorem to determe whether the states are traset or ot. 53
54 Examle: Radom walks. P q q All states ca be reached from each other, ad thus the cha s rreducble. A retur to state ca occur oly at stes umbered 2,4,6,... Therefore, state s erodc wth erod 2. Sce X s rreducble all states are erodc wth erod 2. Ether all states are recurret ull, or all are recurret o-ull, or all the states are traset. Check for a soluto of P. q q 2 2 q q 4 54
55 Hece, Ay soluto s of the form If q, the q ad q 2 2 q q q q q q q 2 q q 2q q q q If we choose q the 2q ad 2 q ( ) 2q q q I ths case all states are recurret o ull 55
56 If q ether all states are recurret ull or all states are traset. Cosder the matrx q Q q The equato h Qh gves ( h h() ) h q q q h If q the h h for all ad the oly way to have h for all s by choosg h whch mles h that s all states are recurret ull. If q, the choosg h ( q ), we get q h whch also satsfes h. I ths case all states are traset. 56
57 Calculato of R ad F R( ) E [ N ] Exected umber of vsts to state. F( ) The robablty of ever reachg state startg at. Recurret state: F( ) R( ) R( ) F( ) R( ) R( ) F( ) F( ) Traset / Recurret state: F( ) R( ) Traset Let D { the traset states }, Q( ) P( ), S( ) R( ), D. The P m K m K P L Q Lm Q m Hece, m K m m 2 m L m m m Q R P S Q I Q Q 57
58 Comutato of S S 2 I Q Q 2 SQ QS Q Q S I ( I Q) S I, S( I Q) I Proosto: If there are ftely may traset states S ( I Q) Whe the set D of traset states s fte, t s ossble to have more tha oe soluto to the system. Theorem: S s the mmal soluto of ( I Q) Y I, Y Theorem: S s the uque soluto of ( I Q) Y I f ad oly f the oly bouded soluto of h Qh s h, or equvaletly h Qh h h 58
59 Examle: Let X a MC wth state sace E { } P { 2 3} are recurret ostve aerodc. {4 5} are recurret ostve aerodc. {67 8} are traset Q 2 S ( I Q)
60 recurret, ca be reached from traset, recurret recurret, caot be reached from, traset recurret traset recurret traset R S 6
61 Comutato of F( ) recurret belogg to the same rreducble closed set F( ) recurret belogg to dfferet rreducble closed sets F( ) traset The R( ) ad R( ) F( ) F( ) R( ) R( ) traset, recurret???? Lemma: If C s rreducble closed set of recurret states, the for ay traset state : F( ) F( k) for all, k C. Proof: For k C F( k) F( k ). Thus, oce the cha reaches ay oe of the states of C, t also vsts all the other states. Hece, F( ) F( k) s the robablty of eterg the set C from. 6
62 Let P P2 P P 3 Q Q2 Q3 Q Lum all states of C together to make oe absorbg state: ˆ P b ( ) P( k) D kc b b2 b3 bm Q The robablty of ever reachg the absorbg state from the traset state by the cha wth the trasto matrx ˆP s the same as that of ever reachg ˆ I P B b bm B( ) P( k) ı D B Q kc C from. I 2 ˆ ( ) B Q P B I Q Q Q B B ( ) s the robablty that startg from, the cha eters the recurret class C 62
63 Defe: k k G lm B Q B SB G( ) s the robablty of ever reachg the set C from the traset state : ( F( ) ) Proosto: Let Q the matrx obtaed from P by deletg all the rows ad colums corresodg to the recurret states, ad let B be defed as revously, for each traset ad recurret class C. Comute S Comute G SB G( ) F( k), k C. If there s oly oe recurret class ad ftely may traset states, the thgs are dfferet. I ths case, t ca be roved that: G F( ) C 63
64 Examle: Let X a MC wth state sace E { } P
65 , recurret belogg to the same rreducble closed set, recurret belogg to dfferet rreducble closed sets recurret traset recurret traset F traset, recurret, traset F ( ) R( ) R( ) F ( ) R( ) oe (reachable) recurret class ad ftely may traset states 65
66 Examle: ˆ P P Thus, S ( I Q) ad F G S B
67 Recurret states ad Lmtg robabltes Cosder oly a rreducble set of states. Theorem: Suose X s rreducble ad aerodc. The all states are recurret oull f ad oly f ( ) ( ) P( ) E ( ) E has a soluto. If there exsts a soluto, the t s strctly ostve, there are o other solutos, ad we have E ( ) lm P ( ) E Corollary: If X a rreducble aerodc MC wth ftely may states (o-ull states, o traset states), the P has a uque soluto. The soluto s strctly ostve, ad ( ) lm P ( ),. 67
68 A robablty dstrbuto whch satsfes dstrbuto for X. P, s called a varat If s the tal dstrbuto of X, that s, P{ X } ( ), E the P{ X } ( ) P ( ) ( ), for ay E Proof: P P P 2 Algorthm: for fdg lm P ( ) Cosder the rreducble closed set cotag Solve for ( ). Thus, we fd lm P ( ) For every (ot ecessarly E) lm P ( ) F( )lm P ( ) Comute F( ) frst. The, fd lm P ( ) 68
69 Examle: E={, 2, 3}, P () () 3 (2)6 P (2) () 5 (3)4 (3) () 2 (2)4 (3)6 System s Soluto: P lm P ( )
70 Examle: E={, 2, 3, 4, 5, 6, 7}, P P P F(6) F(65) F(7) F(75)
71 Thus, P lm P
72 Examle: Radom walks: q q q q P q ( X rreducble aerodc (sce state s aerodc)) 2 2 2q 2 q 2 q q 2 2 3q q q q q q q q If If q: o soluto of P, q: lm P ( ) q q 72
73 Examle: Remag lfetme P 2 3 Thus, m ( ) ( ) ( ) m E[ Z ] s the exected lfetme. If m the all states are recurret ull ad lm P ( ) 73
74 Iterretato of Lmtg Probabltes Proosto: Let be a aerodc recurret o-ull state, ad let m( ) be the exected tme betwee two returs to. The, ( ) lm P ( ) m( ) The lmtg robablty ( ) of beg state s equal to the rate at whch s vsted. Proosto: Let be a aerodc recurret o-ull ad let ( ) defed as revously. The, for almost all lm ( Xm( )) ( ). If f s a bouded fucto o E, the m f ( X ) f ( ) ( X ) m m m E m Corollary: X rreducble recurret MC, wth lmtg robablty. The, for ay bouded fucto f o E : lm f ( X m) f f ( ) f ( ) m E 74
75 Smlar results hold for exectatos Corollary: Suose X s a rreducble recurret MC wth lmtg dstrbuto. The for ay bouded fucto f o E lm E[ f ( X m)] f m deedet of. If f( ) s the reward receved wheever X s, the both the exected average reward the log ru ad the actual average reward the log ru coverge to the costat f. The rato of the total reward receved durg the stes by usg fucto f to the corresodg amout by usg fucto g s lm m m f( X ) m gx ( ) m f g The same holds eve the case that X s oly recurret (ca be ull or erodc or both) 75
76 Theorem: Let X be a rreducble recurret cha wth trasto matrx P. The, the system P has a strctly ostve soluto; ay other soluto s a costat multle of that oe. Theorem: Suose X s rreducble recurret, ad let be a soluto of P. The for ay two fuctos f ad g o E for whch the two sums f ( ) f ( ) g ( ) g( ) E coverge absolutely ad at least oe s ot zero we have lm m m deedetly of E. Moreover we also have for almost all lm m m E [ f ( X )] m E [ g( X )] m f( X ( )) m gx ( ( )) m E f g f g 76
77 Ay o-egatve soluto of P s called a varat measure of X. Commets: Ay rreducble recurret cha X has a varat measure, ad ths s uque u to a multlcato by a costat. Furthermore, f X s also o-ull, the ( ) s fte, ad s a costat multle of the lmtg dstrbuto satsfyg P, The exstece of a varat measure for X does ot mly that X s recurret. For f, g ad k lm E m k X m k E m m ( ) ( ) ( X ) ( ) ( k ) s the rato of the exected umber of vsts to k durg the frst stes to ( ) the exected umber of returs to durg the same erod as ( k ) s the exected umber of vsts to k betwee two vsts to state ( ) 77
78 Perodc States It s suffcet to cosder oly a rreducble MC wth erodc recurret states. Lemma: Let X be a rreducble MC wth recurret erodc states wth erod. The, the states ca be dvded to dsot sets B, B 2 B such that P( ) uless B B or B B or B B
79 Examle: X MC wth E { } P All states are erodc wth erod 3. The sets are B { 2}, B2 {3 4 5} ad B3 {6 7}. >From B oe ste the MC reaches B 2, two stes B 3 ad three stes B. 79
