Λύσεις Σειράς Ασκήσεων 5
|
|
- Φιλομήλ Γλυκύς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Άσκηση Λύσεις Σειράς Ασκήσεων 5 Έστω P και Q συνθήκες και S ένα πρόγραμμα. Να εξηγήσετε με λόγια τις πιο κάτω προδιαγραφές (i) με την έννοια της μερικής ορθότητας και (ii) με την έννοια της ολικής ορθότητας. (α) { P } S { true } (β) { P } S { false } (γ) { false } S { Q } Λύση (α) Με την έννοια της μερικής ορθότητας η προδιαγραφή δηλώνει ότι αν το πρόγραμμα S ξεκινήσει την εκτέλεσή του σε μια κατάσταση που ικανοποιεί τη συνθήκη Ρ τότε, αν τερματίσει θα ικανοποιεί τη συνθήκη true. Αφού όμως η συνθήκη true ικανοποιείται τετριμμένα σε κάθε κατάσταση ενός προγράμματος, η συγκεκριμένη προδιαγραφή, υπό την έννοια της μερικής ορθότητα δεν επιβάλλει οποιοδήποτε περιορισμό και ικανοποιείται για οποιαδήποτε S και P. Mε την έννοια της ολικής ορθότητας η προδιαγραφή δηλώνει ότι κάθε φορά που το πρόγραμμα ξεκινά την εκτέλεσή του σε μια κατάσταση που ικανοποιεί τη συνθήκη Ρ, τότε θα τερματίσει. (β) Με την έννοια της μερικής ορθότητας η προδιαγραφή δηλώνει ότι αν το πρόγραμμα S ξεκινήσει την εκτέλεσή του σε μια κατάσταση που ικανοποιεί τη συνθήκη Ρ τότε, αν τερματίσει, θα ικανοποιεί τη συνθήκη false. Αφού όμως η συνθήκη true δεν ικανοποιείται σε καμιά κατάσταση ενός προγράμματος, η συγκεκριμένη προδιαγραφή, υπό την έννοια της μερικής ορθότητας εκφράζει ότι κάθε φορά που το πρόγραμμα S ξεκινά την εκτέλεσή του σε μια κατάσταση που ικανοποιεί τη συνθήκη P τότε δεν τερματίζει. Mε την έννοια της ολικής ορθότητας η προδιαγραφή δηλώνει ότι κάθε φορά που το πρόγραμμα ξεκινά την εκτέλεσή του σε μια κατάσταση που ικανοποιεί τη συνθήκη Ρ, τότε θα τερματίσει σε μια κατάσταση που ικανοποιεί τη συνθήκη false. Αυτό όμως δεν είναι εφικτό και επομένως η προδιαγραφή αυτή δεν ικανοποιείται από κανένα πρόγραμμα. (γ) Με την έννοια της μερικής ορθότητας η προδιαγραφή δηλώνει ότι αν το πρόγραμμα S ξεκινήσει την εκτέλεσή του σε μια κατάσταση που ικανοποιεί τη συνθήκη false τότε, αν τερματίσει θα ικανοποιεί τη συνθήκη P. Αφού όμως η συνθήκη false δεν ικανοποιείται σε καμιά κατάσταση ενός προγράμματος, η συγκεκριμένη προδιαγραφή, ικανοποιείται τετριμμένα από οποιοδήποτε πρόγραμμα και μετασυνθήκη. Το ίδιο ισχύει και για την έννοια της ολικής ορθότητα. Άσκηση 2 Να γράψετε πρόγραμμα S το οποίο να χρησιμοποιεί τις μεταβλητές x και y και να ικανοποιεί την προδιαγραφή tot {x = a y = b} S {z = exp(a,b) x = a y = b}, όπου exp(m,0) = exp(m,n+) = m exp(m,n) Λύσεις Σειράς Προβλημάτων 5 Χειμερινό Εξάμηνο 205 Σελίδα
2 Λύση Ορίζουμε το ζητούμενο πρόγραμμα S ως εξής: n := x; m := 0; z := ; while (m < y){ m := m + ; z := z * n; } και αποδεικνύουμε την ορθότητα του όπως φαίνεται πιο κάτω χρησιμοποιώντας ως αμετάβλητη συνθήκη και μεταβλητή έκφραση τις εξής: η = z = exp(m,n) x = a y = b n y m = x E = y n { x = a y = b 0 y } { = exp(x,0) x = a y = b 0 y x = x } m := x; { = exp(m,0) x = a y = b 0 y m = x } Κανόνας Ανάθεσης n := 0; { = exp(m,n) x = a y = b n y m = x } Κανόνας Ανάθεσης z := ; { z = exp(m,n) x = a y = b n y m = x 0 y n } Κανόνας Ανάθεσης while (n < y){ { z = exp(m,n) x = a y = b n y n < y m = x 0 y n = E 0 } Αμ. Συνθ., Μετ. Εκφρ. & Φρουρός { z m = exp(m,n+) x = a y = b n + y m = x 0 y n < E 0 } n := n + ; { z m = exp(m,n) x = a y = b n y m = x 0 y n < E 0 } Κανόνας Ανάθεσης z := z * m; { z = exp(m,n) x = a y = b n y m = x 0 y n < E 0 } Κανόνας Ανάθεσης } { z = exp(m,n) x = a y = b n y y n m = x } Κανόνας total while { z = exp(a,b) x = a y = b } Άσκηση 3 (35 μονάδες) Να αποδείξετε την ορθότητα των πιο κάτω προδιαγραφών με την έννοια της ολικής ορθότητας. (α) Θα χρησιμοποιήσουμε ως αμετάβλητη συνθήκη και μεταβλητή έκφραση τις η = (a = b a 2 = n) (a < b a 2 < n b 2 ) E = b a Λύσεις Σειράς Προβλημάτων 5 Χειμερινό Εξάμηνο 205 Σελίδα 2
3 { n 0 n x n n } { [(0 = n 0 2 = n) (0 < n 0 < n n 2 )] 0 b a } a := 0; { [(a = n a 2 = n) (a < n a 2 < n n 2 )] 0 b a } Κανόνας Ανάθεσης b := n; { [(a = b a 2 = n) (a < b a 2 < n b 2 )] 0 b a } Κανόνας Ανάθεσης while (b a > ) { { [(a = b a 2 = n) (a < b a 2 < n b 2 ) b a > ] 0 b a = E 0 } Αμ. Συνθ, Φρουρός, Μετ. Εκφρ. { [(a+b)div 2] 2 < n ((a+b)div 2 < b [(a+b)div 2] 2 < n b 2 0 b (a+b)div 2 < E 0 ) [(a+b)div 2] 2 > n (a < (a+b)div 2 a 2 < n [(a+b)div 2] 2 0 (a+b)div 2 a < E 0 } mid := (a + b) div 2; { mid 2 < n (mid < b mid 2 < n b 2 0 b mid < E 0 ) mid 2 > n (a < mid a 2 < n mid 2 0 mid a < E 0 } if (mid * mid = n) { mid 2 = n} {[(mid = mid mid 2 = n) (mid < mid mid 2 < n mid 2 )] 0 mid mid < E 0 } a := mid; { [(a = mid a 2 = n) (a < mid a 2 < n mid 2 )] 0 mid a < E 0 } Κανόνας Aνάθεσης b := mid; { [(a = b a 2 = n) (a < b a 2 < n b 2 )] 0 b a < E 0 } Κανόνας Aνάθεσης else { mid 2 < n (mid < b mid 2 < n b 2 0 b mid < E 0 ) mid 2 n (a < mid a 2 < n mid 2 0 mid a < E 0 } { mid 2 < n [(mid = b mid 2 = n) (mid < b mid 2 < n b 2 )] 0 b mid < E 0 ) mid 2 n (a = mid a 2 = n) (a < mid a 2 < n mid 2 )] 0 mid a < E 0 } if (mid * mid < n) else { [(mid = b mid 2 = n) (mid < b mid 2 < n b 2 )] 0 b mid < E 0 } a := mid; { [(a = b a 2 = n) (a < b a 2 < n b 2 )] 0 b a < E 0 } Κανόνας Aνάθεσης { [(a = mid a 2 = n) (a < mid a 2 < n mid 2 )] 0 mid a < E 0 } b := mid; { [(a = b a 2 = n) (a < b a 2 < n b 2 )] 0 b a < E 0 } Κανόνας Aνάθεσης { [(a = b a 2 = n) (a < b a 2 < n b 2 ) ] 0 b a < E 0 } Κανόνας if { (a = b a 2 = n) (a < b a 2 < n b 2 ) 0 b a < E 0 } Κανόνας if { [(a = b a 2 = n) (a < b a 2 < n b 2 )] (b a) } Κανόνας Total while { (a = b a a = n) (a+ = b a a < n b b n) } Λύσεις Σειράς Προβλημάτων 5 Χειμερινό Εξάμηνο 205 Σελίδα 3
4 (β) Για διευκόλυνση στην κατανόηση θα δοθεί πρώτα η απόδειξη για τη μερική ορθότητα και στη συνέχεια για την ολική ορθότητα. Για την απόδειξη της μερικής ορθότητας χρησιμοποιούμε ως αμετάβλητες συνθήκες: Εσωτερικός βρόχος: x n! = a! n fact = (n y + ) x y Εξωτερικός βρόχος: fact n! = a! n 0 Η απόδειξη έχει ως εξής: { n = a a 0 } { n! = a! n 0 } fact := ; { fact n! = a! n 0 } Κανόνας Ανάθεσης while (n > ){ { fact n! = a! n 0 n > } Αμ. Συνθ. και Φρουρός { fact n! = a! n fact = (n n + ) fact n } x := fact; { x n! = a! n fact = (n n + ) x n } Κανόνας Ανάθεσης y := n; { x n! = a! n fact = (n y + ) x y } Κανόνας Ανάθεσης while (y > ) { x n! = a! n fact = (n y + ) x y y > } Αμ. Συνθ. και Φρουρός { x n! = a! n fact + x = (n y + + ) x y } fact := fact + x; { x n! = a! n fact = (n y + + ) x y } Κανόνας Ανάθεσης y := y-; { x n! = a! n fact = (n y + ) x y } Κανόνας Ανάθεσης { x n! = a! n fact = (n y + ) x y y } Κανόνας Total while { fact (n )! = a! (n ) 0 } (αποδείξτε το!) n := n-; { fact n! = a! n 0 } Κανόνας Ανάθεσης { fact n! = a! n 0 n } Κανόνας Total while { fact = a! } Στην απόδειξη ολικής ορθότητας θα χρειαστεί να ενδυναμώσουμε την αμετάβλητη συνθήκη του εσωτερικού βρόχου και να ορίσουμε σχετικές μεταβλητές εκφράσεις. Συγκεκριμένα, για τον εσωτερικό βρόχο έχουμε Αμετάβλητη συνθήκη: x n! = a! n fact = (n y + ) x y 0 n < E 0 Μεταβλητή Έκφραση: y και για τον εξωτερικό: Αμετάβλητη συνθήκη: fact n! = a! n 0 Μεταβλητή Έκφραση: n Ακολουθεί η απόδειξη. Λύσεις Σειράς Προβλημάτων 5 Χειμερινό Εξάμηνο 205 Σελίδα 4
5 { n = a a 0 } { n! = a! n 0 } fact := ; { fact n! = a! n 0 } Κανόνας Ανάθεσης while (n > ){ { fact n! = a! n 0 n > 0 n = E 0 } Αμ. Συνθ., Φρουρός & Mετ. Εκφρ. { fact n! = a! n fact = (n n + ) fact n 0 n < E 0 } x := fact; { x n! = a! n fact = (n n + ) x n 0 n < E 0 } Κανόνας Ανάθεσης y := n; { x n! = a! n fact = (n y + ) x y 0 n < E 0 0 y } Κανόνας Ανάθεσης while (y > ) { x n! = a! n fact = (n y + ) x y y > 0 n < E 0 0 y = F 0 } Αμ. Συνθ., Φρουρός & Mετ. Εκφρ. { x n! = a! n fact + x = (n y + + ) x y 0 n < E 0 0 y < F 0 } fact := fact + x; { x n! = a! n fact = (n y + + ) x y 0 n < E 0 0 y < F 0 } Κανόνας Ανάθεσης y := y-; { x n! = a! n fact = (n y + ) x y 0 n < E 0 0 y < F 0 } Κανόνας Ανάθεσης { x n! = a! n fact = (n y + ) x y 0 n < E 0 y } Κανόνας Total while { fact (n )! = a! (n ) 0 0 n < E 0 } (αποδείξτε το!) n := n-; { fact n! = a! n 0 0 n < E 0 } Κανόνας Ανάθεσης { fact n! = a! n 0 n } Κανόνας Total while { fact = a! } Άσκηση 4 (30 μονάδες) Θέλουμε να προσθέσουμε στη γλώσσα WHILE (διαφάνεια 9 5) εντολές της μορφής: do B C B n C n od Οι εντολές αυτές εκτελούνται ως εξής: () Εφόσον τουλάχιστον μια από τις λογικές εκφράσεις Β,,Β n, υπολογίζεται ως αληθής, έστω η B i, τότε επιλέγεται για εκτέλεση η αντίστοιχη εντολή C i και επαναλαμβάνεται το βήμα. Αν υπάρχουν περισσότερες από μια εκφράσεις ανάμεσα στις Β,,Β n, οι οποίες υπολογίζονται ως αληθείς τότε επιλέγεται μη ντετερμινιστικά μια από τις αντίστοιχες εντολές για εκτέλεση. Λύσεις Σειράς Προβλημάτων 5 Χειμερινό Εξάμηνο 205 Σελίδα 5
6 (2) Αν καμιά από τις λογικές εκφράσεις Β,,Β n, δεν υπολογίζεται ως αληθής, τότε η εκτέλεση της εντολής τερματίζει. (α) Να προτείνετε κανόνα για την ανάλυση προδιαγραφών που σχετίζονται με την εντολή αυτή. Ο καινούριος κανόνας για την εντολή είναι ο εξής: { Bi 0 E E0} Ci { 0 E E0} { 0 E} do B C,..., B C { B... B } n n do - loop (β) Να αποδείξετε την πιο κάτω προδιαγραφή. Θα χρησιμοποιήσουμε ως αμετάβλητη συνθήκη φ = True και ως μεταβλητή έκφραση την 3 max(x,y,z) (x+y+z). {true} { 3 max(x,y,z) (x+y+z) 0 } do x<y { x<y 0 3 max(x,y,z) (x+y+z) = E 0 } { 0 3 max(x+,y,z) (x++y+z) < E 0 } x:= x+ { 0 3 max(x,y,z) (x+y+z) < E 0 } y<z { y<z 0 3 max(x,y,z) (x+y+z) = E 0 } { 0 3 max(x,y+,z) (x+y++z) < E 0 } y:= y+ { 0 3 max(x,y,z) (x+y+z) < E 0 } z<x { z<x 0 3 max(x,y,z) (x+y+z) = E 0 } { 0 3 max(x,y,z+) (x+y+z+) < E 0 } z:= z+ { 0 3 max(x,y,z) (x+y+z) < E 0 } od {true (x<y) (y<z) (z<x)} {x = y = z Λύσεις Σειράς Προβλημάτων 5 Χειμερινό Εξάμηνο 205 Σελίδα 6
Λύσεις Σειράς Ασκήσεων 5
Άσκηση 1 (α) {x = 12 y = 7} skip {y = 7} Λύσεις Σειράς Ασκήσεων 5 Η προδιαγραφή αυτή είναι ορθή τόσο με την έννοια της μερικής ορθότητας όσο και με την έννοια της ολικής ορθότητας. Αυτό οφείλεται στο γεγονός
Λύσεις Σειράς Ασκήσεων 5
Άσκηση 1 Λύσεις Σειράς Ασκήσεων 5 Να υπολογίσετε τις ασθενέστερες προσυνθήκες έτσι ώστε οι πιο κάτω προδιαγραφές να είναι ορθές σύμφωνα (i) με την έννοια της μερικής ορθότητας και (ii) με την έννοια της
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 (15 μονάδες) Σειρά Προβλημάτων 5 Λύσεις Να δώσετε προδιαγραφές (τριάδες Hoare) για τα πιο κάτω προγράμματα: (α) Ένα πρόγραμμα το οποίο παίρνει ως δεδομένο εισόδου δύο πίνακες Α και Β και ελέγχει
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις Να αποφασίσετε κατά πόσο οι πιο κάτω προδιαγραφές είναι ορθές σύμφωνα με την έννοια της μερικής ορθότητας και την έννοια της ολικής ορθότητας. Να αιτιολογήσετε σύντομα
Λύσεις Σειράς Ασκήσεων 5
Λύσεις Σειράς Ασκήσεων 5 Άσκηση 1 (α) Ακολουθεί η απόδειξη της προδιαγραφής (0) { A[X] = x A[Y] = y X Y (1) { A[Y] = y A[X] + Α[Υ] A[Y] = x X Y (2) A[X] := A[X] + A[Y]; (3) { A[Y] = y A[X] A[Y] = x X Y
Λύσεις Σειράς Ασκήσεων 5
Άσκηση 1 Λύσεις Σειράς Ασκήσεων 5 Να υπολογίσετε τις ασθενέστερες προσυνθήκες έτσι ώστε οι πιο κάτω προδιαγραφές να είναι ορθές σύμφωνα (i) με την έννοια της μερικής ορθότητας και (ii) με την έννοια της
Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)
Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες
Ανάλυση της Ορθότητας Προγραμμάτων
Ανάλυση της Ορθότητας Προγραμμάτων Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες Απόδειξης Μερικής
Ανάλυση της Ορθότητας Προγραμμάτων
Ανάλυση της Ορθότητας Προγραμμάτων Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων ΚανόνεςΑπόδειξηςΜερικήςΟρθότητας
Κεφάλαιο 5 Αξιωματική Σημασιολογία και Απόδειξη Ορθότητας Προγραμμάτων
Κεφάλαιο 5 Αξιωματική Σημασιολογία και Απόδειξη Ορθότητας Προγραμμάτων Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Εισαγωγή Τα προγράμματα μιας (κλασικής) γλώσσας προγραμματισμού
ΕΠΑΛΗΘΕΥΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ Ι
ΕΠΑΛΗΘΕΥΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ Ι Η τυπική επαλήθευση βάση μοντέλου είναι κατάλληλη για συστήματα επικοινωνούντων διεργασιών (π.χ. κατανεμημένα συστήματα) όπου το βασικό πρόβλημα είναι ο έλεγχος αλλά γενικά δεν
Εισαγωγή στον Προγραµµατισµό. Διάλεξη 3 η : Επίλυση Προβληµάτων Χειµερινό Εξάµηνο 2011
Εισαγωγή στον Προγραµµατισµό Διάλεξη 3 η : Επίλυση Προβληµάτων Χειµερινό Εξάµηνο 2011 Τελεστής σύντοµης ανάθεσης Τελεστής σύντοµης ανάθεσης (shorthand assignment operator) µεταβλητή = µεταβλητή τελεστής
Λύσεις Σειράς Ασκήσεων 4
Άσκηση 1 Λύσεις Σειράς Ασκήσεων 4 Θεωρήστε το σύνολο των ατομικών προτάσεων ΑΡ = {α, π, ε} που αντιστοιχούν στις ενέργειες αποστολής μηνύματος, παραλαβής μηνύματος και επιστροφής αποτελέσματος που εκτελούνται
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ Μέρος 5ο ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 1 Η ΕΝΤΟΛΗ for Με την εντολή for δημιουργούμε βρόχους επανάληψης σε
Ασκήσεις Επανάληψης Λύσεις
Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Το επακόλουθο (A (B C)) ((A C) (A B)) είναι ψευδές. Αυτό φαίνεται στην ανάθεση τιμών [Α] = Τ, [Β] = F, [C] = T. (β) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x)
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΜΟΣ Εντολές επιλογής και αποφάσεων 1 ο Φύλλο Εργασιών Εισαγωγικές ασκήσεις για την εντολή if ΑΠΑΝΤΗΣΕΙΣ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΜΟΣ Κεφάλαιο 10 : Εντολές επιλογής και αποφάσεων 1 ο Φύλλο Εργασιών Εισαγωγικές ασκήσεις για την εντολή if ΑΠΑΝΤΗΣΕΙΣ 1. Ποιες από τις παρακάτω εντολές είναι σωστές; α) if A + B
Δομημένος Προγραμματισμός. Τμήμα Επιχειρηματικού Σχεδιασμού και Πληροφοριακών Συστημάτων
Δομημένος Προγραμματισμός Τμήμα Επιχειρηματικού Σχεδιασμού και Πληροφοριακών Συστημάτων www.bpis.teicrete.gr Τμήμα Επιχειρηματικού Σχεδιασμού και Πληροφοριακών Συστημάτων www.bpis.teicrete.gr 2 Ένθετες
Α3. Ποια είναι τα πλεονεκτήματα του Δομημένου προγραμματισμού; (Μονάδες 10)
ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08 / 02 / 2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι. ΜΙΧΑΛΕΑΚΟΣ Γ.ΝΙΤΟΔΑΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις
Δομές ελέγχου ροής προγράμματος
Δομές ελέγχου ροής προγράμματος Υπάρχουν δύο είδη δομών ελέγχου ροής (control flow): Οι δομές επιλογής και Οι δομές επανάληψης Δομές ελέγχου ροής προγράμματος Είδος δομής Δομές επιλογής Δομή ελέγχου ροής
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Ασκήσεις Επανάληψης Λύσεις
Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Το επακόλουθο (A (B C)) ((A C) (A B)) είναι ψευδές. Αυτό φαίνεται στην ανάθεση τιμών [Α] = Τ, [Β] = F, [C] = T. (β) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x)
Εισαγωγή στην πληροφορική
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Εισαγωγή στην πληροφορική Βασίλειος Βεσκούκης ρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Η γλώσσα προγραµµατισµού
Βρόχοι. Εντολή επανάληψης. Το άθροισμα των αριθμών 1 5 υπολογίζεται με την εντολή. Πρόβλημα. Πώς θα υπολογίσουμε το άθροισμα των ακέραιων ;
Εντολή επανάληψης Το άθροισμα των αριθμών 1 5 υπολογίζεται με την εντολή Πρόβλημα Πώς θα υπολογίσουμε το άθροισμα των ακέραιων 1 5000; Ισοδύναμοι υπολογισμοί του Ισοδύναμοι υπολογισμοί του Ισοδύναμοι υπολογισμοί
Σειρά Προβλημάτων 1 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC 0, PC 1, (program counters) οι οποίες παίρνουν ως τιμές ονόματα των γραμμών του κώδικα όπως φαίνεται πιο κάτω. P[0] P[1]
Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client
ΕΣΔ 516 Τεχνολογίες Διαδικτύου Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client Περιεχόμενα Περιεχόμενα Javascript και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις
Στόχοι και αντικείμενο ενότητας. Προτάσεις επανάληψης. Έλεγχος ροής προγράμματος. #5.. Εντολές Επανάληψης
Στόχοι και αντικείμενο ενότητας Έλεγχος ροής προγράμματος (βλ. ενότητα #4) Δομή επανάληψης #5.. Εντολές Επανάληψης Προτάσεις επανάληψης Εντολές while, do while Εντολή for Περί βρόχων (loops) Τελεστές,
Προβλήματα, αλγόριθμοι, ψευδοκώδικας
Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι
Εισαγωγή στην πληροφορική
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Εισαγωγή στην πληροφορική Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Η γλώσσα προγραμματισμού
Να γράψετε τους αριθμούς 1, 2, 3 από τη Στήλη Α και δίπλα το γράμμα α, β, γ, δ, ε από τη Στήλη Β που δίνει τη σωστή αντιστοιχία.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : Προγραμματισμός Υπολογιστών / Γ ΕΠΑ.Λ. ΗΜΕΡΟΜΗΝΙΑ: 22-1-2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΓΙΑΝΝΗΣ ΜΙΧΑΛΕΑΚΟΣ- ΑΝΝΑ ΚΑΤΡΑΚΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις
Δομημένος Προγραμματισμός. Τμήμα Επιχειρηματικού Σχεδιασμού και Πληροφοριακών Συστημάτων
Δομημένος Προγραμματισμός Τμήμα Επιχειρηματικού Σχεδιασμού και Πληροφοριακών Συστημάτων www.bpis.teicrete.gr Τμήμα Επιχειρηματικού Σχεδιασμού και Πληροφοριακών Συστημάτων www.bpis.teicrete.gr 2 Νέο Πρόγραμμα
Κεφάλαιο : Επαναλήψεις (o βρόγχος While) (Διάλεξη 9) Δομές Έλεγχου Προγράμματος
Κεφάλαιο 5.1-5.3: Επαναλήψεις (o βρόγχος While) (Διάλεξη 9) 9-1 Δομές Έλεγχου Προγράμματος Μέχρι τώρα είδαμε τις ακόλουθες δομές έλεγχου (program control structure) ενός προγράμματος Α) Sequence π.χ. int
Κεφάλαια Εντολές επανάληψης. Τρεις εντολές επανάληψης. Επιλογή εντολής επανάληψης ΟΣΟ...ΕΠΑΝΑΛΑΒΕ. Σύνταξη στη ΓΛΩΣΣΑ
Εντολές επανάληψης Κεφάλαια 02-08 οµές Επανάληψης Επιτρέπουν την εκτέλεση εντολών περισσότερες από µία φορά Οι επαναλήψεις ελέγχονται πάντοτε από κάποια συνθήκη η οποία καθορίζει την έξοδο από το βρόχο
Κεφάλαιο : Επαναλήψεις (oι βρόχος While) ( ιάλεξη 9) ιδάσκων: ηµήτρης Ζεϊναλιπούρ
Κεφάλαιο 5.1-5.3: Επαναλήψεις (oι βρόχος While) ( ιάλεξη 9) ιδάσκων: ηµήτρης Ζεϊναλιπούρ 9-1 οµές Έλεγχου Προγράµµατος Μέχρι τώρα είδαµε τις ακόλουθες δοµές έλεγχου (program control structure) ενός προγράµµατος
Θέματα Προγραμματισμού Η/Υ
Πρόγραμμα Μεταπτυχιακών Σπουδών Πληροφορική και Υπολογιστική Βιοϊατρική Θέματα Προγραμματισμού Η/Υ Ενότητα 7: Θεματική Ενότητα: Δομές επανάληψης ΘΕΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ Θεματική Ενότητα 7 Δομές επανάληψης
Δομημένος Προγραμματισμός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 5: Εντολές επανάληψης Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Κεφάλαιο : Επαναλήψεις (for, do-while)
Κεφάλαιο 5.4-5.11: Επαναλήψεις (for, do-while) 10-1 Εντολές Επανάληψης που θα καλυφθούν σήµερα while(){ τελεστές postfix/prefix (++, --,...) και σύνθετοι τελεστές Παραδείγµατα Σήµερα for(){ Η εντολές break/continue;
Βασικάχαρακτηριστικάτηςγλώσσας. Πίνακες, Έλεγχος Ροής και Βρόχοι
Βασικάχαρακτηριστικάτηςγλώσσας Πίνακες, Έλεγχος Ροής και Βρόχοι Πίνακες Τρόπος αποθήκευσης πολλών στοιχείων που έχουν τον ίδιο πρωταρχικό τύπο δεδοµένων ή κλάση. Τα στοιχεία µπορεί να έχουν οποιοδήποτε
Μεθόδων Επίλυσης Προβλημάτων
ΕΠΛ 032.3: 3: Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 7 ομές Επαναλήψεις Ο βρόχος While ομές Έλεγχου
Ψευδοκώδικας. November 7, 2011
Ψευδοκώδικας November 7, 2011 Οι γλώσσες τύπου ψευδοκώδικα είναι ένας τρόπος περιγραφής αλγορίθμων. Δεν υπάρχει κανένας τυπικός ορισμός της έννοιας του ψευδοκώδικα όμως είναι κοινός τόπος ότι οποιαδήποτε
for for for for( . */
Εισαγωγή Στον Προγραµµατισµό «C» Βρόχοι Επανάληψης Πανεπιστήµιο Πελοποννήσου Τµήµα Πληροφορικής & Τηλεπικοινωνιών Νικόλαος Δ. Τσελίκας Νικόλαος Προγραµµατισµός Δ. Τσελίκας Ι Ο βρόχος for Η εντολή for χρησιµοποιείται
Πληροφορική ΙΙ Θεματική Ενότητα 5
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Θεματική Ενότητα 5 Λογικοί Τελεστές Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
ιαφάνειες παρουσίασης #3
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης #3!Λογικά διαγράµµατα
Σειρά Προβλημάτων 3 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { w {(, )} * οι παρενθέσεις στην w είναι ισοζυγισμένες } (β) { a k b m c 2m a k k > 0,
Διαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 6 η Βρόχοι Επανάληψης Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην Εφαρμογή
Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) (PASCAL ) Εντολές Ελέγχου & Επανάληψης
Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) (PASCAL ) Εντολές Ελέγχου & Επανάληψης Εντολές Ελέγχου 2 Γενικά Εντολές λήψης αποφάσεων Επιτρέπουν στο πρόγραμμα να εκτελεί διαφορετικές
Προγραμματισμός Η/Υ. Ενότητα 5: Εντολές Επανάληψης
Προγραμματισμός Η/Υ Ενότητα 5: Νίκος Καρακαπιλίδης, Καθηγητής Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Έλεγχος της ροής του προγράμματος
Στη C++ υπάρχουν τρεις τύποι βρόχων: (a) while, (b) do while, και (c) for. Ακολουθεί η σύνταξη για κάθε μια:
Εργαστήριο 6: 6.1 Δομές Επανάληψης Βρόγχοι (Loops) Όταν θέλουμε να επαναληφθεί μια ομάδα εντολών τη βάζουμε μέσα σε ένα βρόχο επανάληψης. Το αν θα (ξανα)επαναληφθεί η εκτέλεση της ομάδας εντολών καθορίζεται
Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές
Μορφές Εντολών Είδη εντολών Απλές εντολές Εκτελούν κάποια ενέργεια Εντολές ελέγχου Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Εντολές και παραστάσεις Μιαεντολήείναιμιαπαράστασηπου ακολουθείται
Σειρά Προβλημάτων 3 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a m b n c p m,n,p 0 και είτε m + n = p είτε m = n + p } (β) { xx rev yy rev x, y {a,b}
Αντικειμενοστρεφής Προγραμματισμός -Python. Κ.Π. Γιαλούρης
Κ.Π. Γιαλούρης Στόχοι του σημερινού μαθήματος Κατανόηση της αναγκαιότητας της επανάληψης σε ένα πρόγραμμα. Παρουσίαση της εντολή επανάληψης while. Χρήση της επανάληψης while σε απλά και σύνθετα προβλήματα.
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) ({ G η G είναι μια ασυμφραστική γραμματική που δεν παράγει καμιά λέξη με μήκος μικρότερο του 2 } (β) { Μ,w
Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) Εντολές Επανάληψης που θα καλυφθούν σήμερα
Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) 10-1 Εντολές Επανάληψης που θα καλυφθούν σήμερα Διάλεξη 9 - Δευτέρα while() τελεστές postfix/prefix (++, --,...) και σύνθετοι τελεστές
Πληροφορική ΙΙ Θεματική Ενότητα 7
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Θεματική Ενότητα 7 Δομές επανάληψης Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
ΕΝΟΤΗΤΑ 4 Λήψη Αποφάσεων και Συναρτήσεις Ελέγχου
ΕΝΟΤΗΤΑ 4 Λήψη Αποφάσεων και Συναρτήσεις Ελέγχου Σκοπός και περίγραμμα της Ενότητας 4 Σκοπός της παρουσίασης Να μελετήσουμε τις συναρτήσεις που ελέγχουν την ροή και την εκτέλεση ενός προγράμματος Σύνοψη
Δομές ελέγχου & επανάληψης
3 Δομές ελέγχου & επανάληψης Τι θα δούμε σε αυτό το μάθημα 1. δομές ελέγχου 1. η δομή if 2. η δομή switch 2. δομές επανάληψης 1. η δομή while 2. η δομή do...while 3. η δομή for 3. break και continue 4.
Σειρά Προβλημάτων 1 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC 1, PC 2, (program counters) οι οποίες παίρνουν ως τιμές ονόματα των γραμμών του κώδικα όπως φαίνεται πιο κάτω. bool y 1
Αντικειμενοστρεφής Προγραμματισμός -Python. Κ.Π. Γιαλούρης
Κ.Π. Γιαλούρης Στόχοι του σημερινού μαθήματος Εξοικείωση με τα περιβάλλοντα της Python Κατανόηση βασικών εννοιών & τεχνικών Τύπος δεδομένων Μεταβλητή Εντολή ανάθεση τιμής / εντολή αντικατάστασης Εισαγωγή
Δομές Επανάληψης. Εισαγωγή στη C++
Δομές Επανάληψης Εισαγωγή στη C++ Επαναληπτικές δηλώσεις Οι βρόγχοι (loops) αναγκάζουν ένα τμήμα κώδικα να επαναλαμβάνεται. Η επανάληψη συνεχίζεται για όσο μία λογική συνθήκη είναι αληθής. Όταν η συνθήκη
Εισαγωγή στην PHP. ΕΣΔ 516 Τεχνολογίες Διαδικτύου. Περιεχόμενα. Περιεχόμενα. ΕΣ 516: Τεχνολογίες ιαδικτύου. ΕΣ 516: Τεχνολογίες ιαδικτύου
ΕΣΔ 516 Τεχνολογίες Διαδικτύου Εισαγωγή στην PHP Περιεχόμενα Περιεχόμενα PHP και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις Παράδειγματα 1 Βιβλιογραφία Ενότητας Βιβλιογραφία [Lane 2004]: Chapter
A. Να γράψετε τον αριθμό της κάθε μιας από τις παρακάτω προτάσεις και δίπλα. το γράμμα Σ, εάν είναι σωστή, ή το γράμμα Λ, εάν είναι λανθασμένη.
ΘΕΜΑ 1 ο A. Να γράψετε τον αριθμό της κάθε μιας από τις παρακάτω προτάσεις και δίπλα το γράμμα Σ, εάν είναι σωστή, ή το γράμμα Λ, εάν είναι λανθασμένη. 1. Η συνθήκη Χ = Α_Μ (Χ) είναι πάντα αληθής, για
ικτυακά Πολυμέσα Ι (Β Έτος, 3ο εξ) ιάλεξη #8η: Javascript: Τεχνικές εντοπισμού/διόρθωσης λαθών, τελεστές, δομές ελέγχου, βρόχοι επανάληψης
Πανεπιστήμιο Αιγαίου Σχολή Κοινωνικών Επιστημών Τμήμα Πολιτισμικής Τεχνολογίας Και Επικοινωνίας ικτυακά Πολυμέσα Ι (Β Έτος, 3ο εξ) ιάλεξη #8η: Javascript: Τεχνικές εντοπισμού/διόρθωσης λαθών, τελεστές,
ιαφάνειες παρουσίασης #3
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης
Προγραµµατισµός Η/Υ. Μέρος2
Προγραµµατισµός Η/Υ Μέρος2 Περιεχόμενα Επανάληψη Βασικών Σύμβολων Διαγραμμάτων Ροής Αλγόριθμος Ψευδοκώδικας Παραδείγματα Αλγορίθμων Γλώσσες προγραμματισμού 2 Επανάληψη Βασικών Σύμβολων Διαγραμμάτων Ροής
A2. Να γράψετε για κάθε περίπτωση τον αριθμό της πρότασης και δίπλα το γράμμα που δίνει τη σωστή επιλογή.
ΜΑΘΗΜΑ / ΤΑΞΗ : ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ/Γ' ΕΠΑ.Λ. ΗΜΕΡΟΜΗΝΙΑ: 17-1-2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι.ΜΙΧΑΛΕΑΚΟΣ-Χ.ΠΑΠΠΑ-Α.ΚΑΤΡΑΚΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { R η R είναι μια κανονική έκφραση η οποία παράγει μια μη πεπερασμένη γλώσσα} (β) { G η G είναι μια CFG η οποία
Σχολικό Βιβλίο - Κεφάλαιο 7 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕ PASCAL ΠΑΡΟΥΣΙΑΣΗ 13
Σχολικό Βιβλίο - Κεφάλαιο 7 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕ PASCAL ΠΑΡΟΥΣΙΑΣΗ 13 ΙΣΤΟΡΙΚΑ Παρουσιάστηκε το 1970 από το Niklaus Wirth Προγενέστερη γλώσσα ήταν η Algol 60 Είναι δομημένη γλώσσα προγραμματισμού υψηλού
Τεχνικές Προγραμματισμού και Χρήση Λογισμικού Η/Υ στις Κατασκευές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τεχνικές Προγραμματισμού και Χρήση Λογισμικού Η/Υ στις Κατασκευές Ενότητα 3: Διαδικασίες λογικών αποφάσεων και βρόγχων εργασιών Αναστάσιος
9. Εντολές επανάληψηςκαι η εντολή
Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων 9. Εντολές επανάληψηςκαι η εντολή while Ιωάννης Κατάκης Σήμερα o Εισαγωγή στις δομές επανάληψης o Εντολή while o Τελεστές prefix και postfix Δομές ελέγχου προγράμματος
Πληροφορική 2. Αλγόριθμοι
Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται
ΔΙΑΛΕΞΗ ΙΙ ΕΝΑ ΒΗΜΑ ΠΑΡΑΠΑΝΩ ΜΕ SCRATCH ΕΠΙΛΕΓΩΝΤΑΣ & ΕΠΑΝΑΛΑΜΒΑΝΟΝΤΑΣ
Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΛΕΞΗ ΙΙ ΕΝΑ ΒΗΜΑ ΠΑΡΑΠΑΝΩ ΜΕ SCRATCH ΕΠΙΛΕΓΩΝΤΑΣ & ΕΠΑΝΑΛΑΜΒΑΝΟΝΤΑΣ Γ ι ά ν ν η ς Ε. Τ ζ ή μ α ς Μάθημα: ΤΕΧΝΙΚΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Το πρώτο πράγμα
Ασκήσεις σε Επαναληπτικούς Βρόχους και Συναρτήσεις. Επανάληψη για την ενδιάμεση εξέταση. (Διάλεξη 13)
Ασκήσεις σε Επαναληπτικούς Βρόχους και Συναρτήσεις Επανάληψη για την ενδιάμεση εξέταση (Διάλεξη 13) 13-1 Πρόβλημα 1 Γράψετε τον ορισμό μίας συνάρτησης η οποία υπολογίζει το μέγιστο 2 ακεραίων αριθμών και
Παρακάτω δίνεται o σκελετός προγράμματος σε γλώσσα C. Σχολιάστε κάθε γραμμή του κώδικα.
Ερωτήσεις προόδου C Παρακάτω δίνεται o σκελετός προγράμματος σε γλώσσα C. Σχολιάστε κάθε γραμμή του κώδικα. #include // δίνει οδηγία στον compiler να // συμπεριλάβει την βιβλιοθήκη stdio int
Σειρά Προβλημάτων 1 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC i, (program counters) οι οποίες παίρνουν ως τιμές ονόματα των γραμμών του κώδικα όπως φαίνεται πιο κάτω. Process P i :
ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013
ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α [40 μόρια] α) Να επιλέξτε το γράμμα Σ, αν μια πρόταση είναι σωστή και το γράμμα
Εισαγωγή στην PHP. ΕΣΔ 232 Διαχείριση Δεδομένων στη Κοινωνία της Πληροφορίας. Περιεχόμενα. Περιεχόμενα
ΕΣΔ 232 Διαχείριση Δεδομένων στη Κοινωνία της Πληροφορίας Εισαγωγή στην PHP Περιεχόμενα Περιεχόμενα PHP και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις Παράδειγματα 1 Βιβλιογραφία Ενότητας Βιβλιογραφία
A3. Μονάδες 5 Α4. Μονάδες 10 ΘΕΜΑ B. Β1. writeln Περιεχόμενα Εντολή Αποτελέσματα Παραμέτρων Μονάδες 20 ΘΕΜΑ Γ.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 3 ΙΟΥΝΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΟΜΗΜΕΝΟΣ
Εντολές επιλογής Επαναλήψεις (if, switch, while)
Εντολές επιλογής Επαναλήψεις (if, switch, while) Οι σημειώσεις αυτές έχουν σαν στόχο την μάθηση εντολών επιλογής (if, switch, while) που ελέγχουν τη ροή εκτέλεσης ενός προγράμματος. Πρώτα όμως, είναι αναγκαίο
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ Μέρος 4ο ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 1 ΟΙ ΤΕΛΕΣΤΕΣ ΣΥΓΚΡΙΣΗΣ Με τους τελεστές σύγκρισης, συγκρίνουμε τις
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07
Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public
Pascal, απλοί τύποι, τελεστές και εκφράσεις
Pascal, απλοί τύποι, τελεστές και εκφράσεις 15 Νοεμβρίου 2011 1 Γενικά Στην standard Pascal ορίζονται τέσσερις βασικοί τύποι μεταβλητών: integer: Παριστάνει ακέραιους αριθμούς από το -32768 μέχρι και το
ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ. Εισαγωγή στη Python
ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Εισαγωγή στη Python Νικόλαος Ζ. Ζάχαρης Αναπληρωτής
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Έλεγχος Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Σχεσιακοί Τελεστές και Ισότητας Ένα πρόγραμμα εκτός από αριθμητικές πράξεις
Διάλεξη 1. Πράξεις Τελεστές Έλεγχος Ροής
Διάλεξη 1 Πράξεις Τελεστές Έλεγχος Ροής Διοργάνωση : ΚΕΛ ΣΑΤΜ Διαφάνειες: Skaros, MadAGu Παρουσίαση: MadAGu Άδεια: Creative Commons 3.0 Αριθμητικοί Τελεστές- Αριθμητικές Πράξεις 2 Internal use only Αριθμητικοί
Εισαγωγή στην Αριθμητική Ανάλυση
Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { a 2n b n c 3n n 2 } : H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την
1. Η χειρότερη περίπτωση είναι όταν γίνου 10 επαναλήψεις, δηλαδή για n = 0.
ΦΥΛΛΑΔΙΟ ΚΑΤΑΝΟΗΣΗΣ 6 ΛΥΣΕΙΣ 1. Η χειρότερη περίπτωση είναι όταν γίνου 10 επαναλήψεις, δηλαδή για n = 0. 2. Εντολή Αλγορίθμου Αριθμός Πράξεων Ανάθεση τιμών στα x,y 2 έλεγχος i 6 αύξηση i 5 εκτύπωση i 5
Ο πιο κάτω πίνακας περιγράφει σε ποιες περιπτώσεις χρησιμοποιούμε τους τρεις πιο πάνω τρόπους:
Επαναλήψεις - Loops Οι επαναλήψεις σε ένα πρόγραμμα μας επιτρέπουν μια ομάδα εντολών να εκτελείται για όσες φορές επιθυμούμε Υπάρχουν τρεις τρόποι επανάληψης εντολών με τη χρήση: While loops For loops
Επαναληπτικές Διαδικασίες
Επαναληπτικές Διαδικασίες Οι επαναληπτικές δομές ( εντολές επανάληψης επαναληπτικά σχήματα ) χρησιμοποιούνται, όταν μια ομάδα εντολών πρέπει να εκτελείται αρκετές- πολλές φορές ανάλογα με την τιμή μιας
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Αυτοματοποιημένη Επαλήθευση
Αυτοματοποιημένη Επαλήθευση Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Έλεγχος Μοντέλου Αλγόριθμοι γράφων Αλγόριθμοι αυτομάτων Αυτόματα ως προδιαγραφές ΕΠΛ 664 Ανάλυση και Επαλήθευση Συστημάτων 4-1
Μαθηματική Λογική (προπτυχιακό) Εξέταση Ιανουαρίου 2018 Σελ. 1 από 5
Μαθηματική Λογική (προπτυχιακό) Εξέταση Ιανουαρίου 2018 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις
Υπολογισμός - Εντολές Επανάληψης
Προγραμματισμός Η/Υ Ι Υπολογισμός - Εντολές Επανάληψης ΕΛΕΥΘΕΡΙΟΣ ΚΟΣΜΑΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2018-2019 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. 1 Περίληψη Σήμερα... θα συνεχίσουμε τη συζήτησή μας για τα βασικά στοιχεία
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΜΟ 1 o ΔΙΑΓΩΝΙΜΑ ΘΕΜΑ 1 ο Α) Για κάθε μία από τις παρακάτω προτάσεις να επιλέξετε αν τις θεωρείτε σωστές () ή άθος () 1. Ο αλγόριθμος χρησιμοποιείται για επίλυση προβλήματος μόνο από
Η Δομή Επανάληψης. Εισαγωγή στην δομή επανάληψης Χρονική διάρκεια: 3 διδακτικές ώρες
Η Δομή Επανάληψης Εισαγωγή στην δομή επανάληψης Χρονική διάρκεια: 3 διδακτικές ώρες Οι 2 πρώτες διδακτικές ώρες στην τάξη Η τρίτη διδακτική ώρα στο εργαστήριο Γενικός Διδακτικός Σκοπός Ενότητας Να εξοικειωθούν
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { n 3 } (α) H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την επτάδα Q,
Επιµέλεια Θοδωρής Πιερράτος
Ερωτήσεις Σωστό - Λάθος 1. Ο αλγόριθµος πρέπει να τερµατίζεται µετά από εκτέλεση πεπερασµένου αριθµού εντολών. 2. Η είσοδος σε έναν αλγόριθµο µπορεί να είναι έξοδος σε έναν άλλο αλγόριθµο. 3. Ένας αλγόριθµος
TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ
Μάθημα 7 - Υποπρογράμματα Εργαστήριο 11 Ο TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Βασικές Έννοιες: Υποπρόγραμμα, Ανάλυση προβλήματος, top down σχεδίαση, Συνάρτηση, Διαδικασία, Παράμετρος, Κλήση συνάρτησης, Μετάβαση
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΑΡΑΣΚΕΥΗ 22 ΣΕΠΤΕΜΒΡΙΟΥ 2017 ΘΕΜΑ Α ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Διαδικαστικός Προγραμματισμός
Διαδικαστικός Προγραμματισμός Ενότητα 3: Εντολές ελέγχου επανάληψη Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,