Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
|
|
- Κόριννα Αρβανίτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1
2 Περιγραφή Προβλημάτων Διαισθητικά, σε ένα πρόβλημα υπάρχει μια δεδομένη κατάσταση (αρχική) μια επιθυμητή κατάσταση (τελική) διαθέσιμες ενέργειες που μπορούν να γίνουν για να επιτευχθεί ο στόχος Στην καθημερινότητα χρησιμοποιείται λανθασμένα ο όρος «πρόβλημα», εφόσον μπορεί κάποιο από τα τρία στοιχεία να μην είναι γνωστό. Η επίλυση προβλημάτων που επιδιώκεται από την Τεχνητή Νοημοσύνη απαιτεί τον σαφή και τυποποιημένο ορισμό τους. Ο ορισμός ενός προβλήματος είναι ανεξάρτητος από την πολυπλοκότητα επίλυσής του: Ο ορισμός καθορίζεται από την αναπαράσταση Η πολυπλοκότητα καθορίζεται από τον αλγόριθμο που χρησιμοποιείται για την επίλυσή του. 2
3 Classic AI toy problems 3
4 Κύβοι (Blocks World) Ν κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι. Σκοπός είναι να μετακινηθούν οι κύβοι ώστε να σχηματισθεί μια άλλη διάταξη. Ένας κύβος μπορεί να μετακινηθεί, εφόσον έχει ελεύθερη την επάνω έδρα του. 4
5 Rubik s Cube (Due to popular demand, the initial image was replaced) 5
6 Ν-Puzzle Ένα πλαίσιο περιέχει Ν διακριτά πλακίδια, τα οποία μπορούν να μετακινηθούν σε γειτονική θέση, εφόσον αυτή είναι κενή. Σκοπός είναι τα πλακίδια να μετακινηθούν σε κάποια επιθυμητή διάταξη. 6
7 Τρίλιζα (Tic-Tac-Toe) Δύο παίκτες σημειώνουν εναλλάξ Χ ή Ο στις εννέα θέσεις του αρχικά κενού ταμπλώ με σκοπό κάποιος να έχει τελικά τρία Χ ή τρία Ο στη σειρά, οριζόντια, κατακόρυφα ή διαγώνια. 7
8 Λαβύρινθος Αναζήτηση μιας διαδρομής σε έναν χώρο με εμπόδια από την είσοδο έως την έξοδο ή από ένα σημείο του χώρου σε ένα άλλο. 8
9 N-Queens Πώς μπορώ να τοποθετήσω Ν βασίλισσες σε μία ΝxN σκακιέρα, χωρίς να απειλούνται μεταξύ τους; 9
10 Πύργοι του Hanoi Ν δίσκοι διαφορετικού μεγέθους πρέπει να μεταφερθούν ένας ένας από ένα στύλο σε έναν άλλο, μέσω ενός τρίτου στύλου, με την ίδια τελική διάταξη, ενώ δεν πρέπει σε καμία στιγμή να τοποθετηθεί ένας μεγαλύτερος δίσκος πάνω από έναν μικρότερο. 10
11 Κανίβαλοι και Ιεραπόστολοι Τρεις κανίβαλοι και τρεις ιεραπόστολοι πρέπει να περάσουν το ποτάμι με μια βάρκα που μπορεί να μεταφέρει το πολύ δύο άτομα κάθε φορά, χωρίς οι κανίβαλοι σε μία από τις δύο όχθες, σε οποιαδήποτε στιγμή, να υπερβαίνουν σε αριθμό τους ιεραπόστολους. 11
12 O αγρότης και το ποτάμι Ένας αγρότης θέλει να μεταφέρει έναν λύκο, ένα πρόβατο και λάχανα από την μία πλευρά του ποταμού στην άλλη, με μια μικρή βάρκα που χωράει μόνο τον ίδιο και άλλο ένα αντικείμενο. Αν δεν τα προσέχει ο λύκος θα φάει το πρόβατο και το πρόβατο τα λάχανα. 12
13 Ποτήρια Δύο ποτήρια συγκεκριμένης χωρητικότητας, π.χ. 50 και 70 ml, μπορούν να γεμίζουν μέχρι το χείλος από μία βρύση και να αδειάζουν είτε το ένα μέσα στο άλλο είτε στο νεροχύτη. Τελικός στόχος είναι να υπάρχουν τελικά συγκεκριμένα ml, π.χ. 40, σε κάποιο από τα δύο. 13
14 Family Crisis Η οικογένεια πρέπει να περάσει απέναντι με μια λάμπα που κρατάει 30 δευτερόλεπτα. Ο κορμός κρατάει το πολύ 2 άτομα. Ο καθένας περπατάει με διαφορετική ταχύτητα και χρειάζεται 1, 3, 6, 8, 12 sec για να περάσει. 14
15 Περιγραφή προβήματος Με χώρο καταστάσεων (state space) Με αναγωγή (reduction) 15
16 Περιγραφή προβήματος Με χώρο καταστάσεων (state space) Με αναγωγή (reduction) 16
17 Περιγραφή προβλήματος με χώρο καταστάσεων Ο κόσμος ενός προβλήματος αποτελείται μόνο από τα αντικείμενα που υπάρχουν σε αυτόν, τις ιδιότητες των αντικειμένων και τις σχέσεις που τα συνδέουν Υποσύνολο του πραγματικού κόσμου που περιέχει μόνο ότι σχετίζεται άμεσα με το πρόβλημα (π.χ. στο πρόβλημα των κύβων δεν μας ενδιαφέρει το χρώμα του κάθε κύβου). Κλειστός κόσμος: κανένα αντικείμενο, ιδιότητα ή σχέση δεν εισάγεται ή εξάγεται από τον κόσμο. Ανοιχτός κόσμος: εξωτερικές παρεμβάσεις μπορεί να αλλάξουν την περιγραφή του (μη προβλέψιμος, πιο δύσκολα προβλήματα). 17
18 Κατάσταση κόσμου Η κατάσταση (state) του κόσμου είναι ένα στιγμιότυπο (instance) ή μια φωτογραφία (snapshot) του κόσμου σε μια δεδομένη χρονική στιγμή Η τυπική αναπαράσταση (περιγραφή) της κατάστασης γίνεται με περιγραφή των χαρακτηριστικών της Πρέπει να είναι επαρκής, δηλαδή οι ιδιότητες που θα αποτυπωθούν να επιλεχθούν με τέτοιο τρόπο ώστε διαφορετικές τιμές τους αντικατοπτρίζουν τις πραγματικές διαφορές των στιγμιοτύπων του κόσμου αφαίρεση, abstraction: αφαιρούνται από τη περιγραφή όλες οι ιδιότητες που δεν είναι σημαντικές για την επίλυση του προβλήματος S είναι το σύνολο όλων των έγκυρων (valid) καταστάσεων (χώρος καταστάσεων) 18
19 Λεκτικές Περιγραφές Αντικείμενα Ιδιότητες Σχέσεις Κύβος Α Κύβος Β Κύβος Γ Τραπέζι Τ Κύβος Α ελεύθερος Κύβος Γ ελεύθερος Τ έχει αρκετό ελεύθερο χώρο Κύβος Β δεν είναι ελεύθερος Κύβος Α πάνω στον Β Κύβος Β πάνω στο Τ Κύβος Γ πάνω στο Τ 19
20 Αρχική και τελική κατάσταση προβλήματος Αρχική κατάσταση Αντικείμενα Ιδιότητες Σχέσεις 3 ιεραπόστολοι 3 κανίβαλοι Βάρκα Αριστερή όχθη Δεξιά όχθη Τελική κατάσταση Αντικείμενα Ιδιότητες Σχέσεις 3 ιεραπόστολοι 3 κανίβαλοι Βάρκα Αριστερή όχθη Δεξιά όχθη Η βάρκα χωράει 2 άτομα Η βάρκα χωράει 2 άτομα Ιεραπόστολοι στην αριστερή όχθη Κανίβαλοι στη αριστερή όχθη Βάρκα στην αριστερή όχθη Ιεραπόστολοι στην δεξιά όχθη Κανίβαλοι στη δεξιά όχθη 20
21 Τελεστές / Ενέργειες Οι τελεστές καταστάσεων (operators) ή ενέργειες (actions) επιτρέπουν την μετάβαση από μία κατάσταση σε μια νέα. Το σύνολο των τελεστών σε ένα πρόβλημα ορίζεται ως Τ:S S, (remember S, το σύνολο όλων των έγκυρων καταστάσεων;). Παραδείγματα τελεστών για τον κόσμο των κύβων: Βάλε τον κύβο Α πάνω στον κύβο Γ. Βάλε τον κύβο Α πάνω στον κύβο Β. Βάλε τον κύβο Α πάνω στο τραπέζι Τ. Οι τελεστές μετάβασης μπορεί να περιέχουν μεταβλητές για να αποφευχθεί ο μεγάλος αριθμός τελεστών που προκύπτουν από όλους τους πιθανούς συνδυασμούς. Βάλε τον κύβο?χ πάνω στον κύβο?υ. Ένας τελεστής μπορεί να εφαρμοστεί σε μόνο ορισμένες καταστάσεις και να τις αλλάξει μέσω της αλλαγής της περιγραφής τους. 21
22 Προϋποθέσεις και Αποτελέσματα Για να είναι δυνατή η εφαρμογή ενός τελεστή σε μια κατάσταση του κόσμου συνήθως πρέπει να ισχύουν κάποιες προϋποθέσεις (preconditions) Για τον τελεστή «Βάλε τον κύβο Χ πάνω στον κύβο Υ» πρέπει ο Χ και ο Υ να είναι ελεύθεροι ο Χ να βρίσκεται πάνω σε κάποιο Ζ (τόσο οι κύβοι όσο και το τραπέζι Τ συμπεριλαμβάνονται στην μεταβλητή Ζ) ο Χ και ο Υ να είναι διαφορετικοί κύβοι Μετά την εφαρμογή ενός τελεστή, η νέα κατάσταση προκύπτει από τα αποτελέσματά του (results) Μετά την εφαρμογή του τελεστή «Βάλε τον κύβο Χ πάνω στον κύβο Υ» ο κύβος Χ βρίσκεται πάνω στον Υ ο Υ δεν είναι πλέον ελεύθερος ο Χ δεν είναι πάνω στο Ζ πλέον ο Ζ είναι ελεύθερος 22
23 Παράδειγμα Τελεστή Τελεστής Μετέφερε δύο ιεραπόστολους από την αριστερή όχθη στη δεξιά. Προϋποθέσεις Υπάρχουν τουλάχιστον 2 ιεραπόστολοι στην αριστερή όχθη. Η βάρκα είναι στην αριστερή όχθη. Ο αριθμός των ιεραπόστολων που θα προκύψει στην αριστερή όχθη να μην είναι μικρότερος από τον αριθμό των κανιβάλων ή να μην υπάρχει άλλος ιεραπόστολος στην αριστερή όχθη. Αποτελέσματα Ο αριθμός των ιεραπόστολων στην αριστερή όχθη μειώνεται κατά 2. Ο αριθμός των ιεραπόστολων στη δεξιά όχθη αυξάνεται κατά 2. Η βάρκα δεν είναι πλέον στην αριστερή όχθη. Η βάρκα είναι στη δεξιά όχθη. 23
24 Χώρος καταστάσεων Χώρος καταστάσεων (state space ή domain space) ονομάζεται το σύνολο όλων των έγκυρων καταστάσεων. Διαισθητικά, ο χώρος καταστάσεων μπορεί να απεικονιστεί με έναν γράφο όπου κόμβοι είναι οι καταστάσεις και ακμές οι τελεστές μετάβασης Τυπικά, ο χώρος καταστάσεων μπορεί να περιγραφεί σε κάποια κατάλληλη γλώσσα ή σύστημα, όπως για παράδειγμα τη λογική. 24
25 Τυπικός ορισμός προβλήματος & λύσης Ένα πρόβλημα (problem) ορίζεται ως η τετράδα P = (I, G, T, S) I είναι η αρχική κατάσταση, I S G είναι το σύνολο των τελικών καταστάσεων, G S T είναι το σύνολο των τελεστών, Τ:S S S είναι ο χώρος καταστάσεων Λύση (solution) σε ένα πρόβλημα (I, G, T, S) είναι μια ακολουθία από τελεστές μετάβασης: t 1, t 2,, t n T με την ιδιότητα g = t n ( (t 2 (t 1 (I))) ), όπου g G 25
26 Κατηγορίες προβλημάτων Τα προβλήματα μπορούν να κατηγοριοποιηθούν ανάλογα με την ερμηνεία που δίνεται στον όρο λύση: Σχεδιασμού ενεργειών (planning): τελική κατάσταση πλήρως γνωστή, επιδιώκεται η εύρεση μιας σειράς ενεργειών που την επιτυγχάνει (π.χ. πλοήγηση, στρατηγική, εφοδιαστική) Χρονοπρογραμματισμού (scheduling), ικανοποίησης περιορισμών (constraint satisfaction): γνωστές κάποιες ιδιότητες της τελικής κατάστασης, ζητούμενη η εύρεση ενός πλήρους στιγμιοτύπου (π.χ. ωρολόγιο πρόγραμμα, σταυρόλεξο) Διαμόρφωσης (configuration): γνωστές ιδιότητες της τελικής κατάστασης, ζητούμενο τόσο η πλήρης κατάσταση όσο και οι ενέργειες που οδήγησαν σε αυτήν (π.χ. συναρμολόγηση) Βελτιστοποίησης: η εύρεση οποιασδήποτε λύσης δεν είναι δύσκολη, αλλά ζητείται η βέλτιστη λύση (π.χ. πλανόδιος πωλητής) 26
27 Περιγραφή προβήματος Με χώρο καταστάσεων (state space) Με αναγωγή (reduction) 27
28 Περιγραφή προβλήματος με αναγωγή Βασική ιδέα είναι ότι μια ακολουθία από τελεστές ανάγουν την περιγραφή του προβλήματος σε υποπροβλήματα τα οποία είναι άμεσα επιλύσιμα και ονομάζονται αρχέγονα (primitive). Παράδειγμα: για να μεταφερθούν Ν δίσκοι (Ν>1) από τον στύλο 1 στον στύλο 3, πρέπει: Να μεταφερθούν οι Ν-1 μικρότεροι δίσκοι από τον 1 στον 2 Να μεταφερθεί ο μεγαλύτερος δίσκος από τον 1 στον 3 Να μεταφερθούν οι Ν-1 δίσκοι από τον 2 στον 3 28
29 Τυπικός ορισμός προβλήματος Ένα πρόβλημα (problem) ορίζεται ως η τετράδα P = (ID, GD, TR, PP) ID είναι η αρχική περιγραφή GD είναι ένα σύνολο από τελικές περιγραφές TR είναι ένα σύνολο τελεστών αναγωγής PP είναι ένα σύνολο από αρχέγονα προβλήματα 29
30 Χώρος Καταστάσεων VS Αναγωγή Υπάρχουν αντιστοιχίες μεταξύ των δύο τρόπων περιγραφής προβλημάτων. Γενικά τα προβλήματα μπορούν να αναπαρασταθούν με οποιονδήποτε από τους δύο τρόπους. Συνήθως στο κάθε πρόβλημα ταιριάζει καλύτερα ο ένας ή ο άλλος. Η PROLOG βασίζεται στην αναγωγή. 30
31 Ενδεικτική Βιβλιογραφία Ενότητα 2.1 (2.1.1 και 2.1.2) του βιβλίου «Τεχνητή Νοημοσύνη», Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας και Η. Σακελλαρίου. 31
Περιγραφή Προβλημάτων
Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι
Διαβάστε περισσότεραΚεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση
Κεφάλαιο 2 Περιγραφή Προβληµάτων και Αναζήτηση Λύσης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Περιγραφή Προβληµάτων ιαισθητικά: υπάρχει µία δεδοµένη
Διαβάστε περισσότεραΕπίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Διαβάστε περισσότεραΕπίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης
Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή
Διαβάστε περισσότεραΕπίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης.
Επίλυση Προβλημάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Τεχνητή Νοημοσύνη = Αναπαράσταση Γνώσης + Αλγόριθμοι Αναζήτησης Κατηγορίες Προβλημάτων Aναζήτησης Πραγματικά και
Διαβάστε περισσότεραΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ
ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΑΚΤΟΡΩΝ ΠΕΡΙΓΡΑΦΗ ΠΡΟΒΛΗΜΑΤΩΝ ΚΑΙ ΑΝΑΖΗΤΗΣΗ ΛΥΣΗΣ Καραγιώργου Σοφία Γενικά Περί Πρακτόρων Με το όρο πράκτορα
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Τυφλής Αναζήτησης Οι αλγόριθμοι τυφλής αναζήτησης εφαρμόζονται σε
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/
Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ικανοποίηση Περιορισμών Κατηγορία προβλημάτων στα οποία είναι γνωστές μερικές
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Ευριστικής Αναζήτησης Πολλές φορές η τυφλή αναζήτηση δεν επαρκεί
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Παίγνια Δύο Αντιπάλων Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναζήτηση Δοθέντος ενός προβλήματος με περιγραφή είτε στον χώρο καταστάσεων
Διαβάστε περισσότεραΕπίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων:
Επίλυση Προβληµάτων! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.! Χαρακτηριστικά αλγορίθµων: # Αποδοτικότητα (efficiency) σε µνήµηκαιχρόνο, # Πολυπλοκότητα (complexity), # Πληρότητα
Διαβάστε περισσότεραΕπίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ασάφεια (Fuzziness) Ποσοτικοποίηση της ποιοτικής πληροφορίας Οφείλεται κυρίως
Διαβάστε περισσότεραΚεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.
Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind
Διαβάστε περισσότεραΑσκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n
Διαβάστε περισσότεραΕπίλυση προβλημάτων με αναζήτηση
Επίλυση προβλημάτων με αναζήτηση Αναζήτηση σημαίνει την εύρεση μιας λύσης (τελικής κατάστασης) ενός προβλήματος διά της συνεχούς δημιουργίας (νέων) καταστάσεων με την εφαρμογή των διαθέσιμων ενεργειών
Διαβάστε περισσότεραΕ ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) κριτήρια νοηµοσύνης Καταβολές συνεισφορά
Διαβάστε περισσότεραΑλγόριθμοι Τυφλής Αναζήτησης
Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.
Διαβάστε περισσότεραΔομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 9 P vs NP 1 / 13 Δυσκολία επίλυσης υπολογιστικών προβλημάτων Κάποια προβλήματα είναι εύκολα να λυθούν με
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη Ι. Εργαστηριακή Άσκηση 4-6. Σγάρμπας Κυριάκος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων
Τεχνητή Νοημοσύνη Ι Εργαστηριακή Άσκηση 4-6 Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ
Διαβάστε περισσότεραΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ
ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ (ΜΕ ΒΑΣΗ ΤΟ ΚΕΦ. 6 ΤΟΥ ΒΙΒΛΙΟΥ «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΤΩΝ ΒΛΑΧΑΒΑ, ΚΕΦΑΛΑ, ΒΑΣΙΛΕΙΑ Η, ΚΟΚΚΟΡΑ & ΣΑΚΕΛΛΑΡΙΟΥ) Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Είναι γνωστές µερικές
Διαβάστε περισσότεραΕυφυείς Τεχνολογίες Πράκτορες
Ευφυείς Τεχνολογίες Πράκτορες Ενότητα 2: Αναπαράσταση Γνώσης και Επίλυση Προβλημάτων Δημοσθένης Σταμάτης mos@it.tith.gr www.it.tith.gr/~mos Μαθησιακοί Στόχοι της ενότητας 2 Πως ορίζεται ένα πρόβλημα στα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων
ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων Σύνοψη Στο κεφάλαιο αυτό θα παρουσιαστούν με παραδειγματικές περιπτώσεις οι θεμελιώδεις έννοιες για τον ορισμό ενός προβλήματος και η επίλυσή του μέσω αλγόριθμων αναζήτησης,
Διαβάστε περισσότεραΕπίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή
Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή επίλυση προβλημάτων μέσω αναζήτησης κάθε πρόβλημα το οποίο μπορεί να διατυπωθεί αυστηρά λύνεται μέσω αναζήτησης. Για τα περισσότερα ενδιαφέροντα προβλήματα
Διαβάστε περισσότεραΕπίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή
Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή επίλυση προβλημάτων μέσω αναζήτησης κάθε πρόβλημα το οποίο μπορεί να διατυπωθεί αυστηρά λύνεται μέσω αναζήτησης. Για τα περισσότερα ενδιαφέροντα προβλήματα
Διαβάστε περισσότεραΚεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.
Κεφάλαιο 6 Ικανοποίηση Περιορισµών Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Ικανοποίηση Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint
Διαβάστε περισσότεραΚεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση
Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων
Διαβάστε περισσότεραΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2014-2015 Πρώτη Σειρά Ασκήσεων (Υποχρεωτική, 25% του συνολικού βαθμού στο μάθημα) Ημερομηνία Ανακοίνωσης: 22/10/2014 Ημερομηνία Παράδοσης: Μέχρι 14/11/2014 23:59
Διαβάστε περισσότεραΕΠΛ 434: Λογικός Προγραμματισμός και Τεχνητή Νοημοσύνη
ΕΠΛ 434: Λογικός Προγραμματισμός και Τεχνητή Νοημοσύνη Επισκ. Λέκτορας Λοΐζος Μιχαήλ Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου (Χειμερινό Εξάμηνο 2008 2009) Εφαρμογή: Σχεδιασμός Δράσεως Σχεδιασμός Δράσεως:
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Εισαγωγή «Τεχνητή Νοημοσύνη (Artificial Intelligence) είναι ο τομέας της Επιστήμης
Διαβάστε περισσότεραΕφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.
Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,
Διαβάστε περισσότεραΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Επίλυση προβλημάτων με αναζήτηση Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2
Διαβάστε περισσότεραPROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΠΡΩΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης
Διαβάστε περισσότεραΕπίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναπαράσταση με Κανόνες Η γνώση αναπαρίσταται με τρόπο που πλησιάζει την ανθρώπινη
Διαβάστε περισσότεραΕπίλυση προβλημάτων με αναζήτηση
Επίλυση προβλημάτων με αναζήτηση Περιεχόμενα Μέθοδοι (πράκτορες) επίλυσης προβλημάτων Προβλήματα και Λύσεις Προβλήματα παιχνίδια Προβλήματα του πραγματικού κόσμου Αναζήτηση λύσεων Δέντρο αναζήτησης Στρατηγικές
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.
Διαβάστε περισσότεραΜαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων
Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Πέμπτη 27 Ιουνίου 2013 10:003:00 Έστω το πάζλ των οκτώ πλακιδίων (8-puzzle)
Διαβάστε περισσότεραΒ Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους
Page 1 of 15 ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Β Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2016-17 Οι ασκήσεις της ομάδας αυτής πρέπει
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αβεβαιότητα Με τον όρο αβεβαιότητα (uncertainty) εννοείται η έλλειψη ακριβούς
Διαβάστε περισσότεραPROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:
Διαβάστε περισσότεραΕισαγωγή στην έννοια του Αλγορίθμου και στον Προγραμματισμό
Εισαγωγή στην έννοια του Αλγορίθμου και στον Προγραμματισμό Η έννοια του προβλήματος Γενικά ως πρόβλημα θεωρούμε κάθε ζήτημα που τίθεται προς επίλυση, κάθε κατάσταση που μας απασχολεί και πρέπει να αντιμετωπιστεί.
Διαβάστε περισσότεραΘεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e
Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες
Διαβάστε περισσότεραΚλάσεις Πολυπλοκότητας
Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Παρασκευή 28 Σεπτεµβρίου 2007 ιάρκεια: 13:00-16:00
Διαβάστε περισσότεραΠροβλήματα, αλγόριθμοι, ψευδοκώδικας
Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι
Διαβάστε περισσότεραΠληροφοριακά Συστήματα & Περιβάλλον
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Πληροφοριακά Συστήματα & Περιβάλλον Ενότητα 9: Έμπειρα Συστήματα Παναγιώτης Λεφάκης Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης Το
Διαβάστε περισσότεραΑλγοριθμικές Τεχνικές
Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Αλγοριθμικές Τεχνικές 1 Τεχνικές Σχεδιασμού Αλγορίθμων Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και
Διαβάστε περισσότεραΘεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 4: Επίλυση προβλημάτων με αναζήτηση Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Διαβάστε περισσότεραΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ
ΣΤΡΑΤΙΩΤΙΚΗ ΣΧΟΛΗ ΕΥΕΛΠΙΔΩΝ Τμήμα Στρατιωτικών Επιστημών Ε Λ Λ ΒΕΛΤΙΣΤΗ Η Ν Ι Κ Η Δ ΚΑΤΑΝΟΜΗ Η Μ Ο Κ Ρ Α Τ ΠΟΡΩΝ Ι Α ΜΕ ΧΡΗΣΗ ΤΗΣ ΜΕΘΟΔΟΥ ΤΟΥ ΔΙΙΔΡΥΜΑΤΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΑΚΑΔΗΜΑΪΚΟΥ
Διαβάστε περισσότεραΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΔεδομένα Ζητούμενο Επίλυση Κατανόηση «περιβάλλον»
Η έννοια του προβλήματος Γενικά ως πρόβλημα θεωρούμε κάθε ζήτημα που τίθεται προς επίλυση, κάθε κατάσταση που μας απασχολεί και πρέπει να αντιμετωπιστεί. Τα προβλήματα που καλούμαστε να επιλύσουμε στο
Διαβάστε περισσότεραΛογικός Προγραμματισμός Ασκήσεις
Λογικός Προγραμματισμός Ασκήσεις Παναγιώτης Σταματόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα 1. Β Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2007-08... 3 1.1 Άσκηση 5...
Διαβάστε περισσότεραΤυπικός ορισμός και επίλυση προβλημάτων με την χρήση του search.py (Ιεραπόστολοι & Κανίβαλοι) Γαρμπής Γιώργος
Τυπικός ορισμός και επίλυση προβλημάτων με την χρήση του search.py (Ιεραπόστολοι & Κανίβαλοι) Γαρμπής Γιώργος ggarbis@di.uoa.gr 21 Νοεμβρίου 2011 Πως ορίζουμε τυπικά ένα πρόβλημα; Αρχική Κατάσταση: Από
Διαβάστε περισσότεραΕξελιγµένες Τεχνικές Σχεδιασµού
Κεφάλαιο 16 Εξελιγµένες Τεχνικές Σχεδιασµού Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Σχεδιασµός Βασισµένος σε Γράφους Γράφος σχεδιασµού (1/2) Ο
Διαβάστε περισσότεραΑλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων
Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 25 Ιουνίου 2003 ιάρκεια: 2 ώρες α) Σε ποια περίπτωση
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 1 Κεφάλαιο 1: Εισαγωγή στην έννοια του αλγορίθμου και στον Προγραμματισμό. Εισαγωγή στην έννοια του Αλγορίθμου και στον Προγραμματισμό
Εισαγωγή στην έννοια του Αλγορίθμου και στον Η έννοια του προβλήματος Γενικά ως πρόβλημα θεωρούμε κάθε ζήτημα που τίθεται προς επίλυση, κάθε κατάσταση που μας απασχολεί και πρέπει να αντιμετωπιστεί. Δεδομένα
Διαβάστε περισσότεραΥπολογιστικό Πρόβληµα
Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις
Διαβάστε περισσότεραΠεριεχόμενα. Ανάλυση προβλήματος. Δομή ακολουθίας. Δομή επιλογής. Δομή επανάληψης. Απαντήσεις. 1. Η έννοια πρόβλημα Επίλυση προβλημάτων...
Περιεχόμενα Ανάλυση προβλήματος 1. Η έννοια πρόβλημα...13 2. Επίλυση προβλημάτων...17 Δομή ακολουθίας 3. Βασικές έννοιες αλγορίθμων...27 4. Εισαγωγή στην ψευδογλώσσα...31 5. Οι πρώτοι μου αλγόριθμοι...54
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Προβλήματα Βελτιστοποίησης Περιγραφή προβλήματος με αρχική κατάσταση, τελική
Διαβάστε περισσότεραΤο πρόβληµα των ιεραποστόλων και κανιβάλων (missionaries and cannibals)
Το πρόβληµα των ιεραποστόλων και κανιβάλων (missionaries and cannibals) Αρχικά είναι όλοι στην αριστερή όχθη initial_state(state(left(3,3),right(0,0), boat_left)). Σκοπός είναι να µεταφερθούν όλοι µε ασφάλεια
Διαβάστε περισσότεραΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2010-2011 Πρώτη Σειρά Ασκήσεων (20% του συνολικού βαθμού στο μάθημα, Άριστα = 390 μονάδες) Ημερομηνία Ανακοίνωσης: 6/10/2010 Ημερομηνία Παράδοσης: 15/11/2010 σύμφωνα
Διαβάστε περισσότεραΑλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων
Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and
Διαβάστε περισσότερα1ο μέρος 1. Φτιάχνουμε την πίστα. Μια ενδεικτική πίστα φαίνεται παρακάτω:
1ο μέρος 1. Φτιάχνουμε την πίστα. Μια ενδεικτική πίστα φαίνεται παρακάτω: Εικόνα 1 Για να φτιάξουμε το τείχος επιλέγουμε καταρχήν την καρτέλα Γραφικά (κάτω δεξιά) και έπειτα το γεμάτο τετράγωνο από την
Διαβάστε περισσότεραΕπίλυση Προβληµάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.
Επίλυση Προβληµάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. Χαρακτηριστικά αλγορίθµων: Αποδοτικότητα (efficiency) σε µνήµη και χρόνο, Πολυπλοκότητα (complexity), Πληρότητα
Διαβάστε περισσότεραΕ ανάληψη. Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. συνεισφορά άλλων επιστηµών στην ΤΝ. 1956 σήµερα
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Καταβολές συνεισφορά άλλων επιστηµών στην ΤΝ Ιστορική αναδροµή 1956
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναπαράσταση Γνώσης Η περιγραφή ενός προβλήματος σε συνδυασμό με τους τελετές
Διαβάστε περισσότεραΑναδρομικοί Αλγόριθμοι
Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας
Διαβάστε περισσότεραΑλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία
Διαβάστε περισσότεραΣύνθεση διαδικτυακών υπηρεσιών με χρήση τεχνικών σχεδιασμού ενεργειών
Σύνθεση διαδικτυακών υπηρεσιών με χρήση τεχνικών σχεδιασμού ενεργειών Ουρανία Χατζή raniah@hua.gr Χαροκόπειο Πανεπιστήμιο 29 Νοεμβρίου 2007 Outline Web Service Overview Standards & Model Syntactic vs Semantic
Διαβάστε περισσότεραΠεριεχόμενα ΓΕΩΠΥΛΗ ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΚΕΝΤΡΙΚΟ SITE
Περιεχόμενα ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΔΡΟΜΗΣ... 2 Είσοδος στην εφαρμογή... 2 Λειτουργίες εφαρμογής υπολογισμού διαδρομής... 2 Πλοήγηση στο χάρτη... 3 Επιλογή Υποβάθρου... 4 Εύρεση Διαδρομής... 4 ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΔΡΟΜΗΣ
Διαβάστε περισσότεραΠεριεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΕπίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης
Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης! Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Ντετερµινιστικά
Διαβάστε περισσότεραΣχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και
Διαβάστε περισσότεραΣειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) ({ G η G είναι μια ασυμφραστική γραμματική που δεν παράγει καμιά λέξη με μήκος μικρότερο του 2 } (β) { Μ,w
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ Ιστότοπος Βιβλίου http://www.iep.edu.gr/ και «Νέα Βιβλία ΙΕΠ ΓΕΛ και ΕΠΑΛ» 2 ΠΕΡΙΕΧΟΜΕΝΑ
Διαβάστε περισσότεραΔομές Δεδομένων και Αλγόριθμοι. Λουκάς Γεωργιάδης
Δομές Δεδομένων και Αλγόριθμοι Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Στόχοι Μαθήματος Η σχεδίαση και ανάλυση αλγορίθμων και δομών δεδομένων αποτελεί σημαντικό τμήμα της πληροφορικής.
Διαβάστε περισσότεραΕθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Βελτιστοποίηση Μέρος b: Συμβατικές Μέθοδοι συνέχεια Σύνοψη προηγούμενου μαθήματος Στόχος βελτιστοποίησης: Εύρεση
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ 2008
Τετάρτη 25/6/2008 Σελ 1/8 Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ι Α Σ Π Ο Λ Υ Τ Ε Χ Ν Ι Κ Η Σ Χ Ο Λ Η Τ Μ Η Μ Α Μ Η Χ Α Ν Ι Κ Ω Ν Η Λ Ε Κ Τ Ρ Ο Ν Ι Κ Ω Ν Υ Π Ο Λ Ο Γ Ι Σ Τ Ω Ν, Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι
Διαβάστε περισσότερα4 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
4 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 4 4 η Άσκηση... 5 5 η Άσκηση... 6 6 η Άσκηση... 7 Χρηματοδότηση... 8 Σημείωμα Αναφοράς... 9 Σημείωμα
Διαβάστε περισσότεραΕπίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης
Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ
ÌïëëÜ Ì. Á μýô Á.Ì. : 5 moll@moll.r ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ (ΕΡΓΑΣΤΗΡΙΟ) Ε ΕΞΑΜΗΝΟ ΕΙΣΗΓΗΤΕΣ: Χαϊδόγιαννος Χαράλαμπος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ
Διαβάστε περισσότεραΠροβλήµατα. 1st International Olympiad in Informatics Held in Pravetz, Bulgaria May 16-19, 1989.
1989-1 η ιεθνής Ολυµπιάδα Πληροφορικής Προβλήµατα 1st International Olympiad in Informatics Held in Pravetz, Bulgaria May 16-19, 1989. Έξι Προβλήµατα Παρουσιάστηκαν στη διενέργεια της ΙΟΙ 89 ***PROBLEM
Διαβάστε περισσότεραΠεριεχόμενα. Ανάλυση προβλήματος. Δομή ακολουθίας. Δομή επιλογής. Δομή επανάληψης. Απαντήσεις. 1. Η έννοια πρόβλημα Επίλυση προβλημάτων...
Περιεχόμενα Ανάλυση προβλήματος 1. Η έννοια πρόβλημα...13 2. Επίλυση προβλημάτων...17 Δομή ακολουθίας 3. Βασικές έννοιες αλγορίθμων...27 4. Εισαγωγή στην ψευδογλώσσα...31 5. Οι πρώτοι μου αλγόριθμοι...54
Διαβάστε περισσότεραΑσκήσεις ανακεφαλαίωσης στο μάθημα Τεχνητή Νοημοσύνη
Ασκήσεις ανακεφαλαίωσης στο μάθημα Τεχνητή Νοημοσύνη Τμήμα Μηχανικών Πληροφορικής ΤΕ (ΤΕΙ Ηπείρου) Τυφλή αναζήτηση Δίνεται το ακόλουθο κατευθυνόμενο γράφημα 1. Ο κόμβος αφετηρία είναι ο Α και ο κόμβος
Διαβάστε περισσότεραΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΜΗΜΑ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: 05/01/2012 Θέμα 1 ο Α1) Να γράψετε στο τετράδιό σας τους αριθμούς 1 έως και 4 και δίπλα τα γράμματα Σ ή Λ, ανάλογα
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ ΕΠΛ 035 - ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΓΙΑ ΗΛΕΚΤΡΟΛΟΓΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΚΑΙ ΜΗΧΑΝΙΚΟΥΣ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδηµαϊκό έτος 2017-2018 Υπεύθυνος εργαστηρίου: Γεώργιος
Διαβάστε περισσότεραΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 16: Αναγωγές
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 16: Αναγωγές Τι θα κάνουμε σήμερα Το Πρόβλημα του Τερματισμού (4.2) Εισαγωγή στις Αναγωγές Ανεπίλυτα Προβλήματα από την Θεωρία των Γλωσσών (5.1) Απεικονιστικές
Διαβάστε περισσότεραΕθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση Μέρος b: Συμβατικές Μέθοδοι συνέχεια Σύνοψη προηγούμενου μαθήματος Στόχος βελτιστοποίησης:
Διαβάστε περισσότεραΑξιολόγηση Ευριστικών Αλγορίθµων
Προσεγγιστικοί Αλγόριθµοι Πολλές ϕορές η εύρεση της ϐέλτιστων λύσεων προβληµάτων ακέραιου γραµµικού προγραµµατισµού είναι µια χρονοβόρα διαδικασία (εκθετική πολυπλοκότητα) Προσεγγιστικοί Αλγόριθµοι Πολλές
Διαβάστε περισσότεραΠολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης
Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι
Διαβάστε περισσότεραΚεφάλαιο 1 : Ανάλυση προβλήματος
Ποια είναι η σχέση προβλήματος και υπολογιστή; 1.1 Η έννοια πρόβλημα Παραδείγματα προβλημάτων Κοινωνικά προβλήματα (ναρκωτικά, ανεργία, επιδημίες) Φυσικά φαινόμενα (σεισμοί, πλημμύρες, επιδημίες) Μέτρηση
Διαβάστε περισσότεραChess Academy Free Lessons Ακαδημία Σκάκι Δωρεάν Μαθήματα. Οι κινήσεις των κομματιών Σκοπός της παρτίδας, το Ματ Πατ Επιμέλεια: Γιάννης Κατσίρης
Οι κινήσεις των κομματιών Σκοπός της παρτίδας, το Ματ Πατ Επιμέλεια: Γιάννης Κατσίρης Παρατήρηση: Μόνο σε αυτό το μάθημα όταν λέμε κομμάτι εννοούμε κομμάτι ή πιόνι και όταν λέμε κομμάτια εννοούμε κομμάτια
Διαβάστε περισσότερα