Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
|
|
- Κῆρες Λούπης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1
2 Παίγνια Δύο Αντιπάλων Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται εναλλάξ αναφέρονται ως ανταγωνιστικά παίγνια ή παίγνια δύο αντιπάλων (adversary ή two-person games). Ο όρος «παίγνιο» αφορά την περιγραφή του τρόπου με τον οποίον παίζεται το παιχνίδι και περιλαμβάνει: Τα αντικείμενα που υπάρχουν (για παράδειγμα τα πούλια, το ταμπλώ κτλ) Το σύνολο των κανόνων που το διέπουν Αντίθετα με τον όρο «παιχνίδι» χαρακτηρίζεται μια συγκεκριμένη παρτίδα του παιγνίου. 2
3 Παίγνια Δύο Αντιπάλων Το πρόβλημα ορίζεται ως εξής: Μια κατάσταση παριστάνει τη διάταξη των πιονιών σε κάποια χρονική στιγμή Ο χώρος καταστάσεων αποτελείται από όλες αυτές τις πιθανές επιτρεπτές καταστάσεις Οι τελεστές μετάβασης είναι οι επιτρεπτές κινήσεις (κανόνες του παιχνιδιού) Οι τελικές καταστάσεις έχουν γνωστά χαρακτηριστικά (π.χ. ματ στο σκάκι) Έστω ότι κάποιος έχει σειρά να κάνει κίνηση Αν θέλει να κερδίσει, θα επιδιώξει να κάνει τη καλύτερη κίνηση για αυτόν, η οποία θα είναι και η χειρότερη για τον αντίπαλο Ο τρόπος που σκέφτεται είναι «αν κάνω αυτή τη κίνηση, ο αντίπαλος θα κάνει εκείνη, αν όμως κάνω την άλλη κίνηση, τότε θα κάνει αυτήν κ.ο.κ» Ο συλλογισμός αυτός αντιστοιχεί στη δημιουργία ενός δέντρου (δέντρο παιχνιδιού game tree) 3
4 Παίγνια Δύο Αντιπάλων Το χαρακτηριστικό ενός τέτοιου δέντρου είναι ότι οι κινήσεις δύο διαδοχικών επιπέδων ανήκουν σε διαφορετικό παίκτη, αφού οι παίκτες παίζουν εναλλάξ. Έστω ότι ένας από τους δύο αντίπαλους είναι ο υπολογιστής Το πρόγραμμα αναζήτησης πρέπει να εξετάσει όλες τις πιθανές κινήσεις που παράγονται από μία (αρχική) κατάσταση Ένα τέτοιο πρόγραμμα είναι σε θέση να προβλέψει την έκβαση του παιχνιδιού μετά από 10 ή 15 κινήσεις όταν ο άνθρωπος σταματά συνήθως μετά από 2 ή 3. Παραδόξως, οι διαφορές αυτές δεν κάνουν απαραίτητα κάποιο πρόγραμμα κυρίαρχο οποιουδήποτε παιχνιδιού έναντι του ανθρώπου. Η ανωτερότητα των ανθρώπων έγκειται στους εξής παράγοντες: Διαθέτουν διαίσθηση για την έκβαση του παιχνιδιού Επιλέγουν με ευριστικό τρόπο τις εναλλακτικές κινήσεις Με την εμπειρία που αποκτούν, μπορούν να σκέφτονται εντελώς μηχανικά, ιδίως στα πρώτα και τελευταία στάδια του παιχνιδιού 4
5 Minimax Ο αλγόριθμος μεγίστου-ελαχίστου, δεδομένης μιας κατάστασης του παιχνιδιού, καλείται να αποφασίσει ποιά θα είναι η επόμενη κίνηση του έναντι του αντιπάλου. Η εξαντλητική αναζήτηση των δέντρων είναι ανέφικτη. Το ζητούμενο είναι να καταστευαστεί ένα δέντρο μέχρι κάποιο βάθος και να βρεθεί η καλύτερη κίνηση από την παρούσα κατάσταση. Το μέτρο της υπεροχής του ενός ή του άλλου παίκτη δίνεται από μια συνάρτηση αξιολόγησης (evaluation function) η οποία εφαρμόζεται στα φύλλα του δέντρου του παιχνιδιού. Ο ένας παίκτης (υπολογιστής) ονομάζεται max και ο άλλος (υπολογιστής ή άνθρωπος) ονομάζεται min. 5
6 Minimax 1. Εφάρμοσε τη συνάρτηση αξιολόγησης σε όλους τους κόμβουςφύλλα του δέντρου. 2. Έως ότου η ρίζα αποκτήσει τιμή, επανέλαβε: 3. Αρχίζοντας από τα φύλλα του δέντρου και προχωρώντας προς τη ρίζα, μετέφερε τις τιμές προς τους ενδιάμεσους κόμβους του δέντρου ως εξής: i. Η τιμή κάθε κόμβου Max είναι η μέγιστη των τιμών των κόμβων-παιδιών του. ii. Η τιμή κάθε κόμβου Min είναι η ελάχιστη των τιμών των κόμβων-παιδιών του. 4. Καλύτερη κίνηση είναι η κίνηση που οδηγεί στον κόμβο που έδωσε την πιο συμφέρουσα τιμή στη ρίζα (μέγιστη για το Max, ελάχιστη για το Min). 6
7 Minimax - Σχόλια Ο αλγόριθμος εγγυάται την πιο συμφέρουσα εξέλιξη μετά από κάποιες κινήσεις, έστω και αν ο αντίπαλος διαλέγει τις καλύτερες για αυτόν κινήσεις. Κατά σύμβαση, ο παίκτης που βρίσκεται στη ρίζα θεωρείται πως είναι ο Max. Οι καταστάσεις-φύλλα ονομάζονται τερματικές καταστάσεις όμως δεν είναι απαραίτητα τελικές καταστάσεις. Οι τιμές των τερματικών καταστάσεων υπολογίζονται από τη συνάρτηση αξιολόγησης ενώ οι άλλες προκύπτουν από τη διάδοση αυτών. 7
8 Διάδοση τιμών στον Minimax 8
9 O Minimax στην Τρίλιζα (1/2) Η τρίλιζα έχει μικρό χώρο αναζήτησης που αποτελείται από 9 καταστάσεις. 9
10 O Minimax στην Τρίλιζα (2/2) Μια συνάρτηση αξιολόγησης στην Τρίλιζα θα μπορούσε να είναι η 3*Χ 2 +Χ 1 -(3*Ο 2 +Ο 1 ) Χ 2 ο αριθμός γραμμών, στηλών ή διαγωνίων με δύο Χ και κανένα Ο Χ 1 ο αριθμός γραμμών, στηλών ή διαγωνίων με ένα Χ και κανένα Ο Ο 2 ο αριθμός γραμμών, στηλών ή διαγωνίων με δύο Ο και κανένα Χ Ο 1 ο αριθμός γραμμών, στηλών ή διαγωνίων με ένα Ο και κανένα Χ 10
11 O Minimax στο Σκάκι (1/2) Το ζητούμενο στα προγράμματα που παίζουν σκάκι είναι να υπολογίσουν το δέντρο αναζήτησης σε όσο το δυνατόν μεγαλύτερο βάθος (πρόβλεψη μακρύτερα στο μέλλον). Μια συνάρτηση αξιολόγησης θα μπορούσε να λαμβάνει υπόψη: Υπεροχή κομματιών: π.χ. Βασιλιάς=10, Άλογο=5, Πιόνι=1 κτλ. Η αξία όλων των κομματιών κάθε χρώματος προστίθεται. Υπεροχή θέσης: Κάθε κομμάτι που βρίσκεται στα 4 κεντρικά τετράγωνα παίρνει επιπλέον 2 πόντους. Απειλές: Για κάθε απειλή που προβάλλει ένας παίκτης παίρνει 3 επιπλέον πόντους, εκτός αν απειλεί τον βασιλιά του άλλου παίκτη, οπότε παίρνει 20 πόντους. 11
12 O Minimax στο Σκάκι (2/2) 12
13 Ενδεικτική Βιβλιογραφία Ενότητες 5.1 και 5.2 του βιβλίου «Τεχνητή Νοημοσύνη», Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας και Η. Σακελλαρίου. 13
Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση
Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων
Διαβάστε περισσότεραΕπίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Διαβάστε περισσότεραΑλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων
Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται
Διαβάστε περισσότεραΕπίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης
Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης! Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Ντετερµινιστικά
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναζήτηση Δοθέντος ενός προβλήματος με περιγραφή είτε στον χώρο καταστάσεων
Διαβάστε περισσότεραΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ
ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΛΥΣΗΣ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΒΕΛΤΙΣΤΗΣ ΛΥΣΗΣ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΛΥΣΗΣ ΣΕ ΠΑΙΓΝΙΑ ΔΥΟ ΑΝΤΙΠΑΛΩΝ Καραγιώργου
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ασάφεια (Fuzziness) Ποσοτικοποίηση της ποιοτικής πληροφορίας Οφείλεται κυρίως
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 3η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Διαβάστε περισσότεραΑσκήσεις μελέτης της 6 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Ευριστικής Αναζήτησης Πολλές φορές η τυφλή αναζήτηση δεν επαρκεί
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Περιγραφή Προβλημάτων Διαισθητικά, σε ένα πρόβλημα υπάρχει μια δεδομένη κατάσταση
Διαβάστε περισσότεραΑυτόνομοι Πράκτορες. Εργασία εξαμήνου. Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος
Αυτόνομοι Πράκτορες Εργασία εξαμήνου Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος 2010030090 Περιγραφή του παιχνιδιού Το British square είναι ένα επιτραπέζιο
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ικανοποίηση Περιορισμών Κατηγορία προβλημάτων στα οποία είναι γνωστές μερικές
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Τυφλής Αναζήτησης Οι αλγόριθμοι τυφλής αναζήτησης εφαρμόζονται σε
Διαβάστε περισσότεραΑλγόριθµοι Ευριστικής Αναζήτησης
Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός
Διαβάστε περισσότεραΚεφ. 9 Ανάλυση αποφάσεων
Κεφ. 9 Ανάλυση αποφάσεων Η θεωρία αποφάσεων έχει ως αντικείμενο την επιλογή της καλύτερης στρατηγικής. Τα αποτελέσματα κάθε στρατηγικής εξαρτώνται από παράγοντες, οι οποίοι μπορεί να είναι καταστάσεις
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αβεβαιότητα Με τον όρο αβεβαιότητα (uncertainty) εννοείται η έλλειψη ακριβούς
Διαβάστε περισσότεραΘεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 8: Αναζήτηση με Αντιπαλότητα Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Αναζήτηση
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/
Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Διαβάστε περισσότεραΘεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης
Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 1 η Διάλεξη Ορισμός Θεωρίας Παιγνίων και Παιγνίου Κατηγοριοποίηση παιγνίων Επίλυση παιγνίου Αξία (τιμή) παιγνίου Δίκαιο παίγνιο Αναπαράσταση Παιγνίου Με πίνακα Με
Διαβάστε περισσότεραΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα.
Ακολουθίες ΔΙΑΝΥΣΜΑΤΑ Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Να ορίζουμε τις σχέσεις μεταξύ διανυσμάτων (παράλληλα, ομόρροπα, αντίρροπα, ίσα και αντίθετα διανύσματα). Να προσθέτουμε και
Διαβάστε περισσότερα[ΠΛΗ 417] Τεχνητή Νοημοσύνη. Project Εξαμήνου ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ
[ΠΛΗ 417] Τεχνητή Νοημοσύνη Project Εξαμήνου Γεωργαρά Αθηνά (A.M. 2011030065) ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2015-2016 Στη εργασία εξαμήνου αυτή
Διαβάστε περισσότεραΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά
ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση: Έστω ότι έχουμε τους παίκτες Χ και Υ. Ο κάθε παίκτης, σε κάθε κίνηση που κάνει, προσπαθεί να μεγιστοποιήσει την πιθανότητά του να κερδίσει. Ο Χ σε κάθε κίνηση που κάνει
Διαβάστε περισσότεραChess Academy Free Lessons Ακαδημία Σκάκι Δωρεάν Μαθήματα. Οι κινήσεις των κομματιών Σκοπός της παρτίδας, το Ματ Πατ Επιμέλεια: Γιάννης Κατσίρης
Οι κινήσεις των κομματιών Σκοπός της παρτίδας, το Ματ Πατ Επιμέλεια: Γιάννης Κατσίρης Παρατήρηση: Μόνο σε αυτό το μάθημα όταν λέμε κομμάτι εννοούμε κομμάτι ή πιόνι και όταν λέμε κομμάτια εννοούμε κομμάτια
Διαβάστε περισσότεραΑΥΤΟΝΟΜΟΙ ΠΡΑΚΤΟΡΕΣ. ΑΝΑΦΟΡΑ ΕΡΓΑΣΙΑΣ Othello-TD Learning. Βόλτσης Βαγγέλης Α.Μ
ΑΥΤΟΝΟΜΟΙ ΠΡΑΚΤΟΡΕΣ ΑΝΑΦΟΡΑ ΕΡΓΑΣΙΑΣ Othello-TD Learning Βόλτσης Βαγγέλης Α.Μ. 2011030017 Η παρούσα εργασία πραγματοποιήθηκε στα πλαίσια του μαθήματος Αυτόνομοι Πράκτορες και σχετίζεται με λήψη αποφάσεων
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Θ.Ε. ΠΛΗ31 (2005-6) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 Στόχος Η εργασία επικεντρώνεται σε θέματα προγραμματισμού για Τεχνητή Νοημοσύνη και σε πρακτικά θέματα εξάσκησης σε Κατηγορηματική Λογική. Θέμα 1: Απλές Αναζητήσεις
Διαβάστε περισσότεραΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.
ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. Γενικά Σε μαθήματα όπως η επιχειρησιακή έρευνα και ή λήψη αποφάσεων αναφέραμε τις αποφάσεις κάτω από συνθήκες βεβαιότητας, στις οποίες και εφαρμόζονται κυρίως οι τεχνικές της επιχειρησιακής
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΕΡΓΑΣΤΗΡΙΟ 3
Version 1.0 (16/03/2017) Σχολή Τεχνολογικών Εφαρμογών (ΣΤΕΦ) Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Διδάσκων: Γκόγκος Χρήστος Μάθημα: Τεχνητή Νοημοσύνη (εργαστήριο Δ εξαμήνου) Ακαδημαϊκό έτος 2016-2017 εαρινό
Διαβάστε περισσότεραΕ ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και
Διαβάστε περισσότεραΘεωρία Παιγνίων και Αποφάσεων. Ενότητα 3: Παίγνια με περισσότερους παίκτες και μέθοδοι απλοποίησης παιγνίων. Ε. Μαρκάκης. Επικ.
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 3: Παίγνια με περισσότερους παίκτες και μέθοδοι απλοποίησης παιγνίων Ε. Μαρκάκης Επικ. Καθηγητής Παίγνια πολλών παικτών 2 Παίγνια με > 2 παίκτες Όλοι οι ορισμοί που
Διαβάστε περισσότεραΒ. Βασιλειάδης Αν. Καθηγητής. Επιχειρησιακή Ερευνα Διάλεξη 6 η - Θεωρεία Παιγνίων
Β. Βασιλειάδης Αν. Καθηγητής Επιχειρησιακή Ερευνα Διάλεξη 6 η - Θεωρεία Παιγνίων Περιεχόμενα Θεωρία Αποφάσεων o Αποφάσεις χωρίς πιθανότητα o Αποφάσεις με πιθανότητα Θεωρία Παιγνίων o Παίγνια Μηδενικού
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Πέμπτη 27 Ιουνίου 2013 10:003:00 Έστω το πάζλ των οκτώ πλακιδίων (8-puzzle)
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Παρασκευή 28 Σεπτεµβρίου 2007 ιάρκεια: 13:00-16:00
Διαβάστε περισσότεραΠληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Διαβάστε περισσότεραΠεριγραφή Προβλημάτων
Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι
Διαβάστε περισσότεραΛήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων
Λήψη απόφασης σε πολυπρακτορικό περιβάλλον Θεωρία Παιγνίων Αβεβαιότητα παρουσία άλλου πράκτορα Μια άλλη πηγή αβεβαιότητας είναι η παρουσία άλλου πράκτορα στο περιβάλλον, ακόμα κι όταν ένας πράκτορας είναι
Διαβάστε περισσότεραΘεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.
Διαβάστε περισσότεραΕπίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης
Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή
Διαβάστε περισσότεραPROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:
Διαβάστε περισσότεραPROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΠΡΩΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης
Διαβάστε περισσότεραΕφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.
Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,
Διαβάστε περισσότεραΑλγόριθµοι Ευριστικής Αναζήτησης
Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός
Διαβάστε περισσότεραLanguage: English / Greek
Rules of Coerceo by Coerceo Company Greek translation by Chronis Perrakis Κανόνες του Coerceo Language: English / Greek Πνευματικά Δικαιώματα Απαγορεύεται η αναπαραγωγή, αντιγραφή ή αναμετάδοση με οποιοδήποτε
Διαβάστε περισσότεραΓιώργος Γκούμας. Τα πρώτα σκακιστικά βήματα του παιδιού
Γιώργος Γκούμας Τα πρώτα σκακιστικά βήματα του παιδιού Περιεχόμενα Παρουσίαση της Σκακιέρας... 7 Κινήσεις Κομματιών... 10 Πύργος, Αξιωματικός & Βασίλισσα...10 Άλογο και Βασιλιάς...14 Πιόνι...18 Αξία των
Διαβάστε περισσότεραΕ Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του
Διαβάστε περισσότεραΘεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Παίγνια μηδενικού αθροίσματος PessimisIc play Αμιγείς max-min και
Διαβάστε περισσότεραΕ ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Παιχνίδια Ατελούς Πληροφόρησης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Παιχνίδια παιχνίδια ως αναζήτηση Βέλτιστες στρατηγικές
Διαβάστε περισσότεραΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς
ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,
Διαβάστε περισσότεραΘεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης
Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 3 η Διάλεξη-Περιεχόμενα (1/2) Σημείο ή ζεύγος ισορροπίας κατά Nash Λύση ακολουθιακής κυριαρχίας και σημεία ισορροπίας Nash Αλγοριθμική εύρεση σημείων ισορροπίας
Διαβάστε περισσότεραΘεωρία Παιγνίων και Αποφάσεων. Ενότητα 2: Έννοιες λύσεων σε παίγνια κανονικής μορφής. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 2: Έννοιες λύσεων σε παίγνια κανονικής μορφής Ε. Μαρκάκης Επικ. Καθηγητής Λύσεις παιγνίων 2 Επιλέγοντας στρατηγική... Δεδομένου ενός παιγνίου, τι στρατηγική πρέπει
Διαβάστε περισσότεραChess Academy Free Lessons Ακαδημία Σκάκι Δωρεάν Μαθήματα. Ματ με δύο βαριά κομμάτια Ματ με Βασίλισσα Επιμέλεια: Γιάννης Κατσίρης
Ματ με δύο βαριά κομμάτια Ματ με Βασίλισσα Επιμέλεια: Γιάννης Κατσίρης Σημείωση: Βαριά κομμάτια = Πύργοι και Βασίλισσα Ελαφρά κομμάτια = Ίπποι και Αξιωματικοί Κομμάτια = Βασιλιάς, Βασίλισσα, Πύργοι, Ίπποι
Διαβάστε περισσότεραΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012
ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΚΟΙΝΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Players-Παίκτες Rules- Κανόνες. Τιµωρείσαι εάν τους παραβιάσεις.
Διαβάστε περισσότεραΜαθαίνοντας σκάκι. Εγχειρίδιο για προπονητές. Τρίτο βήμα
Μαθαίνοντας σκάκι Εγχειρίδιο για προπονητές Τρίτο βήμα Περιεχόμενα Πρόλογος... 4 Το τρίτο βήμα... 5 Βλέποντας μπροστά... 5 Γνώσεις και δεξιότητες... 8 Ασκήσεις για το σπίτι... 9 Παρτίδες προπόνησης...
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00
ΘΕΜΑ 1 ο (2 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙ ΜΑΚΕΔΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΣΜΕΝΗΣ ΠΛΗΡΦΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΗΜΣΥΝΗ Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00 Δίνεται ο παρακάτω χάρτης πόλεων της Ρουμανίας με τις μεταξύ
Διαβάστε περισσότεραΜαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων
Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται
Διαβάστε περισσότεραΜικτές Στρατηγικές σε Παίγνια και σημεία Ισορροπίας Nash. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1
Μικτές Στρατηγικές σε Παίγνια και σημεία Ισορροπίας Nash Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1 Σημεία ισορροπίας Nash: Yπάρχουν πάντα; Έχουν όλα τα παίγνια σημείο ισορροπίας; - Ναι, στην εξιδανικευμένη
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.
Διαβάστε περισσότεραΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ
ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούµενα Μαθήµατα: Παίχτες: είναι αυτοί που λαµβάνουν τις αποφάσεις. Ένα παίγνιο πρέπει
Διαβάστε περισσότεραΕργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός
Εργαστήριο 9 Συναρτήσεις στη PASCAL Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός 7.1 ΕΠΙΔΙΩΞΗ ΤΗΣ ΕΡΓΑΣΙΑΣ Η έννοια της συνάρτησης ως υποπρογράμματος είναι τόσο βασική σε όλες τις γλώσσες προγραμματισμού,
Διαβάστε περισσότεραΓνωριμία με τον Εξοπλισμό
Γνωριμία με τον Εξοπλισμό Η σκακέρα είναι 9x9, µονού χρώµατος, χωρίζεται σε γραµµές (οριζόντιες) και στήλες (κάθετες) Οι 3 πρώτες γραµµές αποτελούν τη περιοχή σου, οι 3 µεσαίες την ουδέτερη ζώνη και οι
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0
ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων
Διαβάστε περισσότεραΕπίλυση προβλημάτων με αναζήτηση
Επίλυση προβλημάτων με αναζήτηση Αναζήτηση σημαίνει την εύρεση μιας λύσης (τελικής κατάστασης) ενός προβλήματος διά της συνεχούς δημιουργίας (νέων) καταστάσεων με την εφαρμογή των διαθέσιμων ενεργειών
Διαβάστε περισσότεραΣυστηματική Αναζήτηση και Ενισχυτική Μάθηση για το Επιτραπέζιο Παιχνίδι Backgammon
Συστηματική Αναζήτηση και Ενισχυτική Μάθηση για το Επιτραπέζιο Παιχνίδι Backgammon Στέλιος Τσιγδινός Σχολή Ηλεκτρονικών Μηχανικών & Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Εξεταστική Επιτροπή: Αν. Καθ.
Διαβάστε περισσότεραΔραστηριότητα: Εγκλεισμός
Δραστηριότητα: Εγκλεισμός Ηλικίες στις οποίες έχει χρησιμοποιηθεί με επιτυχία: Προαπαιτούμενες Ικανότητες: Χρόνος: Εστίαση Μέγεθος Ομάδας 11 - ενήλικες Καμία Τι είναι αλγόριθμος Αλγόριθμοι αναζήτησης:
Διαβάστε περισσότεραΕπιπεδοπόλεµος(Flatwar)
Επιπεδοπόλεµος(Flatwar) Κανόνες για παιχνίδια µάχης στον κόσµο της Επιπεδοχώρας Εισαγωγή Ο Επιπεδοπόλεµος (Flatwar) είναι ένα σετ από απλούς κανόνες για ένα παιχνίδι µάχης στον κόσµο της Επιπεδοχώρας.
Διαβάστε περισσότεραΑναζήτηση με Αντιπαλότητα
Αναζήτηση με Αντιπαλότητα Μανόλης Κουμπαράκης Τεχνητή Νοημοσύνη 1 Αναζήτηση με Αντιπαλότητα Όταν σε ένα περιβάλλον έχουμε περισσότερους από ένα πράκτορες, τότε κάθε πράκτορας πρέπει να λαμβάνει υπόψη του
Διαβάστε περισσότεραΕπίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Διαβάστε περισσότεραΕκτεταμένα Παίγνια (Extensive Games)
Εκτεταμένα Παίγνια (Extensive Games) Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εκτεταμένα Παίγνια Τα στρατηγικά παίγνια δεν
Διαβάστε περισσότεραΔεύτερο πακέτο ασκήσεων
ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Μικροοικονομική Θεωρία ΙΙ Εαρινό εξάμηνο Ακαδ. έτους 08-09 Αν. Παπανδρέου, Φ. Κουραντή, Ηρ. Κόλλιας Δεύτερο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 0 Μαϊου. Θα υπάρξει
Διαβάστε περισσότεραΚεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση
Κεφάλαιο 2 Περιγραφή Προβληµάτων και Αναζήτηση Λύσης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Περιγραφή Προβληµάτων ιαισθητικά: υπάρχει µία δεδοµένη
Διαβάστε περισσότεραΤσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά
Τσάπελη Φανή ΑΜ: 243113 Ενισχυτική Μάθηση για το παιχνίδι dots Τελική Αναφορά Περιγραφή του παιχνιδιού Το παιχνίδι dots παίζεται με δύο παίχτες. Έχουμε έναν πίνακα 4x4 με τελείες, και σκοπός του κάθε παίχτη
Διαβάστε περισσότερα1. Πάντα να μπλοκάρετε τα προωθημένα πιόνια του αντιπάλου
1. Πάντα να μπλοκάρετε τα προωθημένα πιόνια του αντιπάλου Ένα προωθημένο πιόνι είναι πάντα μια σημαντική απειλή. Χρησιμοποιείστε ένα «ελαφρύ» κομμάτι κατα προτίμηση, προκειμένου να μπλοκάρετε την προαγωγή
Διαβάστε περισσότεραΧρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Διαβάστε περισσότεραEMOJITO! 7 Δίσκοι Ψηφοφορίας. 100 Κάρτες Συναισθημάτων. 1 Ταμπλό. 7 Πιόνια παικτών. 2-7 Παίκτες
o Emojito! είναι ένα παιχνίδι παρέας, για 2 έως 14 άτομα, όπου οι παίκτες προσπαθούν να εκφράσουν συναισθήματα που απεικονίζονται σε κάρτες, είτε χρησιμοποιώντας το πρόσωπό τους, είτε ήχους ή και τα 2.