80 P Note: P P P P P P2 Cha corresodg to P has three closed sets B, B 2, B 3 ad each oe of these s rreducble, recurret ad aerodc. The revous lmtg theory ales to comute lm P m, m lm P m, m 2 lm P m searately. m 3 P 3 8
81 Theorem: Let P the trasto matrx of a rreducble MC wth recurret erodc states of erod, ad let B, B 2 B be as revously. The, the MC wth trasto matrx P P, the classes B, B 2 B are rreducble closed sets of aerodc states. P Commets: If a P 2 P Pa( ) P ( ) Ba P B, the P{ X B } b a m(mod ) m b P ( ) does ot have a lmt as excet whe all the states are ull ( whch case P ( ) ) m The lmts P ( ) exst as, but are deedet o the tal state. 8
82 Theorem: Let P ad B a as revously ad suose that the cha s o-ull. The, for ay m { } m ( ) Ba Bb b a m(mod ) lm P ( ) otherwse The robabltes ( ), E form the uque soluto of ( ) ( ) P( ) ( ) E E 82
83 Examle: Let X be a MC wth state sace E { }, P 8 2 The cha s rreducble, recurret o-ull erodc wth erod 2. P P lm P lm P
84 Examle: Radom Walks ( q) q P q Cyclc Classes B { 2 4 }, B 2 { 3 5 } Ivarat soluto P q q q q q Normalze: Multly each term by. ( q q q q q q q ) q 2 4 q q q q q q
85 Hece, q q 2 3 q q 2 3 lm P q 2 4 q q 2 3 q q 2 3 q q q q 2 2 lm P q 3 q q q q
86 Traset States If a MC has oly ftely may traset states, the t wll evetually leave the set of traset states ever to retur. If there are ftely may traset states, t s ossble for the cha to rema the set of traset states forever. Examle: P All states are traset If tal state s, the the cha stays forever the set { 2 }. As, X ( ) 86
87 Let A E, Q the matrx obtaed from P by deletg all the rows ad colums corresodg to states whch are ot A. The, for A Q ( ) Q ( ) Q ( 2) Q ( ) A A PX A X A X Q ( ) PX A X A X A A The evet { X A X A} s a subset of { X A X A}, therefore Q ( ) Q ( ) A A Let f ( ) lm Q ( ) A A f() s the robablty that startg at A, the cha stays the set A forever. 87
88 Proosto: The fucto f s the maxmal soluto of the system h Qh h Ether f or su f ( A ) A alcato of the revous roosto was gve a theorem o the classfcato of states: Theorem: Let X a rreducble MC wth trasto matrx P, ad let Q be the matrx obtaed from P by deletg the k -row ad k -colum for some k E. The all states are recurret f ad oly f the oly soluto of h( ) Q( ) h( ) h( ) E E s h ( ) for all E. E E {} k. Proof: Fx a ertcular state ad ame t. Sce X s rreducble t s ossble to go from to some A E {}. If the robablty f() of remag A forever s f( ) for all A, the wth robablty, the cha wll leave A ad eter aga. Hece, f the oly soluto of the system s h, the state s recurret, ad that tur mles that all states are recurret. Coversely, f all states are recurret, the the robablty of remag the set A forever must be zero, sce wll be reached wth robablty oe from ay state A 88
89 Examle: (Radom Walk) Q q q If q all states are traset. q f ( ) 23 Ths s the maxmal soluto sce su f( ). Iterretato: Startg at a state k (e.g. k 7 ) the robablty of stayg forever wth the set q s equal to 7 { 2 3 }. If k k, the robablty of remag { 23 } s greater. From the shae of P : the restrcto of P to the set { kk } s the same as the matrx Q. Hece, for all k { 23 } q Pk X k X 2 k 89
90 For ay subset A of E, let fa() the robablty of remag forever A gve the tal state A. The, If A s a rreducble recurret class, f A. If A s a roer subset of a rreducble recurret class, f A. If A s a fte set of traset states, f A. If A s a fte set of traset states, the ether f A or f A. I the latter case the cha travels through a sequece of sets ( A A2 A3 ) to fte. 9
Markov Processes and Applications
Markov rocesses ad Applcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Applcatos Queug theory erformace aalyss ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) Dscrete-Tme
Discrete-Time Markov Chains
Markov Processes ad Alicatios Discrete-Time Markov Chais Cotiuous-Time Markov Chais Alicatios Queuig theory Performace aalysis ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης
CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square
CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty
Estimators when the Correlation Coefficient. is Negative
It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of
Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.
Dscrete Fourer Trasform Refereces:. umercal Aalyss of Spectral Methods: Theory ad Applcatos, Davd Gottleb ad S.A. Orszag, Soc. for Idust. App. Math. 977.. umercal smulato of compressble flows wth smple
Examples of Cost and Production Functions
Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost
On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field
It J otem Mat Sceces Vo 7 0 o 9 99-98 O Hyersurface of Seca Fser Saces Admttg Metrc Lke Tesor Fed H Wosoug Deartmet of Matematcs Isamc Azad Uversty Babo Brac Ira md_vosog@yaoocom Abstract I te reset work
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Exam Statistics 6 th September 2017 Solution
Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be
Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa
Cytotoxcty of oc lqud ad precuror compoud toward huma cell le HeLa Xuefeg Wag, a,b C. Adré Ohl, a Qghua Lu,* a Zhaofu Fe, c Ju Hu, b ad Paul J. Dyo c a School of Chemtry ad Chemcal Techology, Shagha Jao
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Optimal stopping under nonlinear expectation
Avalable ole at www.scecedrect.com SceceDrect Stochastc Processes ad ther Applcatos 124 (2014) 3277 3311 www.elsever.com/locate/spa Optmal stoppg uder olear expectato Ibrahm Ekre a, Nzar Touz b, Jafeg
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Generalized Fibonacci-Like Polynomial and its. Determinantal Identities
Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Universal Levenshtein Automata. Building and Properties
Sofa Uversty St. Klmet Ohrdsk Faculty of Mathematcs ad Iformatcs Departmet of Mathematcal Logc ad Applcatos Uversal Leveshte Automata. Buldg ad Propertes A thess submtted for the degree of Master of Computer
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Degenerate Perturbation Theory
R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue
Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Homework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.
Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media
Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some
Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
A Class of Orthohomological Triangles
A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt
Lecture 15 - Root System Axiomatics
Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the
Presentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
Tired Waiting in Queues? Then get in line now to learn more about Queuing!
Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population
Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008
Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
1. Matrix Algebra and Linear Economic Models
Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Example of the Baum-Welch Algorithm
Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 008, σελ 9-98 ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Γεώργιος
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
F A S C I C U L I M A T H E M A T I C I
F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept