Discrete-Time Markov Chains
|
|
- Πολυξένη Κωνσταντόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Markov Processes ad Alicatios Discrete-Time Markov Chais Cotiuous-Time Markov Chais Alicatios Queuig theory Performace aalysis ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ Books Discrete-Time Markov Chais - Itroductio to Stochastic Processes (Erha Cilar, Cha. 5, 6 - Itroductio to Probability Models (Sheldo Ross, Cha. 4 - Performace Aalysis of Commuicatios Networks ad Systems (Piet Va Mieghem, Cha. 9, - Markov Chais (J.R. Norris, Cha. - Discrete Stochastic Processes (R. Gallager, Cha. 4 - Elemetary Probability for Alicatios (Rick Durrett, Cha. 5 - Itroductio to Probability, D. Bertsekas & J. Tsitsiklis, Cha. 6 ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ
2 INTRODUCTION : th order df of some stoc. roc. { X t } is give by f( x, x,..., x f( x x, x,..., x f( x x, x,..., x t t t t t t t t t t t... f( x x f( x t t t very difficult to have it i geeral If { } is a ide. rocess: X t f ( x, x,..., x f ( x f ( x... f ( x t t t t t t If { X } is a rocess with ide. icremets: t f( x, x,..., x ( (... ( t t t f x f x t t x f x t t x t Note : First order df's are sufficiet for above secial cases If { X } is a rocess whose evolutio beyod t is (robabilistically t comletely determied by x ad is ide. of x, t < t, give x, the: f( x, x,..., x f( x x... f( x t t t t t t t t t x f( x t t This is a Markov rocess ( th order df simlified ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ Defiitio of a Markov Process (MP A stoch. roc.{ X ; t I } that takes values from a set E is called a Markov Process (MP iff or t f ( xt x,..., ( t x t P x t x t : ( E coutable f ( xt x,..., ( ( ucoutable t x t f x t x t E for all x ad all t < t <... < t ad all >. t Notice : The "ext" state xt is ide.of the "ast"{ x,..., } t x t rovided that the "reset"is kow. ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 4
3 Defiitio of a Markov Chai (MC (Discrete - time & discrete - value MP If I is coutable ad E is coutable the a MP is called a MC ad is described dby the trasitio robabilities biliti : ( i, P{ X + X i} i, E (ide. of for a time - homogeeous MC. Assume E {,,,...}(state,, -sace of the MC Trasitio matrix : P(, P(,... P(, P(, P(,... P(, P M M M P(, P(,... P(, M M M P is o - egative, P( i, , i (stochastic matrix For a give gve P (stoch. matrix a MC may be costructed ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 5 Chai rule : If π is a PMF o E st s.t. π ( i P { X P{ X i, X i, X N, i, i,..., i k - ste trasitios : k N, P{ X + k X i} P i, E, k N ; of the trasitio matrix P. Proof : For k P{ X P k i,..., X k E ( i, i }, i E, the i } π ( i P( i, i... P( i ( i, is the ( i, etry of the kth ower (geeral through iteratios + X i} P( i, l P( l, l P( l, l E l E P ( l, P ( i,, i ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 6
4 Chama Kolmogorov Equatios : From revious, m+ m P (, i P (, i k P ( k, i, E k E I order for { X } to be i after m+ stes ad startig from i, it will have to be i some k after m stes ad move the to i the remaiig stes. ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 7 siklis ekas & Tsits Bertse ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 8
5 Examle : # of successes i Beroulli rocess { N ; }, N # of successes i trials N Y,, Y ide. Beroulli, P{ Y } i i i i Notice: N N + Y evolutio of { N } beyod + + does ot dee d o { Ni} i (give N ad thus { N} is a M.C. PN { N, N,..., N } PY { N N, N,..., N } + + q... if N +... if ad q q N P q... otherwise M Notice: { N } is a secial M.C. whose icremet is ide. both from reset ad ast (rocess with ide. icremets ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 9 Examle : Sum of i.i.d. RV's with PMF { k; k,,,...} X Y + Y Y X+ X + Y+ PX { + X,..., X} PY { + X X,..., X} Thus { X } is a M.C. with P( i, PX { X i} X + i P M M M M O ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ
6 Examle : Ideedet trials X, X,...i.i.d. iid with π ( k, k,,,... P{ X X,..., X } P{ X + } {X }is a M.C. π ( π ( L π ( π ( L P M M π ( π ( L M M O + π Notice that rows are idetical ad P m ( P m (If P has all rows idetical the X, X,...are iid i.i.d. ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ Examle :{ Y }are iid i.i.d. Y X {,,,,4} + X + Y + (modulo 5, { X with { }is a M.C.,,,, } 4 P rows (stoch. matrix colums (here (double - stochastic matrix ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ
7 Examle : Remaiig lifetime A equimet is relaced by a idetical as soo as it fails Pr{a ew equi. lasts for k time uits} k,,... k X remaiig lifetime of equi. at time X ( ω if X( ω X + ( ω Z+ ( ω if X( ω Z+ ( ω is the lifetime of equi. istalled at time It is ideedet of X, X,...,, X is a M.C. X ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ i : Pi (, P { X X i } P { X X i } + if i PX { + X i} if i i : P(, P{ X X } P{ Z X } + + PZ { + } + + P 4 L L L L M M M M O ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 4
8 Theorem : (coditioal ide. of future from ast give reset Let Y be a bouded fuctio of X, X +,.... The E{Y X, X,..., X } E{Y X } Proositio : E{ f(x,x +,... X i} E{ f(x,x,... X i} Corol lary : f a bouded fuctio o E E... Let g(i E{ f(x,x,...x i}. The N E{ f(x,x,...x, X,..., X } g(x + ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 5 Theorem : (coditioal ide. of future from ast give reset Let Y be a bouded fuctio of X, X,.... The E{Y X, X,...,, X } E{Y X } + ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 6
9 Proositio : E{ f(x,x +,... X i} E{ f(x,x,... X i} ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 7 Corollary : f a bouded fuctio o E E... Let g(i E{ f(x,x,... X i}. The N E{ f(x,x,...x, X,..., X } g(x + ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 8
10 Stoig Times : Previous results derived for fixed time N What if time is a RV istead? If for a RV T, the ast { X are coditioally ide.give reset X roerty is said to hold at T. If T m ; m T}ad the future{ X is a stoig time, the above hold true ( T T m ; m T}, the the strog Markov is a stoig time if the evet { T }ca be determied by lookig at X, X,..., X ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 9 For ay stoig time T : E{ f( X, X,... X, T} E{ f( X, X,... X } T T+ T T+ T For gi ( E { f ( X, X,... X i } E{ f( X, X,... X ; T} g( X T T+ T if am eg e.g., if f( a, a,... E, m N if am E { f ( X, X,... X i } P { X X i } P m (, i f m E{ f( X, X,... X, T} P{ X X ; T} T T+ T+ m Strog Markov roerty at T: m PX { T+ m X; T } P ( X T, ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ
11 Visits to a state X { X ; N } MC, State sace E, Trasitio matrix P. Notatio: Pi { A} P{ A X i } ad EY i[ ] EY [ X i ] Let E, ω Ω ad Defie: N ( ω total umber of times state aears i X ( ω, X ( ω,. N ( ω <, X evetually leaves state ever to retur. N ( ω, X visits agai ad agai. Let T( ω, T ( ω, the successive idices for which X ( ω. If / the T ( ω T ( ω T ( ω L If aears a fiite umber of times m, the T + ( ω T ( ω T + ( ω T ( ω L m m m m N, { Tm ( ω } is equivalet to aears i { X ( ω, L, X ( ω } at least m times. T m is a stoig time. ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ Examle T ( ω 4, T ( ω 6, T ( ω 7, T ( ω 9, 4 E ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ
12 Proositio: i E, k, m { Tm } PT i { m+ Tm kt T,, m} P{ T k} { Tm < } Comutatio of P{ T k }. Let Fk( i, PT i{ k } k Fk ( i, Pi{ T } Pi{ X } Pi (, k Fk ( i, Pi{ X, L, X k, X k } Pi { X b } Pi { X, L, Xk, Xk X b } b E { } L b E { } i b k k P{ X b} P{ X,, X, X } Thus, Pi (, k F (, k i PibF (, k ( b, k b E { } ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ Examle: Let a the trasitio matrix Fid f ( i F ( i,, i,, k k P / /6 / / /5 /5 k. I this case f is the rd colum of matrix P. Hece, f( F(,, f( F(, /, f( F(, / 5 (, (, P b F b k F (, b E { } k k. I this case fk F (, (, (, P b F b Q f k k k where Q b E { } / /6 F (, / /5 k P(, b F ( b, k b E { } After some algebra f / f /8 f /8 f 4 / 648 /5 / 5 / /8 L ad i geeral k k 5 Fk(,, Fk(,, Fk(, k 6 k 5 6 ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 4
13 k k 5 Fk(,, Fk(,, F k(, k 6 k 5 6 Now we ca state: Startig at state, X ever visits with robability: PT { + } Startig at state, X first visits at k with robability: ( k Startig at state, X ever visits with robability: { } { } ( k P T + P T <+ k 6 5 Startig at state, X ever visits agai with robability: 5 P{ T + } P{ T <+ } 75 6 ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 5 Now, for every i, we defie F( i, P{ T <+ } F ( i, i k k F( i, exresses the robability: startig at i the MC will ever visit state. If by F ( i, P ( i, + P ( i, b F ( b,, i E b E { } N we deote the total umber of visits to state, the m { } F(, F(, P N m ( ad for F ( i, m i, Pi{ N m} m F( i, F(, ( F(, m,, >From the revious we obtai the Corollary: F(, < P{ N <+ } F (, ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 6
14 Now, Pfor { Nevery mi}, we defie m F( i, Pi{ T <+ } Fk( i, m F( ( F( k,, m m F( i, exresses the robability: startig at i the MC x will ever, visit x < state. m ( F(, x F(, F( i, P( i, + P( i, b F( b,, i E b E { } If by N we deote the total umber of visits to state, the m P{ N m } F(, ( F(, ad for F ( i, m i, Pi{ N m} m F( i, F(, ( F(, m,, >From the revious we obtai the Corollary: F(, < P{ N <+ } F (, ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 7 Now, for every i, we defie mp { N m } m F( i, Pi{ T <+ } Fk( i, m mf(, ( F(, k m F( i, exresses the robability: startig at i the MC will ever visit state. ( ( m F(, mx, x < F(, ( F(, m ( x F( i, P( i, + P( i, b F( b,, i E b E { } If by N we deote the total umber of visits to state, the m P{ N m } F(, ( F(, If F(, N + w... Therefore, if X E[ N ] + If F (, < the N follows geometric distributio F ( i, with robability mof success ad for i, Pi{ N m} m F(,. Hece, E ( i, F(, ( F(, m,, [ N ] F(, >From the revious we obtai the Corollary: F(, < P{ N <+ } F (, ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 8
15 Let Ri (, E i [ N ] ( R is called the otetial matrix of X The, R(, F (, Ri (, F(, i R(,, (i Ri (, Fi (, R(, + ( Fi (, Comutatio of Ri (, first ad the F( i, Defie:, k, X( ω ( k ( X( ω, k, X( ω The, N ( ω Ri (, ( ( ω X i i i E ( X E ( X P{ X } P ( i, I matrix otatio: from which we obtai R I + P + P + L RP PR P + P + L R I RI ( P ( I PR I ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 9 Classificatio of states X: MC, with state sace E, trasitio matrix P T : The time of first visit to state N : The total umber of visits to state Defiitio State is called recurret if P { T < } State is called trasiet if P{ T } > A recurret state is called ull if E[ T ] A recurret state is called o-ull if E [ T ]< A recurret state is called eriodic with eriod δ, if δ is the greatest iteger for which P{ T δ forsome } ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ
16 If is recurret the startig at the robability of returig to is. F(, R(, E [ N ] + P{ N + } If is trasiet the there exists a ositive robability F(, returig to. of ever F(, < R(, E [ N ] < P{ N < } I this case Ri (, Fi (, R (, < R (, < ad sice Ri (, P ( i, we coclude that lim P ( i, ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ Theorem: If trasiet or recurret ull the i E, lim P ( i, If recurret o-ull the π( lim P (, > ad i E, lim P ( i, Fi (, π( If eriodic with eriod δ, the a retutr to is ossible oly at stes umbered δ, δ, δ,... P (, P{ X } > olyif {, δ, δ, } ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ
17 Recurret o-ull Recurret ull Trasiet P{ T < } P{ T } > E [ ]< T E[ T ] F(, R(, E [ N ] + P{ N + } π ( lim P (, > ad i E, lim P ( i, F( i, π ( F(, < R(, E [ N ] < P{ N < } i E, P i, lim ( A recurret state is called eriodic with eriodδ, if δ is the greatest iteger for which P{ T δ forsome } If eriodic with eriod δ, the a retur to is ossible oly at stes umbered δ, δ, δ,... P (, P { X } > olyif {, δ, δ, } ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ We say that state ca be reached from state i i, if : P ( i, > i, iff F( i, > Defiitio: A set of states is closed if o state outside it ca be reached from ay state i it. A state formig a closed set by itself is called a absorbig state A closed set is called irreducible if o roer subset of it is closed. A MC is called irreducible if its oly closed set is the set of all states Commets: If is absorbig the P(,. If MC is irreducible the all states ca be reached from each other. If C { c, c, L} E is a closed set ad Qi (, Pc ( i, c, ci, c C, the Q is a Markov matrix. If i ad k the i k. To fid the closed set C that cotais i we work as follows: Startig with i we iclude i C all states that ca be reached from i : Pi (, >. We ext iclude i C all states k that ca be reached from : P(, k >. We reeat the revious ste ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 4
18 Examle: MC with state sace E { abcde,,,, } ad trasitio matrix 4 4 P 4 4 Commets: Closed sets: { ace,, } ad { abcde,,,, } There are two closed sets. Thus, the MC is ot irreducible. c e ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 5 Examle: MC with state sace E { a, b, c, d, e } ad trasitio matrix Commets: Closed sets: { ace,, } ad { abcde,,,, } There are two closed sets. Thus, the MC is ot irreducible. 4 4 If we delete the d ad 4 th rows we obtai the P Markov matrix: 4 4 Q If we relabel the states a, c, e, 4 b ad 5 d we get P ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 6
19 Lemma If recurret ad k k. Thus, Fk (,. Proof: If k the k is reached without returig to with robability a. Oce k is reached, the robability that is ever visited agai is F( k,. Hece, F(, a( F( k, But is recurret, so that F (, F ( k, As a result: If k but k /, the must be trasiet. Theorem: From recurret states oly recurret states ca be reached. Theorem: I a Marcov chai the recurret states ca be divided i a uique maer, ito irreducible closed sets C, C,,, ad after a aroriate arragemet: P L P L P P L L L L O M Q Q Q L Q ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 7 Theorem: Let X a irreducible MC. The, oe of the followig holds: All states are trasiet. All states are recurret ull All states are recurret o-ull Either all aeriodic or if oe is eriodic with eriod δ, all are eriodic with the same eriod. Proof: Sice X is irreducible the k ad k, which meas that, rs: r s P (, k > ad P ( k, >. Pick the smallest rs, ad let β r s P (, kp ( k,. If k recurret recurret. If k trasiet trasiet. (If it was recurret the k would be recurret m If k recurret ull the P ( k, k as m. But + r+ s P ( k, k β P (, P (, ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 8
20 Corollary: If C irreducible closed set of fiitely i may states, the / recurret ull states. Proof: If oe is recurret ull the all states are recurret ull. Thus, lim P ( i,, i, C. But, i C,, P ( i, lim P ( i, C C Because, we have fiite umber of states lim P ( i, lim P ( i, C C Corollary: If C is a irreducible closed set with fiitely may states the there are o trasiet states ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 9 Algorithm - Fiite umber of states Idetify irreducible closed sets. All states belogig to a irreducible closed set are recurret ositive The rest of the states are trasiet Periodicity is checked to each irreducible set ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 4
21 Examle: The irreducible closed sets are {, }, {, 7, 9} ad {6}. The states {4, 5, 8, } are trasiet. t If we relabel lthe states t we obtai 4 4 P ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 4 Examle: Let see Thus, N the umber of successes i the first Beroulli trials. As we have i+ P( i, P{ N+ N i} q i otherwise q L q L P q L M M M O we have + but + /. This meas that is ot recurret. Sice the MC is irreducible all states are trasiet. ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 4
22 Examle: Remaiig lifetime X( ω X( ω Remember: X + ( ω Z ( ω ( ω + X from which we obtai: i i P( i, PX { + X } PX { X } i P(, P{ X X } P{ Z X } i + + P{ Z + } + + L L P L L M M M O ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 4 L L P L L M M M O >From state we reach state i oe ste. From we ca reach,,...,,.thus,allstates states ca be reached from each other, which meas that the MC is irreducible. Sice, P (, > the MC is aeriodic. Retur to state occurs if the lifetime is fiite: F (, Sice state is recurret, all states are recurret. If the exected lifetime: + the state is ull ad all states are recurret ull. If the exected lifetime: < the state is o-ull ull ad all states are recurret o-ull. ull ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 44
23 Algorithm - Ifiite umber of states Theorem: Let X a irreducible MC, ad cosider the system of liear equatios: ν ( ν ( i P ( i,, E The all states are recurret o-ull iff there exists a solutio ν with ν ( i E E Theorem: Let X a irreducible MC with trasitio matrix P, ad let Q be the matrix obtaied from P by deletig the k -row ad k -colum for some k E. The all states are recurret if ad oly if the oly solutio of hi ( Qi (, h (, hi (, i E E is hi ( for all i E. E E {} k. Use first theorem to determie whether all states are recurret o-ull or ot. I the latter case, use the secod theorem to determie whether the states t are trasiet or ot. ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 45 Examle: Radom walks. L q L P q L M M M M O All states ca be reached from each other, ad thus the chai is irreducible. A retur to state ca occur oly at stes umbered,4,6,... Therefore, state is eriodic with eriod δ. Sice X is irreducible all states are eriodic with eriod. Either all states are recurret ull, or all are recurret o-ull, or all the states are trasiet. Check for a solutio of ν νpν P. ν q ν ν ν + qν ν ν + q ν ν ν + q ν4 ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 46
24 Hece, Ay solutio is of the form q, the / < If < q ad ν ν q ν ν ν ν q q q ν ν ν q( q q q ν ν,,, q q q ν + ν ν q q q If we choose ν q the ν q ad, q ν (, q q q I this case all states are recurret o ull ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 47 If > q either all states are recurret ull or all states are trasiet. Cosider the matrix L q L Q q L M M M M O The equatio h Qh gives ( hi h( i i i q q q hi L + + h If q the hi ih for all i ad the oly way to have h i for all i is by choosig h which imlies h that is all states are recurret ull. If > q, the choosig h ( q/, we get i q h i which also satisfies h. I this case all states are trasiet. i i ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 48
25 Calculatio of R ad F Ri (, E[ N] Exected umber of visits to state. i F( i, The robability of ever reachig state startig at i. Recurret state: F(, R(, Fi (, Ri (, FiR (, (, Ri (, + Fi (, > Trasiet / i Recurret state: Fi (, Ri (, i, Trasiet Let D { the trasiet states }, Qi (, Pi (,, Si (, Ri (,, i, D. The m K m K P P L Q Lm Q m Hece, L m K m m m L m m m Q R P S Q I Q Q ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 49 Comutatio of S S I + Q+ Q + L SQ QS Q + Q + L S I ( I Q S I, SI ( Q I Proositio: If there are fiitely may trasiet states S ( I Q Whe the set D of trasiet states is ifiite, it is ossible to have more tha oe solutio to the system. Theorem: S is the miimal solutio of ( I Q Y I, Y Theorem: S is the uique solutio of ( I Q Y I if ad oly if the oly bouded solutio of h Qh is h, or equivaletly h Qh, h h ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 5
26 Examle: Let X a MC with state sace E {45678},,,,,,, P {},, are recurret ositive aeriodic. {4, 5} are recurret ositive aeriodic. {6, 78}, are trasiet Q... S ( I Q ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 5 recurret, ca be reached from i trasiet, i recurret recurret, caot be reached from i, i trasiet recurret trasiet i recurret R i trasiet ta se t S ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 5
27 Comutatio of F( i, i, recurret belogig gto the same irreducible closed set Fi (, i, recurret belogig gto differet irreducible closed sets Fi (, i, trasiet The Ri (, < ad Ri (, F(,, F( i, R(, R(, i trasiet, recurret???? Lemma: If C is irreducible closed set of recurret states, the for ay trasiet state i : F( i, F( i, k for all, k C. Proof: For k, C F( k, Fk (,. Thus, oce the chai reaches ay oe of the states of C, it also visits all the other states. Hece, F( i, F( i, k is the robability of eterig the set C from i. ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 5 Let Lum all states of C together to make oe absorbig state: P P P P Pˆ, b ( i ( P i, k, i D k C O O Q Q Q Q b b b bm Q L The robability bili of ever reachig the absorbig bi state from the trasiet state i by the chai with the trasitio matrix ˆP is the same as that of ever reachig ˆ I P, B b L bm, B ( i, P ( i k ı D,, B Q k C C from i. I Pˆ, B ( I + Q+ Q + + Q B L B Q B ( i, is the robability that startig from i, the chai eters the recurret class C ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 54
28 Defie: k k G lim B Q B SB Gi (, is the robability of ever reachig the set C from the trasiet state i : ( F( i, Proositio: Let Q the matrix obtaied from P by deletig all the rows ad colums corresodig to the recurret states, ad let B be defied as reviously, for each trasiet t i ad recurret class C. Comute S Comute G SB Gi (, Fik (,, k C. If there is oly oe recurret class ad fiitely may trasiet states, the thigs are differet. I this case, it ca be roved that: G F( i,, C ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 55 Examle: Let X a MC with state sace E {45678},,,,,,, P ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 56
29 i, recurret belogig to the same irreducible closed set i, recurret belogig to differet irreducible closed sets recurret trasiet i recurret i trasiet F trasiet, i recurret, i trasiet F(,,... R(, Ri (, F ( i, R(, oe (reachable recurret class ad fiitely it may trasiet t states t ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 57 Examle: ˆ P... P Thus, S ( I Q ad F G S B ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 58
30 Recurret states ad Limitig robabilities Cosider oly a irreducible set of states. Theorem: Suose X is irreducible ad aeriodic. The all states are recurret oull if ad oly if π( π( i P( i,, E, π( i E E has a solutio π. If there exists a solutio π, the it is strictly ositive, there are o other solutios, ad we have π ( lim P ( i,, i, E Corollary: If X i a irreducible aeriodic MC with fiitely may states (o-ull ull states, o trasiet states, the π P π, π has a uique solutio. The solutio π is strictly ositive, ad π ( lim P ( i,,, i. ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 59 A robability distributio π which satisfies distributio for X. π π P, is called a ivariat If π is the iitial distributio of X, that is, P{ X } π (, E the P{ X } π( ip( i, π(, for ay E Proof: π π P π P L π P Algorithm: for fidig lim P ( i, Cosider the irreducible closed set cotaiig Solve for π (. Thus, we fid lim P (, For every i (ot ecessarily i E i lim P ( i, Fi (, lim P (, Comute F( i, first. The, fid lim P ( i, ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 6
31 Examle: E{,, },. 5.. P π ( π(. + π(. 6 π P π π ( π ( π (. 4 π( π(. + π(. 4 + π(. 6 π System s Solutio: π P lim P ( i, 6 7 ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 6 Examle: E{,,, 4, 5, 6, 7}, P P π P 6 4 π 7, F(6, L F(65, F(7 F( , L,..... ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 6
32 Thus, P lim P ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 6 Examle: q L ( X irreducible aeriodic (sice state is q Radom walks: P L aeriodic q L M M M M O π q π πq+ πq π q π q π π π + π / q q π L π π+ πq q q M M π / q q q q M M If q : o solutio of π π P, π If < q : lim P ( i, ( q( q ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 64
33 Examle: Remaiig lifetime L P L L M M M O Thus, π π + π ν π π π + + π ν π π + + π ν M M M M ν ( L + ( + + L + ( + L + L L m m E[ Z ] is the exected lifetime. If m the all states are recurret ull ad lim P ( i, ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 65 Iterretatio of Limitig Probabilities Proositio: Let be a aeriodic recurret o-ull state, ad let m( be the exected time betwee two returs to. The, π ( lim P (, m( The limitig robability π ( of beig i state is equal to the rate at which is visited. Proositio: Let be a aeriodic recurret o-ull ad let π ( defied as reviously. The, for almost all ω Ω lim ( X m( ω π( + m. If f is a bouded fuctio o E, the f ( X f( ( X m m m E m Corollary: X irreducible ibl recurret MC, with limitig iti robability bilit π. The, for ay bouded fuctio f o E : lim f ( Xm π f, π f π ( f ( + m E ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 66
34 Similar results hold for exectatios Corollary: Suose X is a irreducible recurret MC with limitig distributio π. The for ay bouded fuctio f o E lim Ei[ f( Xm] π f + m ideedet of i. If f ( is the reward received wheever X is i, the both the exected average reward i the log ru ad the actual average reward i the log ru coverge to the costat π f. The ratio of the total reward received durig the stes,,, by usig fuctio f to the corresodig amout by usig fuctio g is lim f( X m m π g( X π m m The same holds eve i the case that X is oly recurret (ca be ull or eriodic or both f g ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 67 Theorem: Lt Let X be a irreducible ibl recurret chai with trasitio matrix P. The, the system ν ν P has a strictly ositive solutio; ay other solutio is a costat multile of that oe. Theorem: Suose X is irreducible recurret, ad let ν be a solutio of ν ν P. The for ay two fuctios f ad g o E for which the two sums ν f ν ( i f ( i, ν g ν ( i g ( i i E coverge absolutely ad at least oe is ot zero we have m lim m ideedetly of i, E. Moreover we also have for almost all ω Ω lim m m i E Ei [ f ( Xm ] f E[ g( X ] ν ν g i m f( Xm( ω ν g( X ( ω ν m f g ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 68
35 Ay o-egative solutio of ν ν P is called a ivariat measure of X. Commets: Ay irreducible recurret chai X has a ivariat measure, ad this is uique u to a multilicatio by a costat. Furthermore, if X is also o-ull, the ν ν ( is fiite, ad ν is a costat multile of the limitig distributio π satisfyig π P π, π The existece of a ivariat measure ν for X does ot imly that X is recurret. For f k, g ad i E ( k X m m ( lim ν k E ( ( Xm ν m ν ( k is the ratio of the exected umber of visits to k durig the first stes to ν ( the exected umber of returs to durig the same eriod as ν ( k is the exected umber of visits to k betwee two visits to state ν ( ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 69 Periodic States It is sufficiet to cosider oly a irreducible MC with eriodic recurret states. Lemma: Let X be a irreducible MC with recurret eriodic states with eriod δ. The, the states ca be divided ito δ disoit sets B, B,, B δ such that P( i, uless i B, B, or i B, B, or L i B, B. δ ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 7
36 Examle: X MC with E {4567},,,,,, 4 4 P All states are eriodic with eriod. The sets are B {, }, B {45},, ad B {6, 7}. >From B i oe ste the MC reaches B, i two stes B ad di three stes B. ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 7 P Note: , P P P P, P P Chai corresodig to P has three closed sets B, B, B ad each oe of these is irreducible, recurret ad aeriodic. The revious limitig theory alies to comute lim P m, m lim P m, m lim P m searately. m ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 7 P
37 Theorem: LtP Let P the trasitio matrix of a irreducible ibl MC with recurret eriodic states of eriod δ, ad let B, B, B δ be as reviously. The, i the MC with trasitio matrix P P δ, the classes B, B, B δ are irreducible closed sets of aeriodic states. P P δ P, Pa( i, P ( i,, i, Ba O P Commets: If a δ i B, the P{ X B }, b a+ m(mod δ i m b P ( i, does ot have a limit as excet whe all the states are ull (i which case P ( i,, i,, δ + m The limits P ( i, exist as, but are deedet o the iitial state i. ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 7 Theorem: Let P ad Ba as reviously ad suose that the chai is o-ull. The, for ay m {,, δ, } δ + m π ( i Ba, Bb, b a+ m(mod δ lim P ( i, otherwise The robabilities π (, E form the uique solutio of π ( π ( i P ( i,, π ( i δ i E i E ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 74
38 Examle: Let X be a MC with state sace E {45},,,,, P The chai is irreducible, recurret o-ull eriodic with eriod δ. P P ( 6 8 π ( 4 6 π..., lim P lim P ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 75 Examle: Radom Walks ( < q q P q O O Cyclic Classes B {4,,, }, B {,, 5, } Ivariat solutio ν ν P ν, ν, ν 4, q q 4 ν, ν, ν 5, 5 q q q Normalize: ν + q + q + q + L + q q Multily l each term by. ( ν i q q,,, ( (,, 4, q q q 4,,, ( (, q q, 5, q q ( π i π π 4 ( π π π 5 ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 76
39 Hece, L 4 q q L q q lim P q L 4 q q L q q M M M M M O L q q L 4 q q + lim P q L q q L 4 q q M M M M M O ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 77 Trasiet States If a MC has oly fiitely may trasiet states, the it will evetually leave the set of trasiet states ever to retur. If there are ifiitely may trasiet states, it is ossible for the chai to remai i the set of trasiet states forever. Examle: L L P L L M M M M O All states are trasiet If iitial state is i, the the chai stays forever i the set { ii, +, i +, }. As, X ( ω ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 78
40 Let A E, Q the matrix obtaied from P by deletig all the rows ad colums corresodig to states which are ot i A. The, for i, A Q ( i, L Qii (, Qi (, i L Qi (, P { X A, L, X A, X } i A i A Q ( i, P { X A, L, X A X A } i, A i The evet { X A X,, + A} is a subset of { X A X,, A}, therefore Q ( i, Q + ( i, A A Let f ( i lim Q ( i,, i A A f ( i is the robability that startig at i A, the chai stays i the set A forever. ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 79 Proositio: The fuctio f is the maximal solutio of the system h Qh, h Either f or su f ( i i A A alicatio of the revious roositio was give i a theorem o the classificatio of states: Theorem: Let X a irreducible MC with trasitio matrix P, ad let Q be the matrix obtaied from P by deletig the k -row ad k -colum for some k E. The all states are recurret if ad oly if the oly solutio of hi ( Qi (, h (, hi (, i E E is hi ( for all i E. E E {} k. Proof: Fix a erticular state ad ame it. Sice X is irreducible it is ossible to go from to some i A E {}. If the robability f ( i of remaiig i A forever is f( i for all i A, the with robability, the chai will leave A ad eter agai. Hece, if the oly solutio of the system is h, the state is recurret, ad that i tur imlies that all states are recurret. Coversely, if all states are recurret, the the robability of remaiig i the set A forever must be zero, sice will be reached with robability oe from ay state i A ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 8
41 Examle: (Radom Walk q Q q O If > q all states are trasiet. q f ( i, i,,, This is the maximal solutio sice su i f ( i. Iterretatio: Startig at a state k (e.g. k 7 the robability of stayig forever withi the set q 7 {,,, } is equal to (. If k > k, the robability of remaiig i {,,, } is greater. From the shae of P : the restrictio of P to the set { kk, +, } is the same as the matrix Q. Hece, for all k {,,, } i q P k + i { X k, X k, } ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 8 i+ For ay subset A of E, let f A ( i the robability of remaiig forever i A give the iitial state i A. The, If A is a irreducible recurret class, f A. If A is a roer subset of a irreducible recurret class, f A. If A is a fiite set of trasiet states, f A. If A is a ifiite set of trasiet states, the either f A or f A. I the latter case the chai travels through a sequece of sets ( A A AL to ifiite. ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης - ΕΚΠΑ 8
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.
Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue
Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process
Tired Waiting in Queues? Then get in line now to learn more about Queuing!
Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
Markov Processes and Applications
Markov Processes ad Alcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Alcatos Queug theory Performace aalyss Dscrete-Tme Markov Chas Books - Itroducto to Stochastc Processes (Erha Clar), Cha. 5,
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
1. Matrix Algebra and Linear Economic Models
Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Markov Processes and Applications
Markov rocesses ad Applcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Applcatos Queug theory erformace aalyss ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) Dscrete-Tme
Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους
Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
Degenerate Perturbation Theory
R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The
Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.
Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Presentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
Lecture 17: Minimum Variance Unbiased (MVUB) Estimators
ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator
α β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Homework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Solutions: Homework 3
Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators
Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
Bessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
EN40: Dynamics and Vibrations
EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
On Certain Subclass of λ-bazilevič Functions of Type α + iµ
Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
The Heisenberg Uncertainty Principle
Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time
Moder Applied Sciece September 8 Steady-state Aalysis of the GI/M/ Queue with Multiple Vacatios ad Set-up Time Guohui Zhao College of Sciece Yasha Uiersity Qihuagdao 664 Chia E-mail: zhaoguohui8@6com Xixi
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
B.A. (PROGRAMME) 1 YEAR
Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4
Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction
Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods
DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES
Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Generating Set of the Complete Semigroups of Binary Relations
Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα
Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα Μια διμελής σχέση πάνω σε ένα σύνολο X καλείται μερική διάταξη αν η είναι ανακλαστική, αντισυμμετρική και μεταβατική, δηλαδή: a X, a
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values
Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
Example of the Baum-Welch Algorithm
Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)
DERIVATION OF MILES EQUATION Revision D
By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
B.A. (PROGRAMME) 1 YEAR
Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. Generalized hypergeometric function
HyergeometricPFQ Notatios Traditioal ame Geeralied hyergeometric fuctio Traditioal otatio F a 1,, a ; b 1,, b ; Mathematica StadardForm otatio HyergeometricPFQa 1,, a, b 1,, b, Primary defiitio 07.31.0.0001.01
Lecture 15 - Root System Axiomatics
Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the