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ον/μο:.. Γ Λυκείου Ύλη:1-2 Τεχν. Κατ. 03-11-13 ΘΕΜΑ 1 ο Α. 1)Ποιες κατηγορίες προβλημάτων γνωρίζετε; 2)Να αναπτύξετε τα κριτήρια που πρέπει να ικανοποιεί ένας αλγόριθμος. 3)Ποια
Διαβάστε περισσότεραΑσκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n
Διαβάστε περισσότεραΚεφάλαιο 2ο (α) Αµιγείς Στρατηγικές (β) Μεικτές Στρατηγικές (α) Αµιγείς Στρατηγικές. Επαναλαµβάνουµε:
Κεφάλαιο 2 ο Μέχρι τώρα δώσαµε τα στοιχεία ενός παιγνίου σε µορφή δέντρου και σε µορφή µήτρας. Τώρα θα ορίσουµε τη στρατηγική στην αναλυτική µορφή του παιγνίου (η στρατηγική ορίζεται από κάθε στήλη ή γραµµή
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη Ι. Ενότητα 6: Αναζήτηση με Αντιπαλότητα
Τεχνητή Νοημοσύνη Ι Ενότητα 6: Αναζήτηση με Αντιπαλότητα Μουστάκας Κωνσταντίνος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Αναζήτηση με Αντιπαλότητα 2 Περιεχόμενα
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναπαράσταση με Κανόνες Η γνώση αναπαρίσταται με τρόπο που πλησιάζει την ανθρώπινη
Διαβάστε περισσότεραΠεριεχόμενα του Παιχνιδιού
Ε υρώπη, 1347. Μεγάλη καταστροφή πρόκειται να χτυπήσει. Ο Μαύρος Θάνατος πλησιάζει την Ευρώπη και μέσα στα επόμενα 4-5 χρόνια ο πληθυσμός της θα μείνει μισός. Οι παίκτες αποικούν στις διάφορες περιοχές
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 7η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΘΕΜΑ 1 ο (3 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Τρίτη 26 Ιουνίου 2007 ιάρκεια: 13:00-16:00 ίνεται ο
Διαβάστε περισσότεραΘεωρία Παιγνίων και Αποφάσεων. Ενότητα 4: Μεικτές Στρατηγικές. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 4: Μεικτές Στρατηγικές Ε. Μαρκάκης Επικ. Καθηγητής Μεικτές στρατηγικές σε παίγνια 2 Σημεία ισορροπίας: Ύπαρξη Δεν έχουν όλα τα παίγνια σημείο ισορροπίας Π.χ. Το Matching
Διαβάστε περισσότεραΜαθαίνοντας σκάκι. Εγχειρίδιο για προπονητές. εύτερο βήμα
Μαθαίνοντας σκάκι Εγχειρίδιο για προπονητές εύτερο βήμα Περιεχόμενα Πρόλογος... 4 Το δεύτερο βήμα... 5 Πώς τα παιδιά μαθαίνουν να παίζουν σκάκι... 6 Χαρακτηριστικά του παιχνιδιού των παιδιών... 9 Υλικό
Διαβάστε περισσότεραδημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας
Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών
Διαβάστε περισσότεραΑλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.
Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά
Διαβάστε περισσότεραΠΛΗ 405 Τεχνητή Νοηµοσύνη 2007. Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών ορισµός και χαρακτηριστικά
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και
Διαβάστε περισσότεραΕπίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Διαβάστε περισσότεραExtensive Games with Imperfect Information
Extensive Games with Imperfect Information Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εκτεταµένα παίγνια µε ατελή πληροφόρηση
Διαβάστε περισσότεραΑυτόνομοι Πράκτορες. Εργασία εξαμήνου. Value Iteration και Q- Learning για Peg Solitaire
Αυτόνομοι Πράκτορες Εργασία εξαμήνου Value Iteration και Q- Learning για Peg Solitaire Μαρίνα Μαυρίκου 2007030102 1.Εισαγωγικά για το παιχνίδι Το Peg Solitaire είναι ένα παιχνίδι το οποίο παίζεται με ένα
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Λύσεις 2η σειράς ασκήσεων Προθεσμία παράδοσης: 18 Μαίου 2015 Πρόβλημα 1. (14
Διαβάστε περισσότερα1.2 Κομμάτια Μικρής Εμβέλειας. 1.2.1 Το άλογο
1.2 Κομμάτια Μικρής Εμβέλειας 1.2.1 Το άλογο Το άλογο είναι το καλπάζον φάντασμα της σκακιέρας και αν τυχόν το ακούσετε, ίσως να είναι πολύ αργά για σας. Η μοναδική σχήματος L κίνηση του ταιριάζει τόσο
Διαβάστε περισσότερα2. ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ
2. ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τα παίγνια αποτελούν τη δεύτερη μορφή επιχειρησιακής έρευνας που θα εξετάζουμε. Πρόκειται για μία μέθοδο ανάλυσης προβλημάτων που έχουν σχέση με τον τρόπο λήψης αποφάσεων σε καταστάσεις
Διαβάστε περισσότεραΑναζήτηση με αντιπαλότητα (Adversarial Search)
Σχολή Τεχνολογικών Εφαρμογών (ΣΤΕΦ) Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Διδάσκων: Γκόγκος Χρήστος Μάθημα: Τεχνητή Νοημοσύνη (εργαστήριο Δ εξαμήνου) Ακαδημαϊκό έτος 2016-2017 εαρινό εξάμηνο Αναζήτηση με αντιπαλότητα
Διαβάστε περισσότεραΕπίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης.
Επίλυση Προβλημάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Τεχνητή Νοημοσύνη = Αναπαράσταση Γνώσης + Αλγόριθμοι Αναζήτησης Κατηγορίες Προβλημάτων Aναζήτησης Πραγματικά και
Διαβάστε περισσότεραΗΥ 252 Αντικειμενοστρεφής Προγραμματισμός Προγραμματιστική Εργασία Χειμερινού Εξαμήνου Σκάκι
ΗΥ 252 Αντικειμενοστρεφής Προγραμματισμός Προγραμματιστική Εργασία Χειμερινού Εξαμήνου 2008 Σκάκι Α. Εισαγωγή Το σκάκι είναι ένα επιτραπέζιο παιχνίδι με μακραίωνη ιστορία. Παίζεται από δυο παίχτες αντιπάλους
Διαβάστε περισσότεραΛήψη αποφάσεων υπό αβεβαιότητα. Παίγνια Αποφάσεων 9 ο Εξάμηνο
Λήψη αποφάσεων υπό αβεβαιότητα Παίγνια Αποφάσεων 9 ο Εξάμηνο Επιχειρηματική Αβεβαιότητα Αβεβαιότητα είναι, η περίπτωση η οποία τα ενδεχόμενα μελλοντικά γεγονότα είναι αόριστα και αδύνατον να υπολογιστούν
Διαβάστε περισσότεραΚεφάλαιο 29 Θεωρία παιγνίων
HA. VAIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Εκδόσεις Κριτική Κεφάλαιο 29 Θεωρία παιγνίων Ύλη για τη Μίκρο ΙΙ: κεφάλαιο 29.1, 29.2, 29.4, 29.7, 29.8 Κεφάλαιο 29 Θεωρία παιγνίων Ταυτόχρονα
Διαβάστε περισσότεραΠΤΥΧΙΑΚΗ/ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΥΛΟΠΟΙΗΣΗ ΠΡΑΚΤΟΡΑ ΤΕΧΝΗΤΗΣ ΝΟΗΜΟΣΥΝΗΣ ΓΙΑ ΠΑΙΓΝΙΑ ΚΑΡΤΩΝ» (Development of an Artificial
Διαβάστε περισσότερα