Εισαγωγή στη Συγκριτική Πολιτική
|
|
- Λαύρα Καλλιγάς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στη Συγκριτική Πολιτική Μάθημα 3 ο : Η εκλογική διαδικασία και τα εκλογικά συστήματα. Μέρος 2 ο Ιωάννης Παπαγεωργίου, Επίκουρος Καθηγητής, ΑΠΘ
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2
3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3
4 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Μάθημα 2 ο Η εκλογική διαδικασία και τα εκλογικά συστήματα. Μέρος 2 ο
5 Περιεχόμενα μαθήματος 1. Μέθοδοι κατανομής των εδρών. 2. Η επιρροή των εκλογικών συστημάτων στα κομματικά συστήματα. 5
6 Σκοποί μαθήματος Ανάλυση των εκλογικών συστημάτων. Ανάδειξη των τρόπων επιρροής των εκλογικών συστημάτων στη διαμόρφωση των κομματικών συστημάτων. 6
7 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 1 η ενότητα Μέθοδοι κατανομής των εδρών.
8 Οι μέθοδοι κατανομής των εδρών Για την αντιμετώπιση της κατανομής των εδρών (ιδίως των αδιάθετων) έχουν δημιουργηθεί διάφορες μέθοδοι. 8
9 Η κατανομή των αδιάθετων εδρών βάσει των αχρησιμοποίητων υπολοίπων 1/2 Οι αδιάθετες έδρες μοιράζονται με βάση τα υπόλοιπα που απέμειναν στους συνδυασμούς μετά την πρώτη κατανομή. (αν ένα κόμμα σε μια περιφέρεια έχει λάβει ψήφους και το εκλογικό μέτρο είναι , εκλέγει ένα βουλευτή και έχει ένα αχρησιμοποίητο υπόλοιπο ψήφων ). 9
10 Η κατανομή των αδιάθετων εδρών βάσει των αχρησιμοποίητων υπολοίπων 2/2 Η πρώτη αδιάθετη έδρα μιας περιφέρειας δίνεται στο κόμμα με το μεγαλύτερο υπόλοιπο, η δεύτερη σε αυτό με το αμέσως επόμενο μεγαλύτερο υπόλοιπο κ.ο.κ. έως ότου συμπληρωθούν όλες οι έδρες. Τούτο μπορεί να γίνει είτε στο επίπεδο της ίδιας της περιφέρειας είτε σε μείζονες (ευρύτερες) περιφέρειες. Για παράδειγμα στην Ελλάδα τούτο γίνεται σε επίπεδο περιφερειών (π.χ. Θεσσαλία, Κεντρική Μακεδονία). 10
11 Αχρησιμοποίητα υπόλοιπα 1/2 Παράδειγμα μιας εκλογικής περιφέρειας με 4 έδρες, 5 συνδυασμούς και έγκυρα ψηφοδέλτια Εκλογικό μέτρο : 4 = Διαιρέτης Συνδ Α ψήφοι Συνδ Β ψήφοι Συνδ Γ ψήφοι Συνδ Δ ψήφοι Συνδ Ε ψήφοι 1η έδρα στον συνδυασμό Α Αχρησιμοποίητα υπόλοιπα
12 Αχρησιμοποίητα υπόλοιπα 1/2 Παράδειγμα μιας εκλογικής περιφέρειας με 4 έδρες, 5 συνδυασμούς και έγκυρα ψηφοδέλτια Εκλογικό μέτρο : 4 = Η 1 η έδρα χορηγείται στον συνδυασμό Α Η 2 η έδρα βάσει του μεγαλύτερου αχρησιμοποίητου υπόλοιπου στον συνδυασμό Β Η 3 η έδρα ομοίως στον συνδυασμό Γ Η 4 η έδρα ομοίως στον συνδυασμό Δ 12
