Εργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός
|
|
- Άποφις Φραγκούδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Εργαστήριο 9 Συναρτήσεις στη PASCAL Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός
2 7.1 ΕΠΙΔΙΩΞΗ ΤΗΣ ΕΡΓΑΣΙΑΣ Η έννοια της συνάρτησης ως υποπρογράμματος είναι τόσο βασική σε όλες τις γλώσσες προγραμματισμού, ώστε κάθε πρόγραμμα που γράφεται για μία πραγματική εφαρμογή, αποτελείται από πολλές συναρτήσεις. Σε προηγούμενα προγράμματα, έχουμε χρησιμοποιήσει αρκετές από τις μαθηματικές συναρτήσεις στη PASCAL, όπως οι rand(), sin(), cos(), sqrt() και άλλες. Όμως, η έννοια της συνάρτησης στη PASCAL δεν περιλαμβάνει μόνον τις μαθηματικές συναρτήσεις. Μία συνάρτηση μπορεί για παράδειγμα, να επεξεργάζεται κείμενο. Στη PASCAL και γενικότερα στο προγραμματισμό, οι συναρτήσεις έχουν μία γενικότερη έννοια και λειτουργία: εκτελούν έναν επιμέρους υπολογισμό / μία επιμέρους λειτουργία του προγράμματος. Κάθε πρόγραμμα που γράφουμε στη PASCAL, αλλά και σε κάθε άλλη γλώσσα προγραμματισμού, όπως η C, αλλά και η C++ / Objective C πρέπει απαραίτητα να περιλαμβάνει ένα κυρίως πρόγραμμα, όπως τα προγράμματα που μέχρι τώρα έχουμε γράψει. Όμως ένα πρόγραμμα στη, εκτός από το κυρίως πρόγραμμα, μπορεί να περιλαμβάνει στο ίδιο αρχείο ή ακόμα και σε διαφορετικά αρχεία, ένα ή περισσότερα άλλα υποπρογράμματα ή συναρτήσεις. Στα προγράμματα που έχουμε γράψει μέχρι τώρα, όλοι οι υπολογισμοί που απαιτούνταν για τη λύση ενός προβλήματος εκτελούνταν από / περιλαμβάνονταν στο κυρίως πρόγραμμα. Αυτή όμως, δεν είναι η πρακτική που συνήθως ακολουθείται. Συνήθως, η λύση ενός προβλήματος αναλύεται και αναπτύσσεται μέσα από επιμέρους υπολογισμούς. Μέσα από αυτούς τους επιμέρους υπολογισμούς, παίρνουμε ενδιάμεσα αποτελέσματα που τα συνδυάζουμε για να σχηματίσουμε τη λύση του προβλήματος που επιχειρούμε να λύσουμε. Επιμέρους υπολογισμοί του υπολογισμού που απαιτείται για τη λύση ενός προβλήματος, μπορεί να γράφονται / αναπτύσσονται ως ξεχωριστά προγράμματα. Αυτά τα προγράμματα, αν και αποτελούν μέρη / κομμάτια της λύσης ενός προβλήματος, α- ναπτύσσονται ανεξάρτητα το ένα από το άλλο και συνδέονται μεταξύ τους, μέσα από ένα κυρίως πρόγραμμα. Το κυρίως πρόγραμμα καλεί κάθε ένα από τα επιμέρους προγράμματα, μεταβιβάζοντας σ αυτό, τα δεδομένα που χρειάζεται για να εκτελέσει τον υπολογισμό του. Όταν το επιμέρους πρόγραμμα ολοκληρώνει τον υπολογισμό που εκτελεί, επιστρέφει το αποτέλεσμα αυτού του υπολογισμού, στο κυρίως πρόγραμμα. Το κυρίως πρόγραμμα συνδυάζει τα αποτελέσματα που παίρνει από όλα τα επιμέρους προγράμματα, στη λύση του συνολικού προβλήματος που επιχειρούμε να λύσουμε. Αυτή η αλληλεπίδραση ανάμεσα σ ένα κυρίως πρόγραμμα και σε επιμέρους προγράμματα, στη λύση ενός προβλήματος, παριστάνεται στην Εικόνα. Σ αυτή την ενότητα, εξετάζουμε πως μπορούμε να γράφουμε προγράμματα που αποτελούνται και εκτελούν τον υπολογισμό που απαιτείται για τη λύση ενός προβ-
3 λήματος, χρησιμοποιώντας / καλώντας και συνδυάζοντας συναρτήσεις, κάθε μία από τις οποίες εκτελεί έναν επιμέρους υπολογισμό της συνολικής λύσης του προβλήματος. Στην αρχή, γράφουμε προγράμματα που αποτελούνται / περιλαμβάνουν μία συνάρτηση, εκτός από το κυρίως πρόγραμμα. Μετά, η γενίκευση σε προγράμματα που περιλαμβάνουν περισσότερες από μία συναρτήσεις είναι απλή διαδικασία. Θέμα 1: Γράψτε μία συνάρτηση στη C για να υπολογίζει το τετράγωνο ενός πραγματικού αριθμού. Χρησιμοποιείστε αυτή τη συνάρτηση σ ένα πρόγραμμα που θα διαβάζει έναν πραγματικό αριθμό και θα καλεί τη συνάρτηση, για να υπολογίσει το τετράγωνο αυτού του αριθμού. ΑΠΑΝΤΗΣΗ Για να γράψουμε μία συνάρτηση στη C, ακολουθούμε τη παρακάτω διαδικασία. Βήμα 1: Επικεφαλίδα. Όπως και με την ανάπτυξη του προγράμματος, η ανάπτυξη του κώδικα μίας συνάρτησης ξεκινάει από την επικεφαλίδα. Στην επικεφαλίδα, ορίζουμε: 1. Το τύπο του αποτελέσματος που υπολογίζει η συνάρτηση 2. Το όνομα της συνάρτησης και 3. Τις παραμέτρους της συνάρτησης Έτσι, η επικεφαλίδα μίας συνάρτησης για να υπολογίζει το τετράγωνο ενός πραγματικού αριθμού x, μπορεί να έχει τη μορφή: function square (x : real) : real; Όνομα της συνάρτησης Παράμετροι (Δεδομένα) της συνάρτησης Τύπος της συνάρτησης Ο τύπος μίας συνάρτησης είναι ο τύπος του αποτελέσματος που η συνάρτηση υπολογίζει. Οι παράμετροι μίας συνάρτησης είναι / παριστάνουν τα δεδομένα που χρειάζεται μία συνάρτηση, για να εκτελέσει τον ζητούμενο υπολογισμό. Έτσι, το πλήθος των παραμέτρων μίας συνάρτησης είναι τόσο όσο και το πλήθος των δεδομένων που απαιτούνται για να υπολογίζει και να επιστρέφει η συνάρτηση, το ζητούμενο αποτέλεσμα. Οι τιμές των παραμέτρων καθορίζονται / στέλνονται / μεταβιβάζονται στη συνάρτηση από το κυρίως πρόγραμμα, κατά τη κλήση της συνάρτησης. Η συνάρτηση square για να υπολογίζει το τετράγωνο ενός αριθμού x, χρειάζεται ένα δεδομένο, τη τιμή x αυτού του αριθμού. Δεν χρειάζεται κανένα άλλο δεδομένο. Έτσι, στον ορισμό αυτής της συνάρτησης, δηλώνουμε μία παράμετρο την x, για να παρισ-
4 τάνει τη τιμή του αριθμού που το τετράγωνό του καλείται να υπολογίσει η συνάρτηση. Η παράμετρος x δηλώνεται να έχει το τύπο real. H τιμή της παραμέτρου x θα δίνεται από το κυρίως πρόγραμμα, κατά τη κλήση της συνάρτησης. Βήμα 2: Γράφουμε το πρόγραμμα / εντολές για να εκτελούν τον υπολογισμό που επιδιώκεται από μία συνάρτηση, όπως θα γράφαμε το κώδικα ενός οποιουδήποτε προγράμματος στη PASCAL. H συνάρτηση που χρειάζεται να γράψουμε σ αυτό το θέμα, πρέπει να υπολογίζει το τετράγωνο / να υψώνει στο τετράγωνο ένα αριθμό x που δίνεται σαν παράμετρος στη συνάρτηση. Πως θα υπολογίζει το τετράγωνο αυτού του αριθμού? Πολύ απλά πολλαπλασιάζοντάς τον με τον εαυτό του: function square (x : real) : real; begin square := x * x end; Βήμα 3 Ένα ακόμα χαρακτηριστικό μίας συνάρτησης: Όταν η συνάρτηση ολοκληρώσει τον υπολογισμό της, χρειάζεται να επιστρέψει το αποτέλεσμα αυτού του υ- πολογισμού στο κυρίως πρόγραμμα επικοινωνία ανάμεσα στη συνάρτηση και το κυρίως πρόγραμμα. Για παράδειγμα, η συνάρτηση square (x) υπολογίζει το τετράγωνο του αριθμού x, πολλαπλασιάζοντάς τον με τον εαυτό του. Έχοντας ολοκληρώσει τον υπολογισμός της, η συνάρτηση χρειάζεται να επιστρέψει / να επικοινωνήσει το αποτέλεσμα αυτού του υπολογισμού, πίσω στο κυρίως πρόγραμμα. Πως? Στη PASCAL, μία συνάρτηση επιστρέφει / στέλνει το αποτέλεσμα του υπολογισμού της στο κυρίως πρόγραμμα, με την τελευταία εντολή στο κώδικα της συνάρτησης που είναι η εκχώρηση αυτού του αποτελέσματος στο όνομα της συνάρτησης: square := x; Βήμα 4 Ενσωμάτωση της συνάρτησης στο κυρίως πρόγραμμα: Αφού γράψουμε το κώδικα μίας συνάρτησης, απομένει να ενσωματώσουμε αυτό το κώδικα, στο κώδικα του κυρίως προγράμματος. Για να περιλάβουμε το κώδικα μίας συνάρτησης, στο κυρίως πρόγραμμα: Προσθέτουμε το κώδικα (πρόγραμμα) της συνάρτησης, μετά τις δηλώσεις των μεταβλητών του κυρίως προγράμματος και πριν την αρχή του κυρίως προγράμματος. Εάν έχουμε γράψει περισσότερες από μία συναρτήσεις, προσθέτουμε το κώδικα (πρόγραμμα) κάθε μίας από αυτές, πριν την αρχή του κυρίως προγράμματος. Όλες οι συναρτήσεις πρέπει να είναι πριν το κυρίως πρόγραμμα, όμως η σειρά με την οποία γράφουμε / περιλαμβάνουμε τους κώδικες αυτών των συναρτήσεων, πριν το κυρίως πρόγραμμα, δεν έχει σημασία.
5 Εικόνα 1: H μορφή και η λειτουργία μίας συνάρτησης στη PASCAL.
6 Θέμα 2: Γράψτε μία συνάρτηση στη PASCAL που να υπολογίζει τη τετραγωνική ρίζα ενός αριθμού x, χρησιμοποιώντας τον αλγόριθμο Newton ΑΠΑΝΤΗΣΗ Έστω c η τετραγωνική ρίζα ενός αριθμού x. Τότε: c 2 = x, Άρα, x - c 2 = 0 Επομένως, για να βρούμε τη τετραγωνική ρίζα ενός αριθμού x, στη βάση του αλγόριθμού Newton, αρκεί να βρούμε τις ρίζες της εξίσωσης f(x) = x - c 2 = 0 Διαβάζουμε τον αριθμό x και ξεκινάμε με μία αρχική εκτίμηση, έστω: c := x; για τη τετραγωνική ρίζα του αριθμού x. Εάν x/c = c x = c 2, τότε η τετραγωνική ρίζα του αριθμού x είναι c. Διαφορετικά, παίρνουμε την επόμενη εκτίμηση c για τη τετραγωνική ρίζα του x, να είναι: c := (c + x/c) / 2.; Επαναλαμβάνουμε αυτή τη διαδικασία, μέχρι x/c = c ή πολύ κοντά με ε = 10-6
7 Θέμα 3: Γράψτε μία συνάρτηση στη PASCAL για να υπολογίζει το συνημίτονο μίας γωνίας θ. Το συνημίτονο μίας γωνίας θ, μπορεί να υπολογιστεί από την ακόλουθη σειρά: cosx = 1 - x 2 / 2! + x 4 / 4! - x 6 / 6! + Η συνάρτηση που θα γράψετε, θα πρέπει να υπολογίζει το συνημίτονο από τους πέντε πρώτους όρους της παραπάνω σειράς, Γράψτε μετά, ένα πρόγραμμα που να διαβάζει μία γωνία μία γωνία θ σε μοίρες, 0 θ 360. Το πρόγραμμα θα πρέπει να μετατρέπει αυτή τη γωνία σε ακτίνια και να υπολογίζει το συνημίτονο της γωνίας, καλώντας τη συνάρτηση που γράψατε, στη βάση της παραπάνω ακολουθίας.
TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ
Μάθημα 7 - Υποπρογράμματα Εργαστήριο 11 Ο TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Βασικές Έννοιες: Υποπρόγραμμα, Ανάλυση προβλήματος, top down σχεδίαση, Συνάρτηση, Διαδικασία, Παράμετρος, Κλήση συνάρτησης, Μετάβαση
Η ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ Εντολές Επανάληψης REPEAT UNTIL, FOR, WHILE
ΕΡΓΑΣΤΗΡΙΟ 7 Ο Η ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ Εντολές Επανάληψης REPEAT UNTIL, FOR, WHILE Βασικές Έννοιες: Δομή Επανάληψης, Εντολές Επανάληψης (For, While do, Repeat until), Αλγόριθμος, Αθροιστής, Μετρητής, Παράσταση
Σκοπός. Αλγεβρικοί και Λογικοί Υπολογισμοί στη PASCAL
Αλγεβρικοί και Λογικοί Υπολογισμοί στη PASCAL Δυνατότητα ανάπτυξης, μεταγλώττισης και εκτέλεσης προγραμμάτων στη PASCAL. Κατανόηση της σύνταξης των προτάσεων της PASCAL. Κατανόηση της εντολής εξόδου για
Εισαγωγή στο προγραμματισμό με τη PASCAL Οδηγός Προετοιμασίας για τη Τελική Εξέταση
Σκοπός Εισαγωγή στο προγραμματισμό με τη PASCAL Οδηγός Προετοιμασίας για τη Τελική Εξέταση. Επανάληψη των βασικών εννοιών της PASCAL και του προγραμματισμού οι έννοιες της μεταβλητής, του τύπου δεδομένων,
Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης
Εργαστήριο 6 Εντολές Επανάληψης Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL. Ρεύμα Εισόδου / Εξόδου.. Ρεύμα Εισόδου / Εξόδου. To πρόγραμμα γραφικών gnuplot. Γραφικά στη PASCAL. Σκοπός 6.1 ΕΠΙΔΙΩΞΗ
ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)
ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών Τύπων. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος
Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα. Η δομή Επιλογής στη PASCAL. H δομή Επανάληψης στη PASCAL. Η εντολή επανάληψης for
Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL Η εντολή επανάληψης for Σκοπός Η εντολή επανάληψης while. 1 ΕΡΓΑΣΤΗΡΙΟ 6 Εισαγωγή στο
8. Η δημιουργία του εκτελέσιμου προγράμματος γίνεται μόνο όταν το πηγαίο πρόγραμμα δεν περιέχει συντακτικά λάθη.
1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2015 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ) ΣΥΝΟΛΟ
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ. Παράδειγμα #1. Πράξεις μεταξύ ακεραίων αριθμών
ΥΠΟΛΟΓΙΣΤΕΣ Ι ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ Τύποι δεδομένων Οι παρακάτω τύποι δεδομένων υποστηρίζονται από τη γλώσσα προγραμματισμού Fortran: 1) Ακέραιοι αριθμοί (INTEGER). 2) Πραγματικοί αριθμοί απλής ακρίβειας
ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Διαδικασίες και συναρτήσεις. 22 Νοε 2008 Ανάπτυξη εφαρμογών/ Υποπρογράμματα 1
ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ Διαδικασίες και συναρτήσεις 22 Νοε 2008 Ανάπτυξη εφαρμογών/ Υποπρογράμματα 1 Βασικές έννοιες Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης και ανάπτυξης των προγραμμάτων ως ένα
Εργαστήριο 10 Πίνακες. Πίνακες. Η έννοια της δόμησης δεδομένων στη PASCAL. Σκοπός
Εργαστήριο 10 Πίνακες Πίνακες. Η έννοια της δόμησης δεδομένων στη PASCAL. Σκοπός 10.1 ΕΠΙΔΙΩΞΗ ΤΗΣ ΕΡΓΑΣΙΑΣ Σ αυτή την άσκηση, εξετάζουμε μία βασική δομή του προγραμματισμού, το πίνακα. Στις μέχρι τώρα
ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ. Τι είναι ; Συναρτήσεις. Παράδειγμα #1. double convert ( double cm ) { double inch;
ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ Τι είναι ; Συναρτήσεις Αυτόνομα τμήματα κώδικα (υποπρογράμματα) που πραγματοποιούν μια καθορισμένη εργασία. Χρήσιμες για περιπτώσεις που ο ίδιος υπολογισμός επαναλαμβάνεται πολλές φορές
Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ
Ενότητα 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα α. Θέση και προσανατολισμός της μορφής Η θέση της κάθε μορφής στο σκηνικό προσδιορίζεται
Αναδρομικός αλγόριθμος
Αναδρομικός αλγόριθμος Ένας αναδρομικός αλγόριθμος επιλύει ένα πρόβλημα για κάποιες τιμές δεδομένων λύνοντας το ίδιο πρόβλημα για άλλες (σχετιζόμενες) τιμές δεδομένων Είναι απαραίτητο βέβαια να λύνεται
Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN:
Άσκηση 1 Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του J στα παρακάτω κομμάτια κώδικα FORTRAN: INTEGER J J = 5 J = J + 1 J = J + 1 INTEGER X, Y, J X = 2 Y =
Ρητή μετατροπή αριθμητικής τιμής σε άλλο τύπο. Τι θα τυπωθεί στον παρακάτω κώδικα;
Ρητή μετατροπή αριθμητικής τιμής σε άλλο τύπο Τι θα τυπωθεί στον παρακάτω κώδικα; Ρητή μετατροπή αριθμητικής τιμής σε άλλο τύπο Τι θα τυπωθεί στον παρακάτω κώδικα; Χωρίς να αλλάξουμε τον τύπο των a,b,
Εισαγωγή στο Προγραμματισμό με τη PASCAL & τη Matlab Εξαμηνιαία Εργασία 2014 Μετατρέποντας AC σε DC Τάση Μέρος Β : Πορεία Εργασίας
Εισαγωγή στο Προγραμματισμό με τη PASCAL & τη Matlab Εξαμηνιαία Εργασία 2014 Μετατρέποντας AC σε DC Τάση Μέρος Β : Πορεία Εργασίας. Συναρτήσεις στη PASCAL Σκοπός Προσομοίωση ενός Συστήματος / Κυκλώματος,
Σκοπός. Προγραμματίζοντας τον Arduino ΙΙ Εντολή Εκχώρησης & Εντολές. Συλλογή & Επεξεργασία Δεδομένων. Πρόγραμμα. Εντολές Επεξεργασίας Δεδομένων
Σκοπός Συλλογή & Επεξεργασία Δεδομένων Προγραμματίζοντας τον Arduino ΙΙ Εντολή Εκχώρησης & Εντολές Ελέγχου. Πρόγραμμα Εντολές Επεξεργασίας Δεδομένων Εντολή Εκχώρησης Εντολές Ελέγχου Λογική συνθήκη Εντολή
4. Ποιος είναι ο τύπος και ποια η τιμή της μεταβλητής που χρησιμοποιείται παρακάτω;
ΑΕσΠΠ-Ακολουθιακή Δομή 1 ΑΚΟΛΟΥΘΙΑΚΗ ΔΟΜΗ 1. Ποια από τα παρακάτω ονόματα μεταβλητών είναι λάθος και γιατί; Α Ύψος Αριθμ.παιδιών ΑΑ ποσοστό Α-Α διάβασε Αξία ΦΠΑ Χ Α4 ΜΗΚΟΣ Αριθμ_παιδιών Β_ ποσοστό% Α/Α
Μέθοδοι πολυδιάστατης ελαχιστοποίησης
Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo
Κεφάλαιο 6 Υλοποίηση Γλωσσών Προγραμματισμού
Κεφάλαιο 6 Υλοποίηση Γλωσσών Προγραμματισμού Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Μεταγλωττιστής Πρόγραμμα Διαβάζει προγράμματα δεδομένης γλώσσας (πηγαία γλώσσα) και τα μετατρέπει
Συναρτήσεις. Υποπρόγραμμα
Συναρτήσεις Υποπρόγραμμα Ένα σύνολο από εντολές που κάνουν κάτι συγκεκριμένο, έχουν στενή σχέση/εξάρτηση μεταξύ τους, έχουν «χαλαρή» σύνδεση με τον υπόλοιπο κώδικα, μπορεί να εξαχθεί από το πρόγραμμά μας
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο Πλαίσιο (front
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Συναρτήσεις 60 Ροή ελέγχου Είναι η σειρά µε την οποία εκτελούνται οι εντολές. Μέχρι τώρα, «σειριακή»,
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση ονομάζεται ένα τμήμα κώδικα (ή υποπρόγραμμα) το
ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ
ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΟΔΗΓΙΕΣ: ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΣΕ ΟΛΕΣ ΤΙΣ ΕΡΩΤΗΣΕΙΣ. Το εξεταστικό δοκίμιο αποτελείται από δύο Ενότητες Α και Β. ΕΝΟΤΗΤΑ Α - Αποτελείται από δέκα (10) ερωτήσεις. Κάθε ορθή απάντηση
Σημειώσεις του εργαστηριακού μαθήματος Πληροφορική ΙΙ. Εισαγωγή στην γλώσσα προγραμματισμού
Σημειώσεις του εργαστηριακού μαθήματος Πληροφορική ΙΙ Εισαγωγή στην γλώσσα προγραμματισμού Ακαδημαϊκό έτος 2016-2017, Εαρινό εξάμηνο Οι σημειώσεις βασίζονται στα συγγράμματα: A byte of Python (ελληνική
Σημειωματάριο Δευτέρας 30 Οκτ. 2017
Σημειωματάριο Δευτέρας 30 Οκτ. 2017 Συναρτήσεις (functions) Μια συνάρτηση στην Python είναι κομμάτι κώδικα που φέρει το δικό του όνομα (ακολουθεί τη λέξη κλειδί def στον ορισμό της συνάρτησης, έχει τα
Προγραμματισμός Ι Εργαστήριο 8ο Ακαδ. Έτος ΕΡΓΑΣΤΗΡΙΟ 8 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ
ΕΡΓΑΣΤΗΡΙΟ 8 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Στόχοι Φορμαρισμένη είσοδος και έξοδος Πίνακες Αλφαριθμητικά Συναρτήσεις Προσοχή: Απαγορεύεται αυστηρά η χρήση goto. Πριν ξεκινήσετε
Ηλεκτρονικοί Υπολογιστές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Εντολές Αντικατάστασης, Συναρτήσεις και Σχόλια στη C++ Ζαχαρούλα Ανδρεοπούλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Χρησιμοποιώντας συναρτήσεις
Τετράδιο μαθητή ΘΕ18: Συναρτήσεις Όνομα(τα): Όνομα Η/Υ: Τμήμα: Ημερομηνία: Χρησιμοποιώντας συναρτήσεις Ξεκινήστε το Χώρο Δραστηριοτήτων, επιλέξτε τη θεματική ενότητα: ΘΕ18: Συναρτήσεις και επιλέξτε την
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι είναι μια συνάρτηση; ΣΥΝΑΡΤΗΣΕΙΣ. Δήλωση συνάρτησης sq. Παράδειγμα συνάρτησης: υπολογισμός τετραγώνου
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι είναι μια συνάρτηση; ΣΥΝΑΡΤΗΣΕΙΣ Μια ομάδα εντολών, σχεδιασμένη να εκτελεί έναν υπολογισμό και να γυρνάει το αποτέλεσμα Ιδανικές για περιπτώσεις που ο υπολογισμός επαναλαμβάνεται πολλές
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 10 ΟΥ ΚΕΦΑΛΑΙΟΥ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ 1. Πως ορίζεται ο τμηματικός προγραμματισμός; Τμηματικός προγραμματισμός
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Συναρτήσεις I Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Συναρτήσεις I Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Υπολογιστές Ι. Άδειες Χρήσης. Τύποι δεδομένων. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Τύποι δεδομένων Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Επικοινωνία:
Σπύρος Ζυγούρης Καθηγητής Πληροφορικής Επικοινωνία: spzygouris@gmail.com Πως ορίζεται ο τμηματικός προγραμματισμός; Πρόγραμμα Εντολή 1 Εντολή 2 Εντολή 3 Εντολή 4 Εντολή 5 Εντολή 2 Εντολή 3 Εντολή 4 Εντολή
Κεφάλαιο 12 : ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 12 : ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ 1. Συναρτήσεις ΣΥΝΑΡΤΗΣΕΙΣ 1.1. Ο λόγος ύπαρξης των συναρτήσεων Όπως είδαµε µία διαδικασία µπορεί να υπολογίζει περισσότερα από ένα αποτελέσµατα τα
Κεφάλαιο 7 ο Βασικές Έννοιες Προγραμματισμού (σελ )
Κεφάλαιο 7 ο Βασικές Έννοιες Προγραμματισμού (σελ. 147 159) Για τις γλώσσες προγραμματισμού πρέπει να έχουμε υπόψη ότι: Κάθε γλώσσα προγραμματισμού σχεδιάζεται για συγκεκριμένο σκοπό, δίνοντας ιδιαίτερη
Μαθηματικός Ορισμός Διδιάστατου Χώρου (R 2 )
Μαθηματικός Ορισμός Διδιάστατου Χώρου (R 2 ) Είναι ένα σύνολο σημείων με συντεταγμένες (x,y) Τα x και y έχουν τις εξής ιδιότητες: Το καθένα από αυτά διατρέχει το σύνολο των πραγματικών αριθμών Είναι ανεξάρτητα
Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε
Κανόνες των προσήμων Στην πρόσθεση Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε (+) και (+) κάνει (+) + + 3 = +5 (-) και (-) κάνει (-) - - 3 = -5 Όταν οι αριθμοί είναι ετερόσημοι
Προγραμματισμός Ι Εργαστήριο 8ο Ακαδ. Έτος ΕΡΓΑΣΤΗΡΙΟ 8 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ
ΕΡΓΑΣΤΗΡΙΟ 8 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Στόχοι Φορμαρισμένη είσοδος και έξοδος Πίνακες Αλφαριθμητικά Συναρτήσεις Προσοχή: Απαγορεύεται αυστηρά η χρήση goto. Πριν ξεκινήσετε
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 7 Ακούγοντας Πρώτη Ματιά στην Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 7 Ακούγοντας Πρώτη Ματιά στην Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο Πλαίσιο (front
y 1 (x) f(x) W (y 1, y 2 )(x) dx,
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x
Κεφάλαιο 9 : Βασικές εντολές
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ Οδηγός µελέτης Κεφάλαιο 9 : Βασικές εντολές Βασικές έννοιες Για κάθε µία από τις βασικές έννοιες του κεφαλαίου δίνονται παρακάτω το σηµείο όπου αναλύεται στο σχολικό βιβλίο
Κεφάλαιο 10 Υποπρογράμματα. Καραμαούνας Πολύκαρπος
Κεφάλαιο 10 Υποπρογράμματα 1 10.1 Τμηματικός προγραμματισμός Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης και ανάπτυξης των προγραμμάτων ως ένα σύνολο από απλούστερα τμήματα προγραμμάτων.
ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Κάθε υποπρόγραμμα έχει μόνο μία είσοδο και μία έξοδο. Κάθε υποπρόγραμμα πρέπει να είναι ανεξάρτητο από τα άλλα.
ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης και ανάπτυξης των προγραμμάτων ως ένα σύνολο από απλούστερα τμήματα προγραμμάτων. Όταν ένα τμήμα προγράμματος επιτελεί ένα αυτόνομο
ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)
ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,
ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ. Ακέραιοι αριθμοί (int) Πράξεις μεταξύ ακεραίων αριθμών
ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ 1 Τύποι δεδομένων Η γλώσσα προγραμματισμού C++ υποστηρίζει τους παρακάτω τύπους δεδομένων: 1) Ακέραιοι αριθμοί (int). 2) Πραγματικοί αριθμοί διπλής ακρίβειας
Υποπρογράµµατα Συναρτήσεις. Στόχοι Μαθήµατος. Οι µαθητές να µπορούν:
Υποπρογράµµατα «Είδα στον ύπνο µου ότι η ζωή είναι χαρά. Ξύπνησα και είδα ότι είναι χρέος. Αγωνίστηκα και είδα ότι τo χρέος είναι χαρά.» Ραµπριτανάθ Ταγκόρ Κουλλάς Χρίστος www.oullas.om oullas 2 Στόχοι
Κεφάλαιο 7: Υποπρογράμματα. Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών
Κεφάλαιο 7: Υποπρογράμματα Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών Ορισμός Αφαίρεση με χρήση υποπρογραμμάτων (subprogram abstraction) είναι η αντιστοίχιση ενός συνόλου εισόδων σε ένα σύνολο εξόδων
ΑΣΚΗΣΕΙΣ Ακολουθίας. Πίνακας τιµών µεταβλητών Χ Α Β α 5 20 8 10 23 15 15 23 8 β 3 18 4 8 17 13 13 17 4 γ
ΑΣΚΗΣΕΙΣ Ακολουθίας Η δοµή Ακολουθίας είναι η πιο απλή δοµή του δοµηµένου προγραµµατισµού. Η κάθε εντολή ακολουθεί κάποια άλλη. Οι εντολές εκτελούνται ακριβώς µε τη σειρά όπως θα δοθούν στον αλγόριθµο
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΗΣ
Το αναλυτικό πρόγραμμα στο οποίο βασίζεται η εξέταση είναι το αναλυτικό πρόγραμμα του Μαθήματος Κατεύθυνσης Πληροφορική Επιστήμη Η.Υ της Γ Ενιαίου Λυκείου Γενικός Σκοπός Το μάθημα κατεύθυνσης της στη Γ'
ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. β. Οι πληροφορίες είναι δεδομένα τα οποία δεν έχουν υποστεί επεξεργασία.
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΘΕΜΑ Α ΚΥΡΙΑΚΗ 16/04/2014- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΕΑ (9) ΕΚΦΩΝΗΣΕΙΣ Α1. Να χαρακτηρίσετε
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 2 USB και Σειριακή Επικοι- νωνία Σ Σειριακή Επικοινωνία
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 2 USB και Σειριακή Επικοινωνία. Σειριακή Επικοινωνία USB Σύνδεση / Πρωτόκολλο Σκοπός Εντολή επιλογής (if) Εντολή Επανάληψης (while) Πίνακες 1 Μέρος Α : Σκοπός
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙ ΕΥΤΙΚΑ Ι ΡΥΜΑΤΑ Μάθηµα: Πληροφορική Ηµεροµηνία και ώρα εξέτασης:
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ. Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. ΑΡΧΗ Εντολές ΤΕΛΟΣ_ΔΙΑΔΙΚΑΣΙΑΣ
Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. Οι διαδικασίες μπορούν να εκτελέσουν οποιαδήποτε λειτουργία και δεν επιστρέφουν μια τιμή όπως οι συναρτήσεις. Κάθε διαδικασία έχει
1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75
1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75 2. Έστω x = [2 5 1 6] α. Προσθέστε το 16 σε κάθε στοιχείο β. Προσθέστε το 3 σε κάθε στοιχείο που βρίσκεται σε μονή θέση.
Σύντομες εισαγωγικές σημειώσεις για την. Matlab
Σύντομες εισαγωγικές σημειώσεις για την Matlab Δήλωση Μεταβλητών Για να εισάγει κανείς δεδομένα στη Matlab υπάρχουν πολλοί τρόποι. Ο πιο απλός είναι στη γραμμή εντολών να εισάγουμε αυτό που θέλουμε και
Σκοπός. Εργαστήριο 5 Εντολές Επιλογής
Εργαστήριο 5 Εντολές Επιλογής Λήψη αποφάσεων σ ένα πρόγραμμα με την εντολή επιλογής.. Κατανόηση της εντολής επιλογής στη Pascal. H έννοια και η μορφή μίας λογικής συνθήκης.. Σύνθετες λογικές συνθήκες.
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO. Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος.
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος. Τετριμμένο παράδειγμα: Κατασκευάστε πρόγραμμα που θα εμφανίζει
Κεφάλαιο , 3.2: Συναρτήσεις II. (Διάλεξη 12)
Κεφάλαιο 3.5-3.6, 3.2: Συναρτήσεις II (Διάλεξη 12) 12-1 Ανασκόπηση Δομής Προγράμματος με Συναρτήσεις 1 void PrintMessage (); Πρότυπο (Δήλωση) Συνάρτησης (Δηλώνουν τι επιπλέον συναρτήσεις θα χρησιμοποιήσουμε
Τι είναι υποπρόγραμμα; Τμήμα προγράμματος το οποίο επιτελεί ένα αυτόνομο υπολογιστικό έργο (γράφεται χωριστά από το υπόλοιπο πρόγραμμα)
Τι είναι υποπρόγραμμα; Τμήμα προγράμματος το οποίο επιτελεί ένα αυτόνομο υπολογιστικό έργο (γράφεται χωριστά από το υπόλοιπο πρόγραμμα) Επικοινωνία Το υποπρόγραμμα δέχεται τιμές από το πρόγραμμα Επιστρέφει,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΕΡΓΑΣΤΗΡΙΟ 3: Πίνακες, βρόχοι, συναρτήσεις 1 Ιουνίου 2017 Το σημερινό εργαστήριο
Εισαγωγή στη Matlab Βασικές Συναρτήσεις
Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με Εφαρμογές στη Βιοϊατρική Εργαστήριο Γραμμικής Άλγεβρας Εισαγωγή στη Matlab Βασικές Συναρτήσεις 2016-2017 Εισαγωγή στη Matlab Matlab
Να γράψετε τα αποτελέσματα αυτού του αλγόριθμου για Χ=13, Χ=9 και Χ=22. Και στις 3 περιπτώσεις το αποτέλεσμα του αλγορίθμου είναι 1
Άσκηση 1. Δίνεται ο παρακάτω αλγόριθμος: ΑΛΓΟΡΙΘΜΟΣ ΕΛΕΓΧΟΣ_ΑΝΑΘΕΣΗΣ ΔΙΑΒΑΣΕ X ΌΣΟ Χ > 1 ΕΠΑΝΑΛΑΒΕ ΑΝ Χ MOD 2 = 0 ΤΟΤΕ Χ Χ / 2 Χ 3 * Χ + 1 ΑΠΟΤΕΛΕΣΜΑΤΑ // Χ // ΤΕΛΟΣ ΕΛΕΓΧΟΣ_ΑΝΑΘΕΣΗΣ Να γράψετε τα αποτελέσματα
Προτεινόμενα Θέματα ΑΕΠΠ
Προτεινόμενα Θέματα ΑΕΠΠ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε αν κάθε μία από τις παρακάτω προτάσεις είναι σωστή (Σ) ή λανθασμένη (Λ). Αιτιολογήσετε κάθε σας απάντηση 1. Η μερικώς περιορισμένη εμβέλεια προσφέρει
a (x)y a (x)y a (x)y' a (x)y 0
Γραμμικές Διαφορικές εξισώσεις Ανώτερης Τάξης Έστω ότι έχουμε μια γραμμική διαφορική εξίσωση τάξης n a (x) a (x) a (x)' a (x) f (x) () (n) (n) n n 0 όπου a i(x),i 0,...,n και f(x) είναι συνεχείς συναρτήσεις
Αναφέρατε τις ιδιότητες που πρέπει να διακρίνουν τα υποπρογράμματα. Μονάδες 3
ΘΕΩΡΙΑ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ Αναφέρατε τις ιδιότητες που πρέπει να διακρίνουν τα υποπρογράμματα. Μονάδες 3 Να αναφέρετε τους κανόνες που πρέπει να ακολουθούν οι λίστες των παραμέτρων κατά την κλήση ενός υποπρογράμματος.
Κεφάλαιο 10 Υποπρογράμματα. Καραμαούνας Πολύκαρπος
Κεφάλαιο 10 Υποπρογράμματα 1 10.1 Τμηματικός προγραμματισμός Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης και ανάπτυξης των προγραμμάτων ως ένα σύνολο από απλούστερα τμήματα προγραμμάτων.
Κεφάλαιο 10 ο Υποπρογράµµατα
Κεφάλαιο 10 ο Υποπρογράµµατα Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Η αντιµετώπιση των σύνθετων προβληµάτων και η ανάπτυξη των αντίστοιχων προγραµµάτων µπορεί να γίνει µε την ιεραρχική σχεδίαση,
ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL
8.1. Εισαγωγή ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PACAL Πως προέκυψε η γλώσσα προγραμματισμού Pascal και ποια είναι τα γενικά της χαρακτηριστικά; Σχεδιάστηκε από τον Ελβετό επιστήμονα της Πληροφορικής Nicklaus Wirth to
Μέτρηση Θερμοκρασίας με τον αισθητήρα TMP36. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων. Βασική δομή ενός προγράμματος στο LabVIEW.
Σκοπός Μάθημα 2 Δραστηριότητα 1 Μέτρηση Θερμοκρασίας με τον αισθητήρα TMP36. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο Πλαίσιο (front panel). Σχεδίαση
1 3 (a2 ρ 2 ) 3/2 ] b V = [(a 2 b 2 ) 3/2 a 3 ] 3 (1) V total = 2V V total = 4π 3 (2)
Γενικά Μαθηματικά ΙΙΙ Δεύτερο σετ ασκήσεων, Λύσεις Άσκηση 1 Για την επίλυση της άσκησης και την εύρεση του ζητούμενου όγκου, αρχικά αναγνωρίζουμε ότι ο τόπος ολοκλήρωσης, είναι ο κύκλος x + y = b, ο οποίος
ΑΕΠΠ Ερωτήσεις θεωρίας
ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος
Υπολογιστές Ι. Άδειες Χρήσης. Συναρτήσεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Συναρτήσεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Μεθόδων Επίλυσης Προβλημάτων
ΕΠΛ 032.3: 3: Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 9 Συναρτήσεις Μέρος II Θέματα ιάλεξης Μη- ομημένος
Κεφάλαιο 3.5-3.6, 3.2: Συναρτήσεις II. ( ιάλεξη 12) ιδάσκων: ηµήτρης Ζεϊναλιπούρ
Κεφάλαιο 3.5-3.6, 3.2: Συναρτήσεις II ( ιάλεξη 12) ιδάσκων: ηµήτρης Ζεϊναλιπούρ 12-1 Ανασκόπηση οµής Προγράµµατος µε Συναρτήσεις #include 1 void PrintMessage (); Πρότυπο ( ήλωση) Συνάρτησης (
Pascal, απλοί τύποι, τελεστές και εκφράσεις
Pascal, απλοί τύποι, τελεστές και εκφράσεις 15 Νοεμβρίου 2011 1 Γενικά Στην standard Pascal ορίζονται τέσσερις βασικοί τύποι μεταβλητών: integer: Παριστάνει ακέραιους αριθμούς από το -32768 μέχρι και το
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 1. Arduino + LabVIEW: Μέτρηση Έντασης Φωτός με Φωτοαντίσταση. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων
Σκοπός Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 1 Arduino + LabVIEW: Μέτρηση Έντασης Φωτός με Φωτοαντίσταση. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο
10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.
1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η ΕΥΤΥΧΙΣΜΕΝΟΣ Ο ΚΑΙΝΟΥΡΓΙΟΣ ΧΡΟΝΟΣ!! Ηµεροµηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου
Εισαγωγή στο Προγραμματισμό με τη PASCAL & τη Matlab Εξαμηνιαία Εργασία 2015 Μετατρέποντας AC σε DC Τάση Περισσότερες Επεξηγήσεις
Εισαγωγή στο Προγραμματισμό με τη PASCAL & τη Matlab Εξαμηνιαία Εργασία 2015 Μετατρέποντας AC σε DC Τάση Περισσότερες Επεξηγήσεις. Συναρτήσεις στη PASCAL Προσομοίωση ενός Συστήματος / Κυκλώματος, μέσα
a = f( x ) =. (Μονάδες 8) 2 = =,από όπου προκύπτει ( υψώνοντας στο τετράγωνο ), x =, επομένως x = 0 x = ή Άσκηση 4679 Δίνεται η συνάρτηση:
Άσκηση 4679 Δίνεται η συνάρτηση: a = + 4 f( x) x x α) Να βρείτε τις τιμές του πραγματικού αριθμού α, ώστε το πεδίο ορισμού της συνάρτησης f να είναι το σύνολο. (Μονάδες 0) β) Αν είναι γνωστό ότι η γραφική
Εισαγωγή στο Πρόγραμμα Maxima
Εισαγωγή στο Πρόγραμμα Maxima Το Maxima είναι ένα πρόγραμμα για την εκτέλεση μαθηματικών υπολογισμών, συμβολικών μαθηματικών χειρισμών, αριθμητικών υπολογισμών και γραφικών παραστάσεων. Το Maxima λειτουργεί
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ - ΓΛΩΣΣΑ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Τεχνικές Σχεδίασης Αλγορίθμων Εισαγωγή στον Προγραμματισμό - ΓΛΩΣΣΑ Επιμέλεια: Ομάδα Διαγωνισμάτων από Το στέκι των πληροφορικών ο Θέμα 1 Α. α) Ποια είναι
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ - ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ
ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΟ 10 ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ - ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ 1 ΤΗΛ.6947345322, 6987070028 email: xristoforos_karachristos@hotmail.com https://sites.google.com/site/aeppkx
2. β. Συνθήκη ή επιλογή. 4. δ. Υποπρόγραμμα. 5. ε. ιαδικασία εισόδου ή εξόδου
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛHNIΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 28 ΜΑΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΟΜΗΜΕΝΟΣ
ΚΕΦΑΛΑΙΟ 10 ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ
ΚΕΦΑΛΑΙΟ 10 Όπως είδαμε και σε προηγούμενο κεφάλαιο μια από τις βασικότερες τεχνικές στον Δομημένο Προγραμματισμό είναι ο Τμηματικός Προγραμματισμός. Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης
ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ
ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 ο Α. Δίνεται η εντολή εκχώρησης: τ κ < λ Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος. Να δικαιολογήσετε
Εφαρμογή 9.2 Μετατροπή Ασύμμετρης Τριφασικής Κατανάλωσης σε Συμμετρική, με Ανακατανομή των Φορτίων
Εφαρμογή 9.2 Μετατροπή Ασύμμετρης Τριφασικής Κατανάλωσης σε Συμμετρική, με Ανακατανομή των Φορτίων Περίληψη Ασύμμετρη Τριφασική Κατανάλωση σε σύνδεση Αστέρα με ουδέτερο αγωγό. Μετατροπή της ασύμμετρης
Εφαρμογές Υπολογιστών. Κεφάλαιο 7 Προγραμματισμός υπολογιστή
Εφαρμογές Υπολογιστών Προγραμματισμός υπολογιστή Ορισμοί Αλγόριθμος: Μια βήμα προς βήμα διαδικασία η οποία οδηγεί στην επίλυση ενός προβλήματος. Πρέπει να είναι σαφής και να έχει συγκεκριμένο σημείο τερματισμού.
Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΔΟΜΗΜΕΝΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΕΠΑΛ
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΔΟΜΗΜΕΝΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΕΠΑΛ ΘΕΜΑ Α Α.1 Να χαρακτηρίσετε σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις (Μονάδες 10) 1. Ένας αλγόριθμος μπορεί να έχει άπειρα βήματα
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Τύποι δεδομένων, μεταβλητές, πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Τύποι δεδομένων, μεταβλητές, πράξεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ ΑΠΑΝΤΗΣΕΙΣ
Σελίδα 1 από 6 ΑΠΑΝΤΗΣΕΙΣ Θέμα1 Α. Χαρακτηρίστε με τη λέξη Σωστή ή τη λέξη Λάθος καθεμία από τις παρακάτω προτάσεις: 1 Ο Γιάννης έχει ύψος 1.83εκ. και βάρος 82 κιλά. Ο Γιάννης χαρακτηρίζεται κανονικός.
Κεφάλαιο 1. Τι θα μάθουμε σήμερα: -AND, OR, NOT. -Ενσωματωμένες συναρτήσεις. -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD. -Προτεραιότητα πράξεων
Κεφάλαιο 1 Αρχή ήμισυ παντός. Πλάτων, 427-347 π.χ., Φιλόσοφος Τι θα μάθουμε σήμερα: -AND, OR, NOT -Ενσωματωμένες συναρτήσεις -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD -Προτεραιότητα πράξεων 1 Λογικές
Αλγόριθμοι. Βασικές έννοιες ΤΕΛΟΣ
Αλγόριθμοι Βασικές έννοιες ΤΕΛΟΣ Κριτήρια πληρότητας Είσοδος Έξοδος Καθοριστικότητα Περατότητα Αποτελεσματικότητα 04/01/09 βασικές έννοιες Αλγορίθμων 2 Σκοπιές μελέτης αλγορίθμων Υλικού Η ταχύτητα εκτέλεσης
επιµέλεια Θοδωρής Πιερράτος
Βασικές έννοιες προγραµµατισµού Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως,