Αλγόριθµοι Ευριστικής Αναζήτησης
|
|
- Φωτεινή Δαμασκηνός
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός υλοποιείται µε ευριστικήσυνάρτηση(heuristic function), που έχει πεδίο ορισµού το σύνολο των καταστάσεων ενός προβλήµατος και πεδίο τιµών το σύνολο τιµών που αντιστοιχεί σε αυτές.! Ευριστική τιµή (heuristic value) είναι η τιµή της ευριστικής συνάρτησης και εκφράζει το πόσο κοντά βρίσκεται µία κατάσταση σε µία τελική.! Η ευριστική τιµή δεν είναι η πραγµατική τιµή τηςαπόστασηςαπόµία τερµατική κατάσταση, αλλά µία εκτίµηση (estimate) που πολλές φορές µπορείναείναικαιλανθασµένη.
2 Ευριστικές Συναρτήσεις σε Μικρά Προβλήµατα (1/3) Ευριστικός µηχανισµός και συναρτήσεις σε λαβύρινθο! Ευκλείδειος απόσταση (Euclidian distance): d(s, F) = (X S - X F) (YS - YF )! Απόσταση Manhattan (Manhattan distance): Md(S,F) = XS -XF + YS -YF
3 Ευριστικές Συναρτήσεις σε Μικρά Προβλήµατα (2/3) Ευριστικός µηχανισµός και συναρτήσεις στο N-Puzzle! Πόσα πλακίδια βρίσκονται εκτός θέσης.! Το άθροισµα των αποστάσεων Manhattan κάθε πλακιδίου από την τελική του θέση.
4 Ευριστικές Συναρτήσεις σε Μικρά Προβλήµατα (3/3) Ευριστικός µηχανισµός και συναρτήσεις στο TSP! Η κοντινότερη πόλη έχει περισσότερες πιθανότητες να οδηγήσει σε µία καλή λύση.
5 Αναζήτηση µε Αναρρίχηση Λόφων Η αναρρίχηση λόφων (Hill-Climbing Search - HC) είναι ένας αλγόριθµος αναζήτησης που µοιάζει πολύ µε τονdfs. Ο αλγόριθµος HC 1.Η αρχική κατάσταση είναι η τρέχουσα κατάσταση. 2.Αν η κατάσταση είναι µία τελική τότε ανέφερε τη λύση και σταµάτησε. 3.Εφάρµοσε τους τελεστές µετάβασης για να βρεις τις καταστάσεις-παιδιά. 4.Βρες την καλύτερη κατάσταση σύµφωνα µε την ευριστική συνάρτηση. 5.Η καλύτερη κατάσταση γίνεται η τρέχουσα κατάσταση. 6.Πήγαινε στο βήµα 2.
6 Ο αλγόριθµος HC (Ψευδοκώδικας) algorithm hc(initialstate, FinalStates) begin Closed ; CurrentState InitialState; while CurrentState FinalStates do Children Expand(CurrentState); if Children= then exit; EvaluatedChildren Heuristic(Children); CurrentState best(evaluatedchildren); endwhile; end.
7 Ο αλγόριθµος HC Σχόλια (1/2)! Ο HC χρησιµοποιείται σε προβλήµατα όπου πρέπει να βρεθεί µία λύση πολύ γρήγορα, έστω και αν αυτή δεν είναι η καλύτερη, παίρνοντας όµως και το ρίσκο να µη βρεθείκαµία λύση, έστω και αν τέτοια υπάρχει.! Πλεονεκτήµατα: # Πολύ αποδοτικός και σε χρόνο και σε µνήµη,! Μειονεκτήµατα: # Είναι ατελής. # Βασικά προβλήµατα του HC: $ Πρόποδες (foothill). $ Οροπέδιο (plateau). $ Κορυφογραµµή (ridges).
8 Ο αλγόριθµος HC Σχόλια (2/2)! Βελτιώσεις: # Εξαναγκασµένη αναρρίχηση λόφου (Enforced Hill-Climbing - EHC) # Προσοµοιωµένη εξέλιξη (Simulated Annealing - SA) # Αναζήτηση µε απαγορευµένες καταστάσεις (Tabu Search - TS).
9 Ακτινωτή Αναζήτηση Στον αλγόριθµο ακτινωτής αναζήτησης (Beam Search - BS) δεν κλαδεύονται όλες οι υπόλοιπες καταστάσεις όπως στον HC, αλλά ένας σταθερός αριθµός από τις καλύτερες από αυτές κρατείται στο µέτωπο αναζήτησης.
10 Αναζήτηση Πρώτα στο Καλύτερο Οαλγόριθµος αναζήτηση πρώτα στο καλύτερο (Best-First -BestFS) κρατά όλες τις καταστάσεις στο µέτωπο αναζήτησης. Ο αλγόριθµος BestFS 1.Βάλε την αρχική κατάσταση στο µέτωπο αναζήτησης. 2.Αν το µέτωπο αναζήτησης είναι κενό τότε σταµάτησε. 3.Πάρε την πρώτη σε σειρά κατάσταση από το µέτωπο αναζήτησης. 4.Αν η κατάσταση είναι µέλος του κλειστού συνόλου τότε πήγαινε στο 2. 5.Αν η κατάσταση είναι µία τελική τότε ανέφερε τη λύση και σταµάτα. 6.Εφάρµοσε τους τελεστές µεταφοράς για να παράγεις τις καταστάσεις-παιδιά. 7.Εφάρµοσε την ευριστική συνάρτηση σε κάθε παιδί. 8.Βάλε τις καταστάσεις-παιδιά στο µέτωπο αναζήτησης. 9.Αναδιάταξε το µέτωπο αναζήτησης, έτσι ώστε η κατάσταση µε την καλύτερη ευριστική τιµή να είναι πρώτη. 10. Βάλε τη κατάσταση-γονέα στο κλειστό σύνολο. 11. Πήγαινε στο βήµα 2.
11 Ο αλγόριθµος BestFS (Ψευδοκώδικας) algorithm bestfs(initialstate, FinalStates) begin Closed ; EvaluatedInitialState Heuristic(<InitialState>) Frontier <EvaluatedInitialState>; CurrentState best(frontier); while CurrentState FinalStates do Frontier delete(currentstate,frontier); if CurrentState ClosedSet then begin Children Expand(CurrentState); EvaluatedChildren Heuristic(Children); Frontier Frontier ^ EvaluatedChildren; Closed Closed {CurrentState}; end; if Frontier= then exit; CurrentState best(frontier); endwhile; end.
12 Ο αλγόριθµος BestFS Σχόλια! Πλεονεκτήµατα: # Προσπαθεί να δώσει µια γρήγορη λύση σε κάποιο πρόβληµα. Το αν τα καταφέρει ή όχι εξαρτάται πολύ από τον ευριστικό µηχανισµό. # Είναι πλήρης.! Μειονεκτήµατα: # Το µέτωπο αναζήτησης µεγαλώνει µε υψηλόρυθµό καιµαζί του ο χώρος που χρειάζεται για την αποθήκευσή του, καθώς και ο χρόνος για την επεξεργασία των στοιχείων του. # εν εγγυάται ότι η λύση που θα βρεθεί είναι η βέλτιστη S F
13 Ο αλγόριθµος BestFS: το πρόβληµα του λαβύρινθου Μέτωπο Αναζήτησης Κλειστό Σύνολο Κατάσταση Παιδιά <5-5> <> ,5-67,4-57 <5-45,5-67,4-57> <5-5> ,6-44 <6-44,5-56,5-67,4-57> <5-5,5-4> ,6-33,7-43 <6-33,7-43,5-56,5-67,...> <5-5,5-4,6-4> ,6-23,7-32 <7-32,6-23,7-43,6-44,5-56,...> <5-5,5-4,...> ,6-44 <6-33,6-23,7-43,6-44,5-56,...> <...,6-3,...> 6-3 Βρόχος <6-23,7-43,6-44,5-56,5-67,...> <...> ,6-33 <7-43,6-44,5-25,...> <...> ,6-44,7-32 <7-32,7-54,6-44,5-25,...> <..,7-3,..> 7-3 Βρόχος <4-54,6-44,5-25,...> <...> ,8-53,7-65 <8-53,7-43,6-44,...> <...> ,7-54,9-52 <9-52,7-43,6-44,8-64,...> <...> ,9-41 <9-41,8-53,7-43,...> <...> ,9-52,10-42 <9-30,9-52,10-42,...> <...> 9-3 ΤΕΛΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΕΛΟΣ
14 Ο Αλγόριθµος Άλφα-Άστρο (Α*) Ο αλγόριθµος Α* (Άλφα Άστρο) είναι κατά βάσει BestFS, αλλά µε ευριστικήσυνάρτηση: F(S) = g(s) + h(s) η g(s) δίνει την απόσταση της S από την αρχική κατάσταση, ηοποίαείναιπραγµατική και γνωστή, και η h(s) δίνει την εκτίµηση της απόστασης της S από την τελική κατάσταση µέσω µιας ευριστικής συνάρτησης, όπως ακριβώς στον BestFS.
15 Ο Αλγόριθµος Άλφα-Άστρο (Α*) Σχόλια! Αν για κάθε κατάσταση η τιµή h(s) είναι µικρότερη ή το πολύ ίση µε τηνπραγµατική απόσταση της S από την τελική κατάσταση, τότε ο Α* βρίσκει πάντα τη βέλτιστη λύση. Στην περίπτωση αυτή, οευριστικόςµηχανισµός ονοµάζεται αποδεκτός (admissible) και ικανοποιεί το κριτήριο αποδοχής (admissibility criterion).! Βελτιώσεις: # Α* µε επαναληπτική εκβάθυνση (Iterative Deepening A* - IDA*)
16 Εφαρµογή των Αλγορίθµων Ευριστικής Αναζήτησης Χώρος Καταστάσεων στο 8-puzzle
17 Εφαρµογή αλγορίθµου BestFS
18 Αλγόριθµοι Αναζήτησης σε Παιχνίδια ύο Αντιπάλων! Σε ένα παιχνίδι δύο ατόµων το πρόβληµα ορίζεταιωςεξής: # Μια κατάσταση παριστάνει τη διάταξη των πιονιών σε κάποια χρονική στιγµή. # Ο χώρος καταστάσεων αποτελείται από όλες αυτές τις πιθανές επιτρεπτές καταστάσεις. # Οι τελεστές µετάβασης είναι οι επιτρεπτές κινήσεις που καθορίζονται από τους κανόνες του παιχνιδιού. Οι κανόνες του παιχνιδιού παίζουν και το ρόλο των προϋποθέσεων αυτών των τελεστών. # Οι τελικές καταστάσεις του παιχνιδιού έχουν γνωστά χαρακτηριστικά.! Οι κινήσεις δύο διαδοχικών επιπέδων ανήκουν σε διαφορετικό παίκτη, γιατί οι παίκτες παίζουν εναλλάξ. Το δένδρο που χτίζεται µε αυτόν τον τρόπο ονοµάζεται δένδρο του παιχνιδιού (game tree).
19 Ο Αλγόριθµος Minimax (1/3)! εδοµένης µίας κατάστασης του παιχνιδιού, οαλγόριθµος αναζήτησης µεγίστουελαχίστου (Minimax) καλείται να αποφασίσει ποια θα είναι η επόµενηκίνησήτου έναντι του αντιπάλου.! Το µέτρο της υπεροχής του ενός ή του άλλου αντιπάλου δίνεται από µία ευριστική συνάρτηση που καλείται συνάρτηση αξιολόγησης (evaluation function) και η οποία εφαρµόζεται στα φύλλα του δένδρου του παιχνιδιού. Αλγόριθµος 1.Εφάρµοσε τη συνάρτηση αξιολόγησης σε όλους τους κόµβους-φύλλα του δένδρου. 2.Εως ότου η ρίζα του δένδρου αποκτήσει τιµή, επανέλαβε: 3.Αρχίζοντας από τα φύλλα του δένδρου και προχωρώντας προς τη ρίζα, µετέφερε τις τιµές προς τους ενδιάµεσους κόµβους του δένδρου ως εξής: i.η τιµή κάθε κόµβου Max είναι η µέγιστη (maximum) των τιµών των κόµβων-παιδιών του. ii. Η τιµή κάθε κόµβου Min είναι η ελάχιστη (minimum) των τιµών των κόµβων-παιδιών του. 4.Καλύτερη κίνηση είναι η κίνηση που οδηγεί στον κόµβο που έδωσε την πιο συµφέρουσα στη ρίζα τιµή (µέγιστη για το Max, ελάχιστη για το Min).
20 Ο Αλγόριθµος Minimax (2/3)! Κατά σύµβαση, ο παίκτης που βρίσκεται στη ρίζα θεωρείται πως είναι ο Max. Οι καταστάσεις-φύλλα του δένδρου καλούνται και τερµατικές καταστάσεις (terminal states), οι οποίες όµως δεν είναι απαραίτητα τελικές καταστάσεις, απλά αποτελούν το όριο της αναζήτησης.
21 Ο Αλγόριθµος Minimax (3/3)
22 Εφαρµογή αλγορίθµου Minimax στο σκάκι! Το κύριο µέληµα τωνπρογραµµάτων σκάκι είναι να αναζητήσουν το δένδρο του παιχνιδιού σε όσο το δυνατόν µεγαλύτερο βάθος. Αν υπήρχε η δυνατότητα να φτάσουν µέχρι τις τελικές καταστάσεις του παιχνιδιού, τότε τα προγράµµαταθαήταν ανίκητα. Μία συνάρτηση αξιολόγησης στο σκάκι # Υπεροχή κοµµατιών: Κάθε κοµµάτιέχεικάποιααξία, π.χ. Βασιλιάς=10, Άλογο=5, Πιόνι=1 κλπ. Ηαξίαόλωντωνκοµµατιών κάθε χρώµατος προστίθεται. # Υπεροχή θέσης: Κάθε κοµµάτιπουβρίσκεταιστα4 κεντρικά τετράγωνα παίρνει επιπλέον 2 πόντους. # Απειλές: Για κάθε απειλή που προβάλει ένας παίκτης παίρνει 3 επιπλέον πόντους, εκτός αν απειλεί το βασιλιά του άλλου παίκτη, οπότε παίρνει 20 πόντους.
23
24 Ο Αλγόριθµος Alpha-Beta! Ο αλγόριθµος Άλφα-Βήτα (Alpha-Beta - ΑΒ) αποφεύγει την αναζήτηση καταστάσεων που ικανοποιούν ορισµένες συνθήκες.! Ο ΑΒείναιόµοιος µε τονminimax, αλλά µε κλάδεµα υποδένδρων, όπως κατά αντιστοιχία ο B&B µε τονdfs.! Το κλάδεµα πουκάνειοαβ, όπως άλλωστε και ο Β&Β, δεν είναι ευριστικό γιατί βασίζεται σε πραγµατικά νούµερα.
25 Σύγκριση του AB µε τον Minimax (1/2) Παράδειγµα Minimax Παράδειγµα Alpha-Beta
26 Σύγκριση του AB µε τον Minimax (2/2)! Κατά προσέγγιση ο ΑΒ εξετάζει N τερµατικούς κόµβους, όπου Ν είναιοιτερµατικοί κόµβοι που εξετάζει ο αλγόριθµος Minimax.! Η απόδοσή του βελτιώνεται µε διάφορεςµεθόδους, όπως: # Ευριστικό κλάδεµα του δένδρου παιχνιδιού. # υναµική αντί στατικής συνάρτησης αξιολόγησης. # Αποθήκευση τιµών των τερµατικών καταστάσεων (transposition tables). # Προκαθορισµένες κινήσεις (χωρίς αναζήτηση) σε αρχικές και τελικές φάσεις του παιγνιδιού (Openings, End Game moves).
27 Το Πρόβληµα του Ορίζοντα! Μειονεκτήµατα: # Το φαινόµενο του ορίζοντα (horizon effect). Αντιµετωπίζεται µε ανιχνευτές (scouts).
28 Ικανοποίηση Περιορισµών! Ένα πρόβληµα ικανοποίησης περιορισµών (constraint satisfaction problem) αποτελείται από: # Ένα σύνολο n µεταβλητών V 1,V 2,...,V n, # Ένα σύνολο n πεδίων τιµών D 1,...D n, που αντιστοιχούν σε κάθε µεταβλητή έτσι ώστε V i D i, και # Ένα σύνολο σχέσεων (περιορισµών) C 1,C 2,...C m όπου C i (V k,...,v m ) µια σχέση µεταξύ των µεταβλητών του προβλήµατος.! Ανάλογα µε τοπόσεςµεταβλητές περιλαµβάνει ένας περιορισµός χαρακτηρίζεται ως: # µοναδιαίος (unary) όταν περιλαµβάνει µια µεταβλητή, # δυαδικός (binary) όταν περιλαµβάνει δύο µεταβλητές ή # ανώτερης τάξης (higher order) όταν περιλαµβάνει περισσότερες.
29 Λύση Προβλήµατος Περιορισµών! Λύση αποτελεί µια ανάθεση τιµών στις µεταβλητές του προβλήµατος, τέτοια ώστε να ικανοποιούνται οι περιορισµοί, δηλαδή: Περιορισµοί που αφορούν τα πεδία των µεταβλητών Περιορισµοί του προβλήµατος V 1 =d 1,V 2 =d 2,... V n =d n d D 1 d 2 D 2... d i D n C 1 C 2... C m
30 Παράδειγµα Προβλήµατος Ικανοποίησης Περιορισµών! Έστωότιπρέπειναορισθείησειράµε την οποία θα εισαχθούν τα προϊόντα Α, Β, Γ, µέσα σε ένα βιοµηχανικό µύλο. Λόγω κάποιων παρασκευαστικών παραµέτρων του τελικού προϊόντος, το προϊόν Α πρέπει να εισαχθεί στο µύλο µετά από το, το Γ πριναπότοβ, καιτοβπριναπότοα. V Α V Β και V Α V Γ και V Α V έτσι ώστε να µην πάρουν V Β V Γ και V Β V και V Γ V δύο προϊόντα την ίδια σειρά V Α >V το προϊόν Α µετά από το V Γ <V Β το προϊόν Γ πριν από το Β V Β <V Α το προϊόν Β πριν από το Α! και το πρόβληµα έχει τις ακόλουθες τρεις δυνατές λύσεις: V Α =4,V Β =2,V Γ,=1,V =3 ηλαδή η σειρά είναι: Γ, Β,, Α V Α =4,V Β =3,V Γ,=1,V =2 ηλαδή η σειρά είναι: Γ,, Β, Α V Α =4,V Β =3,V Γ,=2,V =1 ηλαδή η σειρά είναι:, Γ, Β, Α
31 Παραγωγή και οκιµή! Η µέθοδος αποτελείται από µία γεννήτρια λύσεων και έναν ελεγκτή που ελέγχει αν οι λύσεις ικανοποιούν τους περιορισµούς.! Η µέθοδος παράγει διαδοχικά τις ακόλουθες λύσεις: V Α =1,V Β =1,V Γ,=1,V =1 V Α =1,V Β =1,V Γ,=1,V =2... V Α =4,V Β =4,V Γ,=4,V =4! Ο ελεγκτής ελέγχει τις παραγόµενες λύσεις απορρίπτοντας όσες δεν ικανοποιούν τους περιορισµούς.! Αν η γεννήτρια χρησιµοποιεί ως πληροφορία ότι το προϊόν Α παρασκευάζεται πάντα τελευταίο, παράγει µόνο τις λύσεις στις οποίες η τιµή τηςµεταβλητής V A είναι 4: V Α =4,V Β =1,V Γ,=1,V =1 V Α =4,V Β =2,V Γ,=1,V =1... V Α =4,V Β =4,V Γ,=4,V =4! Οι πιθανές λύσεις µειώνονται έτσι από 4 4 = 256 που ήταν στην προηγούµενη περίπτωση σε 4 3 = 64.! Οι αλγόριθµοι αυτοί αναφέρονται συνήθως ως αλγόριθµοι επιδιόρθωσης (repair algorithms).
32 Αναρρίχηση Λόφου (Hill-Climbing)! Αλγόριθµος επιδιόρθωσης HC: 1.Ανέθεσε στις µεταβλητές τυχαίες τιµές από τα πεδία τιµών τους. 2.Αν οι τιµές των µεταβλητών δεν παραβιάζουν τους περιορισµούς του προβλήµατος τότε επέστρεψε τις τιµές αυτές ως λύση. 3.Εξέτασε για κάθε µεταβλητή όλες τις δυνατές τιµές που µπορεί να πάρει. i.αν κάποια από τις τιµές που εξετάστηκαν ελαχιστοποιεί το πλήθος των περιορισµών που παραβιάζονται, ανέθεσε την τιµή της στην αντίστοιχη µεταβλητή και επέστρεψε στο βήµα 2. ii. Αν δε υπάρχει τιµή που να ελαχιστοποιεί το πλήθος των περιορισµών, τότε επέστρεψε στο βήµα 1(τοπικό ελάχιστο ο αλγόριθµος ξεκινά από µια νέα τυχαία ανάθεση τιµών).! Μειονεκτήµατα: # Εξετάζει ένα µεγάλο πλήθος "γειτονικών" καταστάσεωνπρινεπιλέξειτηνεπόµενη τιµήη οποία θα µεταβληθεί, και # Μπορεί να "πέσει" σε τοπικό ελάχιστο, δηλαδή µια κατάσταση στην οποία καµιά µεταβολή στις τιµές δε δίνει καλύτερη λύση..
33 Ευριστικός αλγόριθµος των ελαχίστων συγκρούσεων (min conflicts heuristic) 1. Ανέθεσε στις µεταβλητές τυχαίες τιµές από τα πεδία τιµών τους. 2. Αν οι τιµές των µεταβλητών δεν παραβιάζουν τους περιορισµούς του προβλήµατος τότε επέστρεψε τις τιµές αυτές ως λύση. 3. Εξέτασε για µια τυχαία µεταβλητή όλες τις δυνατές τιµές που µπορεί να πάρει. i.αν κάποια από τις τιµές για τη µεταβλητή που εξετάστηκαν µειώνει το πλήθος των περιορισµών που παραβιάζονται, ανέθεσε την τιµή της στη µεταβλητή. ii. Αν δεν υπάρχει τιµή που να µειώνει το πλήθος των περιορισµών που παραβιάζονται, τότε επέλεξε µια τιµή που να διατηρεί τον ίδιο αριθµό περιορισµών. iii. Αν δεν υπάρχει ούτε τέτοια τιµή, τότε άφησε την τιµή της εξεταζόµενης µεταβλητής. 4. Επέστρεψε στο βήµα 2.
34 Κλασσικοί Αλγόριθµοι Αναζήτησης! Οι αλγόριθµοι αναζήτησης που παρουσιάστηκαν σε προηγούµενες ενότητες είναι δυνατό να χρησιµοποιηθούν και για την επίλυση των προβληµάτων ικανοποίησης περιορισµών. Αλγόριθµοι Ελέγχου Συνέπειας! Ολοκληρωµένος αλγόριθµος επίλυσης: Για κάθε περιορισµό αφαίρεσε από τα πεδία τιµών των µεταβλητών τις τιµές εκείνες που δεν µπορούν να συµµετέχουν στην τελική λύση. Στο µειωµένο χώρο αναζήτησης που προκύπτει από το προηγούµενο βήµα εφάρµοσε έναν κλασσικό αλγόριθµο αναζήτησης για να βρεθεί η λύση. Σε κάθε βήµα (ανάθεση τιµής) αυτής της αναζήτησης εφάρµοσε ξανά τον αλγόριθµο ελέγχου συνέπειας έτσι ώστε να αφαιρεθούν τυχόν τιµές από τα πεδία των µεταβλητών οι οποίες δεν µπορούν να συµµετέχουν στην λύση.
35 Αλγόριθµοι Ελέγχου Συνέπειας Παράδειγµα (1/2) V Α V Β (C1) V Β V Γ (C4) V Α >V (C7) V Α V Γ (C2) V Β V (C5) V Γ <V Β (C8) V Α V (C3) V Γ V (C6) V Β <V Α (C9)! Τα πεδία τιµών των µεταβλητών: V Α {1,2,3,4} V Β {1,2,3,4} V Γ {1,2,3,4} V {1,2,3,4}! Λόγω C9 (V Β <V Α ), η µεταβλητή V Β δε µπορεί σε καµιά περίπτωση να πάρει την τιµή 4, αλλά ούτε και η V Α να πάρει την τιµή 1: V Α {2,3,4} V Β {1,2,3} V Γ {1,2,3,4} V {1,2,3,4}! Λόγω V Γ <V Β (C8), η V Γ δεν µπορεί να πάρει την τιµή 3 ούτε και την τιµή 4, ενώ η V Β δε µπορεί να πάρει την τιµή 1:
36 V Α {2,3,4} V Β {2,3} V Γ {1,2} V {1,2,3,4}! Λόγω V Α >V (C7) η V δεν µπορεί να πάρει την τιµή 4: V Α {2,3,4} V Β {2,3} V Γ {1,2} V {1,2,3}! Το πεδίο της V Β έχει µεταβληθεί, οπότε ο περιορισµός C9 πρέπει να επανεξεταστεί. Λόγω του V Β <V Α (C9) δεν µπορεί να υπάρχει η τιµή 2 στο πεδίο της V Α : V Α {3,4} V Β {2,3} V Γ {1,2} V {1,2,3}! Τώρα οι πιθανοί συνδυασµοί γίνονται =24, σε σχέση µε τους256 που υπήρχαν αρχικά.! Ο γράφος που προκύπτει ονοµάζεται γράφος περιορισµών (constraint graph).
37 Γράφος Περιορισµών Περιορισµοί: V Α >V V Γ <V Β V Β <V Α! Η παραπάνω διαδικασία είναι η βάση των αλγορίθµων ελέγχου συνέπειας (consistency check algorithms).! Οι αλγόριθµοι που εντάσσονται στην παραπάνω κατηγορία ονοµάζονται συνήθως αλγόριθµοι συνέπειας τόξου (Arc Consistency- AC).
38 Ο αλγόριθµος AC3! Έστω οι µεταβλητές V 1,V 2,..V n µετιµές d 1,d 2,,d n από τα πεδία τιµών των µεταβλητών D 1,D 2,,D n (d 1 D 1,d 2 D 2, d n D n) και ένα σύνολο περιορισµών C(V i,v j ) για τις µεταβλητές αυτές, οι οποίοι αναπαριστώνται ως τόξα (V i,v j ).! Για συντοµία, κάθε τόξο (V i,v j ) αναφέρεται ως (i,j). Επανέλαβε τα ακόλουθα βήµατα µέχρι το Q να γίνει κενό: 1.Επέλεξε ένα τόξο (i,j) και διέγραψε το από το Q 2.Για κάθε τιµή d i του πεδίου της µεταβλητής V i έλεγξε αν υπάρχει τουλάχιστον µία τιµή d j του πεδίου της µεταβλητής V j τέτοια ώστε να ικανοποιεί το περιορισµό C(V i,v j ) που αντιστοιχεί στο τοξο (i, j). 3.Αν δεν υπάρχει τέτοια τιµή d j τότε αφαίρεσε την τιµή d i από το πεδίο τιµών της V i. Αν το πεδίο τιµών της V i είναι κενό τότε τερµάτισε µε αποτυχία. 4.Αν έχει µεταβληθεί το πεδίο τιµών της V i τότε πρόσθεσε στο σύνολο Q όλα τα τόξα (k,i), που αντιστοιχούν στους περιορισµούς C(V k,v i ), για k i.
39 Ο αλγόριθµος AC3 Σχόλια! Χαρακτηριστικά του αλγορίθµου AC-3: # Προϋποθέτει ότι οι περιορισµοί αφορούν µόνο δύο µεταβλητές, είναι δηλαδή δυαδικοί περιορισµοί (binary constraints). # Οι µοναδιαίοι περιορισµοί που εµφανίζονται στα προβλήµατα περιορισµών αντιµετωπίζονται από τον αλγόριθµο ελέγχουσυνέπειαςκόµβου (node consistency). # Για να επιλυθεί ένα πρόβληµαπεριορισµών θα πρέπει να χρησιµοποιηθούν αλγόριθµοι ελέγχου συνέπειας τόξου σε συνδυασµό µε κάποιον αλγόριθµο αναζήτησης για να βρεθεί ητελικήλύση.! Βελτιώσεις: # Η αρχή της συντοµότερης αποτυχίας (first fail principle).
40 Παράδειγµα! Μετά την εφαρµογή των περιορισµών αποµένουν οι ακόλουθες τιµές στα πεδία των µεταβλητών:v Α {3,4},V Β {2,3},V Γ {1,2},V {1,2,3}
41 Κ-συνέπεια Ένας γράφος περιορισµών είναι Κ-συνεπής (K-consistent) εάν για κάθε Κ-1 µεταβλητές που ικανοποιούν τους περιορισµούς υπάρχει µια µεταβλητή Κ µε τέτοιο πεδίο ώστε να ικανοποιούνται ταυτόχρονα όλοι τους οι περιορισµοί που συνδέουν τις Κ µεταβλητές. Ένας γράφος είναι ισχυρά Κ-συνεπής (strongly K- consistent) εάν για κάθε L K, είναι L-συνεπής.! Σε ένα γράφο µε Νκόµβους, εάν εξασφαλισθεί ότι ο γράφος είναι ισχυρά Ν-συνεπής διαγράφονται όλες οι µη αποδεκτές τιµές από τα πεδία των µεταβλητών, όποτε η λύση µπορεί να βρεθεί χωρίς αναζήτηση.
42 Κ-συνέπεια Παράδειγµα! Συνθήκη µη απειλήςµεταξύ των βασιλισσών: # Όλες οι βασίλισσες πρέπει να είναι σε διαφορετική γραµµή: i, j: Q j Q i. # Ισχύουν οι περιορισµοί: Q j Q j+n +n για n>1 και n+j 8 Q j Q j+n -n για n>1 και n+j 8
43 Γραφική αναπαράσταση των περιορισµών (1/2) Ανάθεση τιµής στην πρώτη βασίλισσα Ανάθεση τιµών στις δύο πρώτες βασίλισσες
44 Γραφική αναπαράσταση των περιορισµών (2/2) Ανάθεση τιµών που δεν οδηγεί σε λύση Λύση στο πρόβληµα των8 βασιλισσών
Επίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Διαβάστε περισσότεραΚεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση
Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων
Διαβάστε περισσότεραΚεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.
Κεφάλαιο 6 Ικανοποίηση Περιορισµών Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Ικανοποίηση Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint
Διαβάστε περισσότεραΚεφάλαιο 4. Αλγόριθµοι Ευριστικής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.
Κεφάλαιο 4 Αλγόριθµοι Ευριστικής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Ευριστικής Αναζήτησης Εισαγωγικά (/2) Ο χώρος αναζήτησης
Διαβάστε περισσότεραΕπίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης
Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης! Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Ντετερµινιστικά
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Ευριστικής Αναζήτησης Πολλές φορές η τυφλή αναζήτηση δεν επαρκεί
Διαβάστε περισσότεραΑλγόριθµοι Ευριστικής Αναζήτησης
Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός
Διαβάστε περισσότεραΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ
ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ (ΜΕ ΒΑΣΗ ΤΟ ΚΕΦ. 6 ΤΟΥ ΒΙΒΛΙΟΥ «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΤΩΝ ΒΛΑΧΑΒΑ, ΚΕΦΑΛΑ, ΒΑΣΙΛΕΙΑ Η, ΚΟΚΚΟΡΑ & ΣΑΚΕΛΛΑΡΙΟΥ) Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Είναι γνωστές µερικές
Διαβάστε περισσότεραΕπίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης
Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής
Διαβάστε περισσότεραΕπίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Διαβάστε περισσότεραΑλγόριθμοι Ευρετικής Αναζήτησης
Τεχνητή Νοημοσύνη Αλγόριθμοι Ευρετικής Αναζήτησης Εισαγωγικά (/) 05 Αλγόριθμοι Ευρετικής Αναζήτησης (Heuristic Search Algorithms) Ο χώρος αναζήτησης συνήθως αυξάνεται εκθετικά. Απαιτείται πληροφορία για
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ικανοποίηση Περιορισμών Κατηγορία προβλημάτων στα οποία είναι γνωστές μερικές
Διαβάστε περισσότεραΕπίλυση Προβλημάτων. Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης. Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων
Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων
Διαβάστε περισσότεραΑλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων
Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται
Διαβάστε περισσότεραΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ
ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΛΥΣΗΣ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΒΕΛΤΙΣΤΗΣ ΛΥΣΗΣ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΛΥΣΗΣ ΣΕ ΠΑΙΓΝΙΑ ΔΥΟ ΑΝΤΙΠΑΛΩΝ Καραγιώργου
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Παίγνια Δύο Αντιπάλων Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται
Διαβάστε περισσότεραΚεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.
Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind
Διαβάστε περισσότεραΕπίλυση Προβληµάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.
Επίλυση Προβληµάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. Χαρακτηριστικά αλγορίθµων: Αποδοτικότητα (efficiency) σε µνήµη και χρόνο, Πολυπλοκότητα (complexity), Πληρότητα
Διαβάστε περισσότεραΚεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση
Κεφάλαιο 2 Περιγραφή Προβληµάτων και Αναζήτηση Λύσης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Περιγραφή Προβληµάτων ιαισθητικά: υπάρχει µία δεδοµένη
Διαβάστε περισσότεραΑλγόριθμοι Τυφλής Αναζήτησης
Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.
Διαβάστε περισσότεραΕπίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων:
Επίλυση Προβληµάτων! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.! Χαρακτηριστικά αλγορίθµων: # Αποδοτικότητα (efficiency) σε µνήµηκαιχρόνο, # Πολυπλοκότητα (complexity), # Πληρότητα
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναζήτηση Δοθέντος ενός προβλήματος με περιγραφή είτε στον χώρο καταστάσεων
Διαβάστε περισσότεραΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ
ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ Μια αυστηρά καθορισµένη ακολουθία ενεργειών µε σκοπό τη λύση ενός προβλήµατος. Χαρακτηριστικά οθέν πρόβληµα: P= Επιλυθέν πρόβληµα: P s
Διαβάστε περισσότεραΕπίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Διαβάστε περισσότεραΕπίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης
Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 3η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Διαβάστε περισσότεραΕπίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης.
Επίλυση Προβλημάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Τεχνητή Νοημοσύνη = Αναπαράσταση Γνώσης + Αλγόριθμοι Αναζήτησης Κατηγορίες Προβλημάτων Aναζήτησης Πραγματικά και
Διαβάστε περισσότεραΠανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Διαχείριση Έργων Πληροφορικής Ικανοποίηση Περιορισμών (Constraint Satisfaction)
Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Διαχείριση Έργων Πληροφορικής Ικανοποίηση Περιορισμών (Constraint Satisfaction) Ηλίας Σακελλαρίου Δομή Περιορισμοί Προβλήματα ικανοποίησης περιορισμών
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Πέμπτη 27 Ιουνίου 2013 10:003:00 Έστω το πάζλ των οκτώ πλακιδίων (8-puzzle)
Διαβάστε περισσότεραΕπίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Διαβάστε περισσότεραΕφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.
Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,
Διαβάστε περισσότεραΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 3: Αλγόριθμοι πληροφορημένης αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 3: Αλγόριθμοι πληροφορημένης αναζήτησης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Διαβάστε περισσότεραΘεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 8: Αναζήτηση με Αντιπαλότητα Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Αναζήτηση
Διαβάστε περισσότεραΕπίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή
Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή επίλυση προβλημάτων μέσω αναζήτησης κάθε πρόβλημα το οποίο μπορεί να διατυπωθεί αυστηρά λύνεται μέσω αναζήτησης. Για τα περισσότερα ενδιαφέροντα προβλήματα
Διαβάστε περισσότεραΠρόβληµα ικανοποίησης περιορισµών
Προβλήµατα ικανοποίησης περιορισµών Constraint Satisfaction Problems Πρόβληµα ικανοποίησης περιορισµών Μεταβλητές: X 1, X 2,, X n, Πεδία ορισµού: D 1, D 2, D n Περιορισµοί: C 1, C 2,, C m Ανάθεση τιµών:
Διαβάστε περισσότεραΕ ανάληψη. Α ληροφόρητη αναζήτηση
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Τυφλής Αναζήτησης Οι αλγόριθμοι τυφλής αναζήτησης εφαρμόζονται σε
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 17 Φεβρουαρίου 2004 ιάρκεια: 2 ώρες (15:00-17:00)
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.
Διαβάστε περισσότεραΕ ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ε αναλαµβανόµενες καταστάσεις µέθοδοι αποφυγής Αναζήτηση µε µερική
Διαβάστε περισσότεραΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2014-2015 Τεχνητή Νοημοσύνη Πληροφορημένη αναζήτηση και εξερεύνηση Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/
Διαβάστε περισσότεραΕ ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 20 Ιανουαρίου 2005 ιάρκεια: 3 ώρες (15:00-18:00)
Διαβάστε περισσότεραΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορας ε ίλυσης ροβληµάτων πράκτορας µε στόχο Αναζήτηση διατύπωση
Διαβάστε περισσότεραΠληροφορηµένη αναζήτηση και εξερεύνηση
Πληροφορηµένη αναζήτηση και εξερεύνηση Στρατηγικές πληροφορηµένης αναζήτησης Πληροφορηµένη αναζήτηση (informed search) Συνάρτηση αξιολόγησης (evaluation function), f(n) Προτιµώνται οι µικρότερες τιµές
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 3: Αναζήτηση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 3: Αναζήτηση Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης
Διαβάστε περισσότεραΕπίλυση προβλημάτων με αναζήτηση
Επίλυση προβλημάτων με αναζήτηση Περιεχόμενα Μέθοδοι (πράκτορες) επίλυσης προβλημάτων Προβλήματα και Λύσεις Προβλήματα παιχνίδια Προβλήματα του πραγματικού κόσμου Αναζήτηση λύσεων Δέντρο αναζήτησης Στρατηγικές
Διαβάστε περισσότεραΕ..Ε. ΙI ΑΠΑΓΟΡΕΥΜΕΝΗΕΡΕΥΝΑ TABU SEARCH ΧΡΗΣΤΟΣ. ΤΑΡΑΝΤΙΛΗΣ MANAGEMENT SCIENCE IN PRACTICE II
ΑΠΑΓΟΡΕΥΜΕΝΗΕΡΕΥΝΑ TABU SEARCH ΧΡΗΣΤΟΣ. ΤΑΡΑΝΤΙΛΗΣ ΑΠΑΓΟΡΕΥΜΕΝΗ ΕΡΕΥΝΑ TABU SEARCH ΛΟΓΙΚΗ ΑΠΑΓΟΡΕΥΜΕΝΗΣ ΈΡΕΥΝΑΣ: Όταν ο άνθρωπος επιχειρεί να λύσει προβλήµατα, χρησιµοποιεί την εµπειρία του και τη µνήµη
Διαβάστε περισσότεραΤσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά
Τσάπελη Φανή ΑΜ: 243113 Ενισχυτική Μάθηση για το παιχνίδι dots Τελική Αναφορά Περιγραφή του παιχνιδιού Το παιχνίδι dots παίζεται με δύο παίχτες. Έχουμε έναν πίνακα 4x4 με τελείες, και σκοπός του κάθε παίχτη
Διαβάστε περισσότεραΘεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e
Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες
Διαβάστε περισσότεραΑσκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 5η διάλεξη (2017-18) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Διαβάστε περισσότερα(50 μον.) πάντοτε Διατυπώστε
ΑΣΚΗΣΗ 1 Α. (50 μον.) Σας δίνεται ο ακόλουθος γράφος, το οποίο πρέπει να χρωματίσετε χρησιμοποιώντας 3 χρώματα (R,G,B), ώστε δύο γειτονικές κορυφές να μην έχουν το ίδιο χρώμα. Θεωρείστε ότι ο χρωματισμός
Διαβάστε περισσότεραΛυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007
Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό
Διαβάστε περισσότεραΑλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Παρασκευή 28 Σεπτεµβρίου 2007 ιάρκεια: 13:00-16:00
Διαβάστε περισσότεραΑλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.
Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά
Διαβάστε περισσότεραΘεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 5: Πληροφορημένη Αναζήτηση και Εξερεύνηση Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Διαβάστε περισσότεραΕ ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) κριτήρια νοηµοσύνης Καταβολές συνεισφορά
Διαβάστε περισσότεραΠεριγραφή Προβλημάτων
Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι
Διαβάστε περισσότερακαθ. Βασίλης Μάγκλαρης
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ενισχυτική Μάθηση - Δυναμικός Προγραμματισμός: 1. Markov Decision Processes 2. Bellman s Optimality Criterion 3. Αλγόριθμος
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΕΡΓΑΣΤΗΡΙΟ 3
Version 1.0 (16/03/2017) Σχολή Τεχνολογικών Εφαρμογών (ΣΤΕΦ) Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Διδάσκων: Γκόγκος Χρήστος Μάθημα: Τεχνητή Νοημοσύνη (εργαστήριο Δ εξαμήνου) Ακαδημαϊκό έτος 2016-2017 εαρινό
Διαβάστε περισσότεραΑναζήτηση (Search) συνέχεια. Τµήµα Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς
Αναζήτηση (Search) συνέχεια 1 Ευριστικοί Αλγόριθµοι Αναζήτησης n Ευριστικοί Μηχανισµοί (Heuristics) n Αναζήτηση Πρώτα στο Καλύτερο (Best-First Search) n Αλγόριθµος Α* n Ιδιότητες Ευριστικών Συναρτήσεων
Διαβάστε περισσότεραΘεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 6: Αλγόριθμοι Τοπικής Αναζήτησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Διαβάστε περισσότεραΕνδεικτικές Λύσεις 1ου Σετ Ασκήσεων
Κ Σ Ι Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων Παναγιώτα Παναγοπούλου Άσκηση 1. Υποθέστε ότι οι διεργασίες ενός σύγχρονου κατανεμημένου συστήματος έχουν μοναδικές ταυτότητες (UIDs), γνωρίζουν ότι είναι συνδεδεμένες
Διαβάστε περισσότεραΧρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 24 Ιουνίου 2004
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙ ΜΑΚΕ ΝΙΑΣ ΙΚΝΜΙΚΩΝ ΚΑΙ ΚΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΣΜΕΝΗΣ ΠΛΗΡΦΡΙΚΗΣ ΤΕΝΗΤΗ ΝΗΜΣΥΝΗ Τελικές εξετάσεις 24 Ιουνίου 2004 ιάρκεια: 3 ώρες α) Αναφέρετε τη σειρά µε την
Διαβάστε περισσότεραΔιάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
Διαβάστε περισσότεραΜοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/
Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΘΕΜΑ 1 ο (3 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Τρίτη 26 Ιουνίου 2007 ιάρκεια: 13:00-16:00 ίνεται ο
Διαβάστε περισσότεραΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING)
ΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING) ΧΡΗΣΤΟΣ. ΤΑΡΑΝΤΙΛΗΣ ΚΛΑΣΙΚΟΙ ΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ Κλασικοί Ευρετικοί Classical Heuristics Κατασκευαστικοί Ευρετικοί Αλγόριθµοι
Διαβάστε περισσότεραΠΛΗ 405 Τεχνητή Νοηµοσύνη 2007. Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών ορισµός και χαρακτηριστικά
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και
Διαβάστε περισσότεραΚεφάλαιο 5ο: Εντολές Επανάληψης
Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες
Διαβάστε περισσότεραΕπίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή
Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή επίλυση προβλημάτων μέσω αναζήτησης κάθε πρόβλημα το οποίο μπορεί να διατυπωθεί αυστηρά λύνεται μέσω αναζήτησης. Για τα περισσότερα ενδιαφέροντα προβλήματα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 25 Ιουνίου 2003 ιάρκεια: 2 ώρες α) Σε ποια περίπτωση
Διαβάστε περισσότεραΤα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο
Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων
Διαβάστε περισσότεραΚατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1
Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών
Διαβάστε περισσότεραΕπίλυση Προβληµάτων µε Greedy Αλγόριθµους
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης
Διαβάστε περισσότεραΜαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων
Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται
Διαβάστε περισσότεραΑσκήσεις μελέτης της 6 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,
Διαβάστε περισσότεραΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Αλγόριθμοι Τοπικής Αναζήτησης στον Προγραμματισμό με Περιορισμούς Γεώργιος Καστρίνης
Διαβάστε περισσότεραΔιάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231
Διαβάστε περισσότερα[ΠΛΗ 417] Τεχνητή Νοημοσύνη. Project Εξαμήνου ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ
[ΠΛΗ 417] Τεχνητή Νοημοσύνη Project Εξαμήνου Γεωργαρά Αθηνά (A.M. 2011030065) ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2015-2016 Στη εργασία εξαμήνου αυτή
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ ΕΠΛ 035 - ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΓΙΑ ΗΛΕΚΤΡΟΛΟΓΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΚΑΙ ΜΗΧΑΝΙΚΟΥΣ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδηµαϊκό έτος 2017-2018 Υπεύθυνος εργαστηρίου: Γεώργιος
Διαβάστε περισσότεραPROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:
Διαβάστε περισσότεραΠληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Διαβάστε περισσότεραΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ The Tabu Search Algorithm Glover, F. (1986). Future paths for integer programming and links to artificial
Διαβάστε περισσότεραΟ Αλγόριθµος της Simplex
Βήµατα Αλγορίθµου Τα ϐήµατα του αλγορίθµου συνοψίζονται σε ϐήµατα. Βήµατα Αλγορίθµου Τα ϐήµατα του αλγορίθµου συνοψίζονται σε ϐήµατα. Αρχικοποίηση : Επέλεξε έναν αντιστρέψιµο πίνακα B (m m) έτσι ώστε x
Διαβάστε περισσότεραΔιαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη Ι. Εργαστηριακή Άσκηση 4-6. Σγάρμπας Κυριάκος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων
Τεχνητή Νοημοσύνη Ι Εργαστηριακή Άσκηση 4-6 Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ
Διαβάστε περισσότεραΓενικευµένη Simplex Γενικευµένη Simplex
Πρόβληµα cutting stock Λογικά µεγέθη (20 περιορισµοί, 24000 µεταβλητές) Πρόβληµα cutting stock Λογικά µεγέθη (20 περιορισµοί, 24000 µεταβλητές) Μεγάλα µεγέθη (30 περιορισµοί, 190000 µεταβλητές) Πρόβληµα
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 11:00-14:00
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις ευτέρα 9 Ιουνίου 2008 :00-4:00 ΘΕΜΑ ο (4 µονάδες) [The Towers of Hanoi]
Διαβάστε περισσότερα===========================================================================
=========================================================================== Α. (50 µον.) Σας δίνεται ο ακόλουθος γράφος, το οποίο πρέπει να χρωµατίσετε χρησιµοποιώντας 4 χρώµατα (R,G,B,Υ), ώστε δύο γειτονικές
Διαβάστε περισσότεραΠΕΙΡΑΜΑΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΥΡΙΣΤΙΚΩΝ ΜΕΘΟ ΩΝ ΜΕ ΤΗ ΜΟΝΑ ΙΑΙΑ ΣΥΝΕΠΕΙΑ ΤΟΞΟΥ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΕΙΡΑΜΑΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΥΡΙΣΤΙΚΩΝ ΜΕΘΟ ΩΝ ΜΕ ΤΗ ΜΟΝΑ ΙΑΙΑ ΣΥΝΕΠΕΙΑ ΤΟΞΟΥ ιπλωµατική Εργασία του Καριπίδη Κωνσταντίνου
Διαβάστε περισσότεραΠροβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο. Δίκτυα Ροής Ελάχιστου Κόστους (Minimum Cost Flow Networks)
Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο Ορισμοί Παραδείγματα Δικτυακή Simplex (προβλήματα με και χωρίς φραγμούς). Δίκτυα Ροής Ελάχιστου Κόστους (Minimum ost Flow Networks) Ένα δίκτυο μεταφόρτωσης αποτελείται
Διαβάστε περισσότεραΕ ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Παιχνίδια Ατελούς Πληροφόρησης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Παιχνίδια παιχνίδια ως αναζήτηση Βέλτιστες στρατηγικές
Διαβάστε περισσότεραmin f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
Διαβάστε περισσότερα