13 Σύστημα Hagenbach-Bischoff (μέθοδος +1) 1/2 Δημιουργήθηκε από τον Ελβετό καθηγητή μαθηματικών και φυσικής Eduard Hagenbach-Bischoff. Βασικό χαρακτηριστικό: η διαφοροποίηση των εκλογικών μέτρων. Εκλογικό μέτρο είναι το πηλίκο του συνόλου των έγκυρων ψήφων προς το σύνολο των εδρών + μία. Εκλογικό μέτρο = σύνολο εγκύρων ψήφων διαθέσιμες έδρες στην εκλογική περιφέρεια+1 Τούτο διευκολύνει την πλήρη κατανομή των εδρών. Η δεύτερη κατανομή διενεργείται σε ευρύτερες περιφέρειες βάσει των αχρησιμοποίητων υπολοίπων των συνδυασμών. 13
14 Σύστημα Hagenbach-Bischoff (μέθοδος +1) 2/2 Παράδειγμα μιας εκλογικής περιφέρειας με 4 έδρες, 5 συνδυασμούς και έγκυρα ψηφοδέλτια Εκλογικό μέτρο : 4 (+1) = Διαιρέτης Συνδ Α ψήφοι Συνδ Β ψήφοι Συνδ Γ ψήφοι Συνδ Δ ψήφοι Συνδ Ε ψήφοι 1η έδρα στον συνδυασμό Α 2 η έδρα στον συνδυασμό Β. Αχρησιμοποίητα υπόλοιπα
15 Σύστημα D Hondt ή σύστημα μεγαλύτερων μέσων όρων 1/3 Επινοήθηκε από τον Βέλγο μαθηματικό Victor d Hondt Χρησιμοποιείται σε Βέλγιο, Αυστρία, Τσεχία, Δανία, Φιλανδία, Ισραήλ, Ολλανδία, Σκωτία, Ουαλία, Ισπανία, Πορτογαλία κ.α. Οι ψήφοι των συνδυασμών κάθε εκλογικής περιφέρειας διαιρούνται διαδοχικά δια του 1,2,3, κλπ.. μέχρις εξαντλήσεως του αριθμού των εδρών αυτής. Οι ψήφοι των συνδυασμών κάθε εκλογικής περιφέρειας διαιρούνται διαδοχικά δια του 1,2,3, κλπ.. μέχρις εξαντλήσεως του αριθμού των εδρών αυτής. 15
16 Σύστημα D Hondt ή σύστημα μεγαλύτερων μέσων όρων 2/3 Παράδειγμα μιας εκλογικής περιφέρειας με 4 έδρες, 5 συνδυασμούς και έγκυρα ψηφοδέλτια. Διαιρέτης Συνδ Α ψήφοι Συνδ Β ψήφοι Συνδ Γ ψήφοι Συνδ Δ ψήφοι Συνδ Ε ψήφοι
17 Σύστημα D Hondt ή σύστημα μεγαλύτερων μέσων όρων 3/3 Παράδειγμα μιας εκλογικής περιφέρειας με 4 έδρες, 5 συνδυασμούς και έγκυρα ψηφοδέλτια. Η 1 η έδρα χορηγείται στον συνδυασμό Α. Η 2 η έδρα στον συνδυασμό Β. Η 3 η έδρα στον συνδυασμό Α. Η 4 η έδρα στον συνδυασμό Γ. 17
18 Σύστημα Sainte Laguë 1/3 Επινοήθηκε από τον Γάλλο μαθηματικό André Sainte-Laguë. Χρησιμοποιείται λιγότερο ευρέως (στην Σουηδία, Νορβηγία κ.α). Αναλογικότερη εκδοχή του συστήματος D Hondt. Οι ψήφοι κάθε συνδυασμού διαιρούνται δια του 2ν + 1 (ν = αριθμός των εδρών που έχει λάβει κάθε συνδυασμός μέχρι τη συγκεκριμένη διαίρεση. Όλοι οι συνδυασμοί ξεκινούν από 0 έδρες). Αφού υπολογιστεί το εκλογικό μέτρο για κάθε κόμμα, αυτό με το μεγαλύτερο πηλίκο την καταλαμβάνει. Η ίδια διαδικασία επαναλαμβάνεται για τη διανομή κάθε έδρας μέχρις εξαντλήσεως του αριθμού των εδρών. 18
19 Σύστημα Sainte Laguë 2/3 Παράδειγμα μιας εκλογικής περιφέρειας με 4 έδρες, 5 συνδυασμούς και έγκυρα ψηφοδέλτια Διαιρέτης 2ν + 1 όπου ν= Συνδ Α ψήφοι Συνδ Β ψήφοι Συνδ Γ ψήφοι Συνδ Δ ψήφοι Συνδ Ε ψήφοι 0 (για όλους) για Α 0 για Β,Γ,Δ 1 για Α και Β 0 για Γ, Δ 1 για Α,Β και Γ 0 για Δ
20 Σύστημα Sainte Laguë 3/3 Μετά την 1 η διαίρεση (το ν= 0 για όλους τους συνδυασμούς) το μεγαλύτερο πηλίκο είναι του συνδυασμού Α που λαμβάνει την 1 η έδρα Μετά την 2 η διαίρεση (το ν= 1 για τον συνδυασμό Α και 0 για τους λοιπούς) το μεγαλύτερο πηλίκο είναι του συνδυασμού Β που λαμβάνει την 2 η έδρα Μετά την 3 η διαίρεση (το ν= 1 για τους συνδυασμό Α και Β και 0 για τους συνδυασμούς Γ και Δ) το μεγαλύτερο πηλίκο είναι του συνδυασμού Γ που λαμβάνει την 3 η έδρα Μετά την 4 η διαίρεση (το ν= 1 για τους συνδυασμό Α, Β και Γ και 0 για τον συνδυασμό Δ) το μεγαλύτερο πηλίκο είναι του συνδυασμού Δ που λαμβάνει την 4 η έδρα. 20
21 Το σύστημα της Ενιαίας Μεταβιβαζόμενης Ψήφου (Single Transferable Vote) Γνωστό και ως σύστημα Hare ή ως ταξινομική ψήφος Είναι αναλογικό σύστημα απλό στην εφαρμογή του αλλά περίπλοκο στον υπολογισμό και διαθέτει πολλές παραλλαγές Εφαρμόζεται στην Ιρλανδία ενώ παραλλαγή του και στην Β. Ιρλανδία. Λειτουργεί αποκλειστικά σε πολυεδρικές περιφέρειες 21
22 Η βασική αρχή του συστήματος Hare Κάθε ψηφοφόρος δεν ψηφίζει ένα μόνο υποψήφιο (ή περισσότερους ομοιόβαθμα), αλλά πολλούς υποψηφίους ανεξάρτητα από το κόμμα που ο καθένας ανήκει με σειρά προτίμησης, βάζοντας τους αριθμούς 1,2,3 κ.ο.κ. μέχρι τον αριθμό των προς κατανομή εδρών. 22
23 Η διαδικασία του συστήματος Hare 1/3 Εκλογικό μέτρο = το πηλίκο της διαίρεσης του συνόλου των ψήφων σε μια περιφέρεια προς το σύνολο των εδρών (ή των εδρών +1 ή +2 σε κάποιες παραλλαγές του συστήματος). Οι υποψήφιοι (όχι οι συνδυασμοί) που έχουν ξεπεράσει το μέτρο σε πρώτες προτιμήσεις εκλέγονται. Όταν ωστόσο έχουν περισσότερες πρώτες προτιμήσεις από τις αναγκαίες (λ.χ. το μέτρο είναι αλλά ένας υποψήφιος έχει λάβει ) τότε οι επιπλέον ψήφοι (στο ανωτέρω παράδειγμα ψήφοι) μεταφέρονται στους υποψήφιους που έχουν λάβει 2 η προτίμηση. 23
24 Η διαδικασία του συστήματος Hare 2/3 Η μεταφορά ωστόσο δεν είναι ακέραιη αλλά υπολογίζεται ως πηλίκο της διαίρεσης των 4.000/ Δηλαδή κάθε υποψήφιος που έχει λάβει τη δεύτερη προτίμηση των ψηφοφόρων λαμβάνει 0,22 ψήφους για κάθε δεύτερη προτίμηση που λαμβάνει. Εάν με τον τρόπο αυτό κάποιος υποψήφιος καλύψει το εκλογικό μέτρο εκλέγεται. 24
25 Η διαδικασία του συστήματος Hare 3/3 Εφόσον δεν κατανεμηθούν όλες οι έδρες, ο υποψήφιος με τις λιγότερες πρώτες προτιμήσεις αποκλείεται και οι ψήφοι του μεταφέρονται ακέραιες στους υποψήφιους που έχουν τις δεύτερες προτιμήσεις του. Η διαδικασία αποκλεισμού των υποψήφιων με τις λιγότερες πρώτες προτιμήσεις επαναλαμβάνεται μέχρις ότου καλυφθούν όλες οι έδρες. 25
26 Το γερμανικό εκλογικό σύστημα 1/3 Αναλογικό σύστημα με στοιχεία μονοεδρικής εκπροσώπησης. Χρησιμοποιείται στις εκλογές της ομοσπονδιακής Βουλής (Bundestag) της Γερμανίας. Η χώρα είναι διαιρεμένη σε μονοεδρικές περιφέρειες ίσες με το ήμισυ του συνόλου των εδρών του Bundestag. Τα κόμματα κατεβάζουν έναν υποψήφιο σε κάθε μία από αυτές. Για τις άλλες μισές έδρες τα κόμματα υποβάλλουν (δεσμευμένους) συνδυασμούς σε επίπεδο κρατιδίου (Land). 26
27 Το γερμανικό εκλογικό σύστημα 2/3 Ο κάθε ψηφοφόρος διαθέτει δύο ψήφους: μία για την εκλογική του περιφέρεια και μία για το κρατίδιο. Μπορεί να ψηφίσει διαφορετικά με τις 2 ψήφους αλλά η καθοριστική ψήφος για την αναλογική κατανομή των εδρών είναι η δεύτερη (σε επίπεδο κρατιδίου). Στις μονοεδρικές περιφέρειες εκλέγεται ο σχετικά πλειοψηφήσας υποψήφιος. Στη συνέχεια όλες οι έδρες της χώρας κατανέμονται αναλογικά ανάμεσα στα κόμματα που υπερβαίνουν το 5% των ψήφων σε εθνικό επίπεδο (ή έχουν εκλέξει τρεις βουλευτές σε μονοεδρικές περιφέρειες). 27
28 Το γερμανικό εκλογικό σύστημα 3/3 Αφού υπολογισθεί ο αριθμός των εδρών που πρέπει να λάβει κάθε συνδυασμός αφαιρείται ο αριθμός των εδρών που ο συνδυασμός αυτός έχει ήδη λάβει στις μονοεδρικές περιφέρειες. Αν δικαιούται περισσότερες έδρες, οι έδρες αυτές του χορηγούνται στους συνδυασμούς σε επίπεδο κρατιδίου. Αν έχει υπερβεί τον αριθμό των εδρών που δικαιούται (überhangmandate), τις διατηρεί αλλά αυξάνονται οι έδρες του Bundestag προς όφελος και των λοιπών κομμάτων (Ausgleichmandate). 28
29 Μεικτά συστήματα Τα μικτά συστήματα περιλαμβάνουν τόσο πλειοψηφικά όσο και αναλογικά στοιχεία. Συνήθως εμπεριέχουν παράλληλες εκλογικές διαδικασίες. (δηλαδή εκλέγουν μέρος των βουλευτών με πλειοψηφικό τρόπο και μέρος τους με αναλογικό) που, αντίθετα από ό, τι διαπιστώνεται στο γερμανικό σύστημα, δεν αλληλοεπηρεάζονται. 29
30 Μεικτά εκλογικά συστήματα Παραδείγματα 1/2 Το λεγόμενο «τριφασικό σύστημα» που χρησιμοποιήθηκε στις εκλογές του 1956 στην Ελλάδα: ήταν πλειοψηφικό σύστημα στις μικρές εκλογικές περιφέρειες, ήταν ενισχυμένα αναλογικό στις μεσαίες και αναλογικό στις μεγάλες περιφέρειες. Το εκλογικό σύστημα της Ιαπωνίας όπου οι ψηφοφόροι εκλέγουν 300 από τους 480 βουλευτές με πλειοψηφικό σύστημα σε ευρείες περιφέρειες και 180 με αναλογικό τρόπο. 30
31 ΜΕΙΚΤΑ ΕΚΛΟΓΙΚΑ ΣΥΣΤΗΜΑΤΑ Παραδείγματα 2/2 Το εκλογικό σύστημα της Ρωσίας που εκλέγει τους μισούς βουλευτές της με πλειοψηφικό σύστημα δύο γύρων σε μονοεδρικές περιφέρειες και τους άλλους μισούς με αναλογικό τρόπο. Το εκλογικό σύστημα της Ρωσίας που εκλέγει τους μισούς βουλευτές της με πλειοψηφικό σύστημα δύο γύρων σε μονοεδρικές περιφέρειες και τους άλλους μισούς με αναλογικό τρόπο. 31
32 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 2 η ενότητα Η επιρροή των εκλογικών συστημάτων στα κομματικά συστήματα. 32
33 Maurice Duverger Το εκλογικό σύστημα επηρεάζει και διαμορφώνει το κομματικό σύστημα μιας χώρας. Άρα η παρέμβαση στο εκλογικό σύστημα μπορεί να αλλάξει το κομματικό σκηνικό και ως εκ τούτου το πολιτικό σύστημα. 33
34 Οι βασικοί κανόνες του αναλογικού συστήματος Πολλά κόμματα ανεξάρτητα μεταξύ τους. Συνασπισμοί κομμάτων. Συναινετικές πολιτικές. Μικρή πόλωση. 34
35 Οι βασικοί κανόνες του πλειοψηφικού συστήματος ενός γύρου Συσπείρωση συγγενών κομμάτων, σύνθλιψη κέντρου, εξαφάνιση μικρών κομμάτων. Μονοκομματικές κυβερνήσεις Δικομματικό σύστημα Ελεγχόμενη πόλωση. 35
36 Οι βασικοί κανόνες του πλειοψηφικού συστήματος δύο γύρων Πολιτική συσπείρωση άλλα όχι ένωση συγγενών κομμάτων. Διπολισμός Πολυκομματικές κυβερνήσεις ενός πόλου Χωρίς πόλωση. 36
37 Οι παρεκβάσεις των βασικών κανόνων 1/3 Το αναλογικό σύστημα ενδέχεται να οδηγήσει σε μη εναλλαγή κομμάτων. Αποδυνάμωση της εκλογικής πίστης των ψηφοφόρων. εκβιασμό των μικρών κομμάτων. 37
38 Οι παρεκβάσεις των βασικών κανόνων 2/3 Μη απόλυτα αναλογικά συστήματα ενδέχεται να οδηγήσουν σε Αδύναμες μονοκομματικές κυβερνήσεις. Πόλωση. Εκβιασμός από κυβερνητικούς βουλευτές. 38
39 Οι παρεκβάσεις των βασικών κανόνων 3/3 Πλειοψηφικά συστήματα (ενός γύρου) ενδέχεται να οδηγήσουν σε Μεγάλη αναντιστοιχία εκλογικού αποτελέσματος κοινοβουλευτικής εκπροσώπησης. Κυριαρχία των άκρων στα μεγάλα κόμματα. Απομάκρυνση των πολιτών από την εκλογική διαδικασία. 39
40 Σημείωμα Αναφοράς Copyright, Ιωάννης Παπαγεωργίου. «Εισαγωγή στη. Η εκλογική διαδικασία και τα εκλογικά συστήματα. Μέρος 2 ο». Έκδοση: 1.0. Θεσσαλονίκη Διαθέσιμο από τη δικτυακή διεύθυνση:
41 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά - Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1]
42 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τέλος 3 ου Μαθήματος Επεξεργασία: Γαβριέλα Λ. Μαζαράκη Θεσσαλονίκη, Εαρινό εξάμηνο 2014
43 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Σημειώματα
44 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 2 η. Έχουν προηγηθεί οι κάτωθι εκδόσεις: Έκδοση 1 η διαθέσιμη εδώ. %CE%A50201
45 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.
Εισαγωγή στη Συγκριτική Πολιτική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στη Συγκριτική Πολιτική Μάθημα 2 ο : Η εκλογική διαδικασία και τα εκλογικά συστήματα. Μέρος 1 ο Ιωάννης Παπαγεωργίου, Επίκουρος
Θέματα Εφαρμοσμένης. Ενότητα 6 : Εκλογικά Συστήματα. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Εφαρμοσμένης Πολιτικής Ανάλυσης Ενότητα 6 : Εκλογικά Συστήματα. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Θέματα Εφαρμοσμένης. Ενότητα 3 : Κόμματα ή Πρόσωπα. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Εφαρμοσμένης Πολιτικής Ανάλυσης Ενότητα 3 : Κόμματα ή Πρόσωπα. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 7η: Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Ιστορία της μετάφρασης
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # 17: Ταχύτητα Αντιδράσεων Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11η: Οργανισμοί της Εκκλησίας της Ελλάδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 10η: Απεσταλμένοι του Ρωμαίου Ποντίφικα και Ρωμαϊκή Κουρία Κυριάκος Κυριαζόπουλος
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8η: Ο νέος αντιρατσιστικός νόμος και ο ν.4301/2014 Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 9: Μέτρηση Αγωγιμότητας Διαλυμάτων Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Παράκτια Τεχνικά Έργα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΘΕΣΗ ΥΓΡΩΝ ΣΤΗ ΘΑΛΑΣΣΑ ΥΠΟΒΡΥΧΙΟΙ ΑΓΩΓΟΙ Ενότητα 5 η : Κατασκευαστικά παραδείγματα Γιάννης Ν. Κρεστενίτης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 4: Τοποθέτηση d ηλεκτρονίων σε οκτάεδρα Σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν
Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας Ενότητα 1: Αυτοαξιολόγηση μεταφραστών Κασάπη Ελένη Άδειες Χρήσης Το παρόν εκπαιδευτικό
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 11η: Σύγκριση Ρωσικής Ορθόδοξης Εκκλησίας και Καθολικής Εκκλησίας Κυριάκος Κυριαζόπουλος
Μηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
Γεωργική Εκπαίδευση Ενότητα 9
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Σχεδιασμός εκπαιδευτικών προγραμμάτων για τον αγροτικό χώρο Αφροδίτη Παπαδάκη-Κλαυδιανού Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ιστορία της μετάφρασης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η μετάφραση των εβδομήκοντα, η εκπαίδευση των μεταφραστών κατά Κικέρωνα, η τέχνη της μετάφρασης από την αρχαιότητα μέχρι τα
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία IΙ Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας Γεώργιος Μίντσης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ιστορία, θεωρίες και θεσμοί της Ευρωπαϊκής Ενοποίησης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ιστορία, θεωρίες και θεσμοί της Ευρωπαϊκής Ενοποίησης Μάθημα 8 ο : Η Συνθήκη της Λισσαβόνας. Ιστορικό πλαίσιο Κύρια χαρακτηριστικά Πολιτικά
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Σύγχρονα Θέματα Διεθνούς Πολιτικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγχρονα Θέματα Διεθνούς Πολιτικής Μάθημα 1 ο : Η διεθνής πολιτική Ιωάννης Παπαγεωργίου, Επίκουρος Καθηγητής, ΑΠΘ Άδειες Χρήσης Το παρόν
Χώρος και Διαδικασίες Αγωγής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Καινοτόμα εκπαιδευτικά περιβάλλοντα και αλλαγή της σχολικής κουλτούρας 1/2 Δημήτριος Γερμανός Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6η: Ελληνική νομολογία Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Οικονομία των ΜΜΕ Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 6: Προσδιορισμός δ0 σε οκτάεδρα σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Στρατηγικό Μάρκετινγκ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 12: Παρουσίαση νέων προϊόντων στην αγορά (2) Χριστίνα Μπουτσούκη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Εκκλησιαστικό Δίκαιο ΙΙΙ (Μεταπτυχιακό)
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκκλησιαστικό Δίκαιο ΙΙΙ (Μεταπτυχιακό) Ενότητα 4η: Σχέσεις κράτους θρησκευμάτων στο Βέλγιο Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν
Φ 619 Προβλήματα Βιοηθικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η Βιοηθική στη σύγχρονη εποχή. Ελένη Καλοκαιρινού Φιλοσοφίας-Παιδαγωγικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1η: Εισαγωγή Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διπλωματική Ιστορία Ενότητα 2η:
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2η: Η εμφάνιση των εθνών-κρατών και οι συνέπειες στο διεθνές σύστημα Ιωάννης Στεφανίδης, Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 6: Διαπεριφερειακές διαφορές Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα : Ακολουθίες και Σειρές Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Commos. Για
Διπλωματική Ιστορία Ενότητα 13η:
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 13η: H Συνδιάσκεψη της Γιάλτας Η διπλωματία των Τριών Μεγάλων, 1941-1945 Ιωάννης Στεφανίδης, Καθηγητής Άδειες Χρήσης Το παρόν
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 3: Κλασικά Υποδείγματα της Διεθνούς Οικονομικής Θεωρίας (Heckscher-Ohlin model) Γρηγόριος
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 12η: Αυτόνομες και ημιαυτόνομες εκκλησίες κ.ά. διατάξεις Κυριάκος Κυριαζόπουλος Άδειες
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 9: Άσκηση εμπορικής πολιτικής Παράδειγμα άσκησης εμπορικής πολιτικής Γρηγόριος Ζαρωτιάδης
Φ 619 Προβλήματα Βιοηθικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ο Πλάτων και ο Αριστοτέλης ως ιατροί. Οι ιατροφιλόσοφοι (Ιπποκράτης, Γαληνός, Κέλσος). Ελένη Καλοκαιρινού Φιλοσοφίας-Παιδαγωγικής
Χώρος και Διαδικασίες Αγωγής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Η παιδαγωγική ποιότητα του χώρου Δημήτριος Γερμανός Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative
Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό)
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό) Ενότητα 9η: Παρουσίαση και σχολιασμός των Οδηγιών (2014 μέρος Β ) Κυριάκος Κυριαζόπουλος Άδειες
Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Επιμέλεια μεταφράσεων και εκδοτικός χώρος
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Επιμέλεια μεταφράσεων και εκδοτικός χώρος 13 η ενότητα: Ημερίδα «οι δρόμοι των μεταφραστών» Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας
ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6: 1η εργαστηριακή άσκηση και προσομοίωση με το SPICE Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και
Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (4): Περιοδικός Πίνακας Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται
Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό)
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό) Ενότητα 11η: Παρουσίαση και σχολιασμός των Οδηγιών (2014 μέρος Δ ) Κυριάκος Κυριαζόπουλος Άδειες
Επιμέλεια μεταφράσεων και εκδοτικός χώρος
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Επιμέλεια μεταφράσεων και εκδοτικός χώρος 2 η ενότητα: Οργάνωση ημερίδας Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας Άδειες Χρήσης
Διπλωματική Ιστορία. Ενότητα 12η: Ο Β Παγκόσμιος Πόλεμος Η Ευρώπη. του Hitler Ιωάννης Στεφανίδης, Καθηγητής Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 12η: Ο Β Παγκόσμιος Πόλεμος Η Ευρώπη του Hitler Ιωάννης Στεφανίδης, Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (5): Δεσμοί και Τροχιακά Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Χώρος και Διαδικασίες Αγωγής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η κοινωνική ποιότητα του χώρου Δημήτριος Γερμανός Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διδακτική της Περιβαλλοντικής Εκπαίδευσης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διδακτική της Περιβαλλοντικής Εκπαίδευσης Ενότητα 08: Σχεδιασμός και Οργάνωση ενός Προγράμματος Περιβαλλοντικής Εκπαίδευσης Ι Πολυξένη
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 5: Υποδείγματα Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Θέματα Εφαρμοσμένης. Ενότητα 14.2: Η ψήφος στα πρόσωπα. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Εφαρμοσμένης Πολιτικής Ανάλυσης Ενότητα 14.2: Η ψήφος στα πρόσωπα. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και ΜΜΕ Σχολή
Συγκριτικό Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Συγκριτικό Εκκλησιαστικό Δίκαιο Ενότητα 1η: Εισαγωγή Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαγλωσσική μεταφορά και διαμεσολάβηση
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Διαγλωσσική μεταφορά και διαμεσολάβηση Ενότητα 14 : Διαπολιτισμός και διαμεσολάβηση Ελένη Κασάπη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Χώρος και Διαδικασίες Αγωγής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Η δυναμική της σχέσης του ανθρώπου με τον χώρο και η εκπαιδευτική της σημασία (2/2) Δημήτριος Γερμανός Άδειες Χρήσης Το παρόν
Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Συνταγματικό Δίκαιο Ενότητα 11:Εκτελεστική Λειτουργία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11:Εκτελεστική Λειτουργία Λίνα Παπαδοπούλου Αν. Καθηγήτρια Συνταγματικού Δικαίου Τμήμα Νομικής Σχολής ΑΠΘ Άδειες Χρήσης Το παρόν
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 12η: Μουσουλμανικοί Οργανισμοί Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Συμπεριφορά Καταναλωτή
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9 : Ομάδες αναφοράς Χριστίνα Μπουτσούκη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Θέματα Εφαρμοσμένης. Ενότητα 11 : Οργάνωση κόμματων. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Εφαρμοσμένης Πολιτικής Ανάλυσης Ενότητα 11 : Οργάνωση κόμματων. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 1η: Εισαγωγή Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 2 : Κλασικά Υποδείγματα της Διεθνούς Οικονομικής Θεωρίας (Ricardo model) Γρηγόριος Ζαρωτιάδης
Μάρκετινγκ Εξαγωγών. Ενότητα 3 : Το Περιβάλλον και το Διεθνές Μάρκετινγκ Κοινωνικο-Πολιτιστικό Περιβάλλον
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 : Το Περιβάλλον και το Διεθνές Μάρκετινγκ Κοινωνικο-Πολιτιστικό Περιβάλλον Χριστίνα Μπουτσούκη Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εκκλησιαστικό Δίκαιο ΙΙΙ (Μεταπτυχιακό)
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκκλησιαστικό Δίκαιο ΙΙΙ (Μεταπτυχιακό) Ενότητα 8η: Σχέσεις κράτους θρησκευμάτων στη Δανία Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν
Διπλωματική Ιστορία. Ενότητα 4η: Το Ανατολικό Ζήτημα Ο ανταγωνισμός Αυστρουγγαρίας-Ρωσίας Tα αίτια του Α Π. Π.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4η: Το Ανατολικό Ζήτημα Ο ανταγωνισμός Αυστρουγγαρίας-Ρωσίας Tα αίτια του Α Π. Π. Ιωάννης Στεφανίδης, Καθηγητής Άδειες Χρήσης
Μαθηματικά στην Πολιτική Επιστήμη:
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 3.2 : Απαρίθμηση Συνδυαστική (ΙΙ). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 7: Επιπτώσεις του Διεθνούς Εμπορίου στη διανομή του εισοδήματος Γρηγόριος Ζαρωτιάδης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θέματα Εφαρμοσμένης. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Εφαρμοσμένης Πολιτικής Ανάλυσης Ενότητα 1 : Η ανάλυση του εκλογικού ανταγωνισμού. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό)
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό) Ενότητα 1η: Εισαγωγή Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Στρατηγικό Μάρκετινγκ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 13: Είσοδος στις παγκόσμιες αγορές Χριστίνα Μπουτσούκη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Γενικά Μαθηματικά Ι. Ενότητα 8: Εφαρμογές Σειρών Taylor. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Εφαρμογές Σειρών Tylor Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons.
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης