Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς"

Transcript

1 για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 12. Εφαρμογές Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras This work is made available under the terms of the Creative Commons Attribution-Noncommercial- NoDerivs 3.0 license,

2 "Σωστή παρατήρηση, είπε ο Τρερλ. Θα πρέπει να βρούμε μια λύση... το κυριότερο όμως, φυσικά, είναι ο αλγόριθμος. Και ένα μωρό παιδί το ξέρει αυτό! Τι είναι ένα ζώο χωρίς αλγόριθμο;" 'Κυβεριάδα', Στανισλάβ Λεμ

3 Βασική Στατιστική I. Μια συλλογή n αριθμητικών δεδομένων χαρακτηρίζεται συνήθως από δύο μεγέθη: τον αριθμητικό μέσο όρο και την τυπική απόκλιση. Ο πρώτος δίνεται από τον πολύ γνωστό τύπο: x = i=1 n n xi Η τυπική απόκλιση είναι η τετραγωνική ρίζα της διακύμανσης s 2 των τιμών από τον μέσο όρο: s 2 = i=1 n x i x n 1 ή αλλιώς: s = x i x 2 i n n 1 Η τυπική απόκλιση έχει την ιδιότητα ότι το 68% των τιμών θα βρίσκεται στο διάστημα ± s, το 95% στο ±2s και το 98% στο ±3s. 2

4 Βασική Στατιστική module stat_tools implicit none II. type exp_data real(8),allocatable :: x(:) real(8),allocatable :: y(:) end type exp_data type stats real(8)::stdev real(8)::x_ real(8)::variance end type stats contains

5 Βασική Στατιστική pure function normal_prob(x1, x2, step) result(g) real,intent(in) :: x1, x2, step type(exp_data) :: g! τοπικές μεταβλητές: real, parameter :: pi = 4 * atan(1.) integer :: i real :: y0 allocate(g%x(nint(1 + (x2 - x1) / step))) g%y = g%x! Allocation F03 y0 = 1 / sqrt(2 * pi) do i = 1, size(g%x) g%x(i) = x1 + (i - 1) * step g%y(i) = y0 * exp(-g%x(i)**2 / 2) end do end function normal_prob III. φ x = 1 2π e x2 2

6 Βασική Στατιστική pure subroutine statistics(sample, test) type(exp_data), intent(in) :: sample type(stats), intent(out):: test IV.! τοπικές μεταβλητές: real(8) :: sumx, sumx2 real(8) :: nr nr = real(size(sample%y),8) sumx = sum (sample%y) sumx2 = sum (sample%y**2) test%x_ = sumx / nr test%variance= (sumx2 - sumx**2 / nr)/(nr - 1) test%stdev = sqrt(test%variance) end subroutine statistics end module stat_tools

7 Βασική Στατιστική program average use stat_tools implicit none average = variance = E-01 standard deviation= V.! δηλώσεις: type(exp_data):: sample type(stats) :: results character(40) :: w_form! αρχή: write(w_form,*)'(a20,1x,g15.8)' sample = normal_prob(x1=-3.0, x2=3.0, step=0.3) call statistics(sample, results) print w_form,'average =', results%x_ print w_form,'variance =', results%variance print w_form,'standard deviation=', results%stdev end program average

8 Η μέθοδος των ελαχίστων τετραγώνων Ι. Έστω n ζεύγη πειραματικών τιμών (x, y) που υποθέτουμε ότι συνδέονται με μια γραμμική σχέση: y = a x + b Μπορούμε να υπολογίσουμε την βέλτιστη ευθεία με την βοήθεια της μεθόδου των ελαχίστων τετραγώνων (μέθοδος γραμμικής παλινδρόμησης). Η κλίση της βέλτιστης ευθείας δίνεται από την σχέση: a = της από τη σχέση: b = y a x x i y i y x i x i 2 x x i Το τυπικό σφάλμα υπολογίζεται από την σχέση: s2 y, x = y i 2 b y i a x i y i n 2 και η τομή και έχει ιδιότητες παρόμοιες με την τυπική απόκλιση. Δηλαδή, το 68%, 95% και 99.7% των μετρήσεων θα περιέχονται στα διαστήματα ± s y, x, ±2s y, x και ±3s y, x αντίστοιχα. Τέλος ένα ποσοτικό μέτρο της εφαρμοσιμότητας του γραμμικού μοντέλου στις μετρήσεις μας δίνεται από τον συντελεστή συσχέτισης: n x i x i y i R = n x 2 i x 2 i n y 2 i y 2 i Όταν το R = 1 όλα τα σημεία είναι επάνω στην ευθεία, ενώ όταν το R = 0 τα σημεία δεν συσχετίζονται με την ευθεία.

9 Η μέθοδος των ελαχίστων τετραγώνων ΙI. module least_squares private Τα Πάντα Όλα type lsquared real,allocatable::x(:)! τιμές ανεξάρτητης μεταβλητής real,allocatable::y(:)! τιμές εξαρτημένης μεταβλητής real ::a! κλίση της ευθείας real ::b! τομή της ευθείας real ::s_err! τυπικό σφάλμα real ::r! συντελεστής συσχέτισης character(40) ::filename! όνομα αρχείου δεδομένων end type lsquared public:: lsquared, read_in, l_squares contains

10 Η μέθοδος των ελαχίστων τετραγώνων ΙII. subroutine read_in(line)! Διαβάζει τις τιμές από το αρχείο type(lsquared):: line integer :: ioerr, i, n = 0 real :: a; character(80):: msg open (10, file = line%filename) do read(10, *, iostat = ioerr, iomsg = msg) a if (ioerr /= 0) then print *, msg; exit else n = n + 1! Προσδιορίζω το πλήθος των τιμών end if end do rewind (10) allocate(line%x(n), line%y(n)) do i = 1, n! Διαβάζω τις τιμές read(10,*) line%x(i), line%y(i) end do close (10) end subroutine read_in

11 Η μέθοδος των ελαχίστων τετραγώνων ΙV. subroutine l_squares(line)! εικονικές μεταβλητές: type(lsquared):: line! τοπικές μεταβλητές: real:: ni, sx, sy, x_, y_, sx2, sy2, sxy! υπολογισμοί όρων ni = real(size(line%x)) sx = sum(line%x)!άθροισμα x(i) sy = sum(line%y)!άθροισμα y(i) x_ = sx/ni!μέσος όρος x(i) y_ = sy/ni!μέσος όρος y(i) sx2 = sum(line%x * line%x)!άθροισμα x(i)**2 sy2 = sum(line%y * line%y)!άθροισμα y(i)**2 sxy = sum(line%x * line%y)!άθροισμα x(i)*y(i)

12 Η μέθοδος των ελαχίστων τετραγώνων V.! υπολογισμός y=a*x+b line%a = (sxy - sx * y_) / (sx2 sx * x_) line%b = y_- line%a * x_!κλίση!τομή! υπολογισμός τυπικού σφάλματος line%s_err = sqrt( (sy2 - line%b * sy & & - line%a * sxy) / (ni-2.) )! υπολογισμός συντελεστή συσχέτισης line%r = (ni * sxy sx * sy) / & & sqrt( (ni * sx2 - sx**2) * & & (ni * sy2 - sy**2) ) end subroutine l_squares end module least_squares

13 Η μέθοδος των ελαχίστων τετραγώνων VI. program linear!ελάχιστα τετράγωνα use least_squares implicit none! δηλώσεις: type(lsquared):: line; character(40) :: w_form! αρχή: write (w_form,*) '(a10,x,f8.6)' line%filename = 'data.dat' call read_in(line) call l_squares(line)!διαβάζω τα x, y!υπολογίζω print w_form,'slope =', line%a print w_form,'intercept=', line%b print w_form,'st_error =', line%s_err print w_form,'r =', line%r end program linear

14 Η μέθοδος των ελαχίστων τετραγώνων VII. End of file slope = intercept= st_error = r = Y X

15 Μη γραμμικές εξισώσεις Γραμμική εξίσωση: Οτιδήποτε άλλο (π.χ. πολυώνυμο, τριγωνομετρική, λογαριθμική, εκθετική κ.λ.) είναι μη γραμμική εξίσωση Ρίζα της εξίσωσης είναι η τιμή του x για την οποία f x = 0 Στην πλειοψηφία των περιπτώσεων η επίλυση είναι πρακτικά εφικτή μόνο με τη χρήση επαναληπτικών μεθόδων ξεκινώντας από μια καλή αρχική πρόβλεψη της λύσης Σε αυτή την περίπτωση το αποτέλεσμα εξαρτάται από την αρχική πρόβλεψη Επικουρικά μπορεί κανείς να χρησιμοποιήσει την γραφική αναπαράσταση της συνάρτησης για να προσδιορίσει χονδρικά τη ρίζα. f x = ax + b X A X r f(x) f(x B ) f(x A ) Παρατηρείτε από το σχήμα ότι μόνο η πράσινη συνάρτηση έχει ρίζα. Δηλαδή μια συνάρτηση έχει ρίζα στο διάστημα Χ Α, Χ Β όταν: X B f X A f X B < 0 Χ

16 Βηματική Προσέγγιση σε ψευδοκώδικα 1.Ελέγχουμε αν υπάρχει ρίζα στα όρια του διαστήματος Α, Β και αν δεν υπάρχει ζητάμε καινούρια Α,Β 2.Σαρώνουμε το Χ αρχίζοντας από το Α μέχρι το Β με βήμα ΔΧ 3.Υπολογίζουμε το Υ <- Φ(Χ) για κάθε Χ 4.Αν φτάσαμε στο άνω όριο του διαστήματος (Χ=Β) τότε θέτουμε το Χ <- Α-ΔΧ και το ΔΧ <- ΔΧ/2. Δηλαδή υποδιπλασιάζουμε το βήμα και ξαναρχίζουμε από την αρχή του διαστήματος 5.Επαναλαμβάνουμε τα βήματα 2 μέχρι 5 εως ότου η απόλυτη τιμή του Υ να γίνει μικρότερη από την επιθυμητή ακρίβεια Αν θέλετε να το δοκιμάσετε κατεβάζετε το διερμηνευτή της γλώσσας από τη διεύθυνση:

17 Βηματική Προσέγγιση σε ψευδοκώδικα ΠΡΟΓΡΑΜΜΑ βηματική_προσέγγιση ΜΕΤΑΒΛΗΤΕΣ ΠΡΑΓΜΑΤΙΚΕΣ: Χ, Υ, ΔΧ, Α, Β ΑΡΧΗ Α <- 0 Β <- 0 ΟΣΟ Φ(Α)*Φ(Β) > 0 ΕΠΑΝΑΛΑΒΕ!1. έλεγχος ορίων ΓΡΑΨΕ 'δώσε τα όρια του διαστήματος' ΔΙΑΒΑΣΕ Α, Β ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ Υ <- 0 ΔΧ <- 0.1!αρχικό βήμα Χ <- Α - ΔΧ!αρχή του διαστήματος

18 Βηματική Προσέγγιση σε ψευδοκώδικα ΑΡΧΗ_ΕΠΑΝΑΛΗΨΗΣ Χ <- Χ + ΔΧ!2. σάρωση του διαστήματος Υ <- Φ(Χ)!3. υπολογισμός Υ ΑΝ Χ >= Β ΤΟΤΕ!4. τέλος του διαστήματος ΔΧ <- ΔΧ/2 Χ <- Α - ΔΧ ΓΡΑΨΕ 'Το βήμα έγινε: ', ΔΧ ΤΕΛΟΣ_ΑΝ ΜΕΧΡΙΣ_ΟΤΟΥ Α_Τ(Υ) < !5. συνθήκη εξόδου ΓΡΑΨΕ 'στο Χ= ', Χ, ' το Υ είναι:', Υ ΤΕΛΟΣ_ΠΡΟΓΡΑΜΜΑΤΟΣ βηματική_προσέγγιση ΣΥΝΑΡΤΗΣΗ Φ(Χ): ΠΡΑΓΜΑΤΙΚΗ ΜΕΤΑΒΛΗΤΕΣ ΠΡΑΓΜΑΤΙΚΕΣ: Χ ΑΡΧΗ Φ <- 2*Χ^4-3*Χ^3-2*Χ - 1 ΤΕΛΟΣ_ΣΥΝΑΡΤΗΣΗΣ

19 Βηματική Προσέγγιση σε ψευδοκώδικα δώσε τα όρια του διαστήματος 2 3 δώσε τα όρια του διαστήματος -1 1 Το βήμα έγινε: Το βήμα έγινε: Το βήμα έγινε: Το βήμα έγινε: Το βήμα έγινε: Το βήμα έγινε: Το βήμα έγινε: Το βήμα έγινε: Το βήμα έγινε: Το βήμα έγινε: Το βήμα έγινε: στο Χ= το Υ είναι:

20 Ενθετικές μέθοδοι: διχοτόμηση Στις ενθετικές μεθόδους χρειαζόμαστε 2 τιμές Χ Α, Χ Β ανάμεσα στις οποίες προβλέπουμε ότι βρίσκεται η ρίζα Η γνωστότερη από τις ενθετικές μεθόδους είναι η μέθοδος υποδιπλασιασμού του διαστήματος ή μέθοδος διχοτόμησης (διχοτομική αναζήτηση). Στη μέθοδο αυτή θεωρούμε ότι η ρίζα βρίσκεται στη μέση του διαστήματος και κατόπιν ελέγχουμε σε ποιο από τα δύο υποδιαστήματα που δημιουργούνται αλλάζει πρόσημο η συνάρτηση. Συνεχίζουμε τον υποδιπλασιασμό μέχρι να προσδιορίσουμε τη ρίζα με την επιθυμητή ακρίβεια 1.Ελέγχουμε αν υπάρχει ρίζα στα όρια του διαστήματος Α, Β και αν δεν υπάρχει ζητάμε καινούρια Α,Β 2.Θέτουμε X r (X A + X B ) 2 3.Αν f X A f X r < 0 τότε θέτουμε X Β X r 4.Αλλιώς αν f X A f X r > 0 τότε θέτουμε X Α X r 5.Επαναλαμβάνουμε τα βήματα 2 μέχρι 5 εως ότου ικανοποιηθεί το κριτήριο σύγκλισης

21 Ενθετικές μέθοδοι: διχοτόμηση program bisection implicit none I.! δηλώσεις: real :: old_xr, error, xa, xb, check real :: xr = 0, errmax = 1e-4 integer :: iter = 0, maxiter = 40! αρχή: do print *, 'give limits xa and xb:' read *, xa, xb if(f(xa) * f(xb) < 0) exit!1. έλεγχος ορίων end do

22 Ενθετικές μέθοδοι: διχοτόμηση do iter = iter + 1!αριθμητής πλήθους επαναλήψεων old_xr = xr IΙ. xr = (xa + xb) / 2.!2. διχοτόμηση διαστήματος if(xr /= 0) error = errf(xr,old_xr) check = f(xa) * f(xr) if(check < 0) then!3. xb = xr elseif(check > 0) then!4. xa = xr else error = 0 endif print*, iter, xr, f(xr), error if((error < errmax).or.(iter >= maxiter))exit end do!5.

23 Ενθετικές μέθοδοι: διχοτόμηση contains IΙΙ. real function f(x) real:: x!ορισμός συνάρτησης f = x + cos(x) end function f real function errf(xnew,xold) real:: xold, xnew!υπολογισμός σφάλματος errf = abs( (xnew - xold) / xnew) * 100 end function errf end program bisection

24 Give limits Xa and Xb: E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-05

25 Ενθετικές μέθοδοι: διχοτόμηση 1, ,0 0, , ,5 f (x) -1,0-1,5 50-2, Iterations

26 Ενθετικές μέθοδοι: διχοτόμηση #include <iostream> #include <cstdlib> #include <cmath> using namespace std; σε C++ int main() { system("chcp 1253"); double f(double), errf(double, double); double Xa, Xb, Xr, error, check, oldxr = 0, errmax = 1e-5; int iter = 0; do { cout << "δώσε τα όρια Χa και Xb:" << endl; cin >> Xa >> Xb; } while (f(xa) * f(xb) > 0); //1. έλεγχος ορίων

27 Ενθετικές μέθοδοι: διχοτόμηση σε C++ do { iter++; //αριθμητής πλήθους επαναλήψεων oldxr = Xr; Xr = (Xa + Xb) / 2; //2. διχοτόμηση διαστήματος if (Xr!= 0) error = errf(xr, oldxr); check = f(xa) * f(xr); if (check < 0) //3. Xb = Xr; else if (check > 0) //4. Xa = Xr; else error = 0; cout << iter << "\t" << Xr << "\t" << f(xr) << "\t" << error << endl; } while (error > errmax); //5. return 0; }

28 Ενθετικές μέθοδοι: διχοτόμηση σε C++ double f(double x){ double y; y = x + cos(x); return y; } //ορισμός συνάρτησης double errf(double x1,double x0){ //υπολογισμός σφάλματος double y; y = abs( (x1 - x0) / x1) * 100; return y; }

29 Ενθετικές μέθοδοι: διχοτόμηση Η διχοτόμηση συγκλίνει πάντα αλλά συγκλίνει αργά, ιδιαίτερα αν ένα από τα δύο όρια βρίσκεται πολύ κοντά στη ρίζα. Η διχοτόμηση θα βρει μια ρίζα ανεξάρτητα από το πόσες υπάρχουν στο διάστημα που ερευνούμε. Στο σχήμα δεξιά έχουμε τη γραφική παράσταση τριών απλών συναρτήσεων: f x = x 2, cos(x) και 1 x Η σχέση f X A f X B < 0 δεν ισχύει για την πρώτη συνάρτηση σε καμιά περίπτωση ενώ υπάρχει ρίζα. Η ισχύς της σχέσης για τη δεύτερη συνάρτηση εξαρτάται από τα όρια που θα δώσουμε. π.χ. για X Α =-2, X Β =2 δεν ισχύει ενώ υπάρχουν ρίζες. Η σχέση ισχύει για την τρίτη συνάρτηση ενώ προφανώς δεν υπάρχουν ρίζες! f(x) 2 1 X A X B x

30 Ενθετικές μέθοδοι: αναδρομική διχοτόμηση program recursive_bisection implicit none interface real function f(x) real, intent (in) :: x end function end interface real:: xa = 1, xb = 1, x = 1 real:: errmax = 1.E-6 Ρητή Διεπιφάνεια Εξωτερικής Διαδικασίας I. call execute_command_line('chcp 1253') do while (f(xa) * f(xb) > 0) print *,'Δώσε τα όρια xa, xb' read *, xa, xb end do x = bisect(f, xa, xb, errmax) print '(a17, f10.7, a6, e14.7)',& & 'η λύση είναι: x=', x, 'f(x)=', f(x)

31 Ενθετικές μέθοδοι: αναδρομική διχοτόμηση ιδιότητα SAVE contains real recursive function bisect(f,xa,xb,errmax) result(x) interface real function f(x) real, intent (in) :: x end function end interface Ρητή Διεπιφάνεια Εξωτερικής Διαδικασίας real, intent(in) :: errmax real :: xa, xb, xr, errors IΙ. $ integer,save :: i real, save :: s SAVE οι τιμές διατηρούνται character(50):: ff = '(i4,a3,f10.7,a6,e14.7,a7,e14.7)' i = i + 1!αρίθμηση επαναλήψεων xr = (xa + xb) / 2. errors = abs( (xr - s) / xr) * 100 print ff, i, 'x=', xr, 'f(x)=', f(xr), 'error=', errors

32 Ενθετικές μέθοδοι: αναδρομική διχοτόμηση if (errors > errmax) then s = xr!κρατάμε την προηγούμενη τιμή if (f(xa) * f(xr) < 0) then xb = xr else!(f(xr) * f(xb) < 0) xa = xr end if x = bisect(f, xa, xb, errmax)!αναδρομική κλήση else x = xr end if end function bisect end program recursive_bisection IΙΙ. real function f(x) real, intent(in):: x f = x + cos(x) end function f Εξωτερική Διαδικασία

33 Δώσε τα όρια xa, xb x= f(x)= E+00 error= E+03 2 x= f(x)= e+00 error= E+02 3 x= f(x)= e+00 error= E+02 4 x= f(x)= E-01 error= E+02 5 x= f(x)= e-01 error= E+02 6 x= f(x)= E-02 error= E+01 7 x= f(x)= e-01 error= E+01 8 x= f(x)= e-01 error= E+01 9 x= f(x)= e-02 error= E x= f(x)= E-02 error= E x= f(x)= E-03 error= E x= f(x)= e-03 error= E x= f(x)= e-04 error= E x= f(x)= E-03 error= E x= f(x)= E-04 error= E x= f(x)= e-05 error= E x= f(x)= E-04 error= E x= f(x)= E-04 error= E x= f(x)= E-05 error= E x= f(x)= e-05 error= E x= f(x)= e-06 error= E x= f(x)= E-06 error= E x= f(x)= e-06 error= E x= f(x)= e-08 error= E x= f(x)= E-07 error= E x= f(x)= E-07 error= E+00 η λύση είναι: x= f(x)= E-07

34 Διευκρίνιση ιδιότητα optional εγγενής συνάρτηση present program sum_of_series implicit none real :: pi = 4 * atan(1.) character(15):: frm = '(t5, f8.2)' print frm, zumserie(0, 99, 4*atan(1.), 0.1) print frm, zumserie(0, 99, d=0.1, s=pi) print frm, zumserie(n=99, d=0.1, s=4*atan(1.)) print frm, zumserie(d=0.1, s=4*atan(1.), n=99) print frm, zumserie(m=0, n=99, d=0.1, s=4*atan(1.)) contains real function zumserie(m, n, s, d) result(r) integer, optional, intent(in):: m integer, intent(in) :: n real, intent(in) :: s, d integer :: i, m_t n i=m (s + d i)

35 Διευκρίνιση ιδιότητα optional εγγενής συνάρτηση present if (present(m)) then m_t = m else m_t = 0 end if r = 0 do i = m_t, n r = r + s + d * i end do end function zumserie n i=m (s + d i) end program sum_of_series

36 Μέθοδος Newton Raphson f x i = f x i 0 x i x i+1 x i+1 = x i f x i f x i

37 Μέθοδος Newton Raphson program newton implicit none I.! δηλώσεις: real :: oldroot, root, error, errmax = 1e-4 integer :: iternr = 0, maxiter = 40! αρχή: print *, 'root estimation?'; read *, root do iternr = iternr + 1 oldroot = root root = f(oldroot) if(root /= 0) error = errf(root, oldroot) print *, iternr, root, f(root), error if( (error < errmax).or. (iternr >= maxiter))exit end do

38 Μέθοδος Newton Raphson contains IΙ. real function f(x) real:: x!ορισμός συνάρτησης! f = x - (f(x) / f'(x)) f = x - (x + cos(x)) / (1 - sin(x)) end function f real function errf(x1, x0)!υπολογισμός σφάλματος real:: x0, x1 errf = abs(( x1 - x0) / x1) * 100 end function errf end program newton

39 root estimation? -0.5Μέθοδος Newton Raphson E root estimation? E E-06

40

41 Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Πατρών, Όνομα μέλους ή μελών ΔΕΠ 2014: Δημήτριος Ματαράς.. Έκδοση: 1.0. Πάτρα Διαθέσιμο από τη δικτυακή διεύθυνση:

42 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

43 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 8. Διαδικασίες Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the Creative

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 7. Τμήματα Πινάκων Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 6. Πίνακες Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the Creative

Διαβάστε περισσότερα

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. 8 η ενότητα: Περιβαλλοντικά και μαθηματικά προβλήματα. Τμήμα. Τεχνολόγων Περιβάλλοντος. ΤΕΙ Ιονίων Νήσων

Προγραμματισμός Η/Υ. 8 η ενότητα: Περιβαλλοντικά και μαθηματικά προβλήματα. Τμήμα. Τεχνολόγων Περιβάλλοντος. ΤΕΙ Ιονίων Νήσων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Προγραμματισμός Η/Υ 8 η ενότητα: Περιβαλλοντικά και μαθηματικά προβλήματα Τμήμα Τεχνολόγων Περιβάλλοντος ΤΕΙ Ιονίων Νήσων Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 4. Επανάληψη Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the Creative

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Βασικές Προγραμματιστικές Δομές ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομή Ελέγχου Ροής (IF) Η εντολή IF χρησιμοποιείται όταν

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης

Διαβάστε περισσότερα

Ειδικά θέματα στην επίλυση

Ειδικά θέματα στην επίλυση Ενότητα 5: Εισαγωγή Βασικές Έννοιες Ειδικά Θέματα Αριθμητικής Παραγώγισης Επίλυση Γραμμικών Συστημάτων Αλγεβρικών Εξισώσεων Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ειδικά θέματα

Διαβάστε περισσότερα

Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών

Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών Ενότητα 7: Υπορουτίνες Καθ. Γιάννης Γαροφαλάκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Ορισμός Αφαίρεση με χρήση υπορουτινών (subroutine abstraction)

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 10: Δυναμικός προγραμματισμός Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 6: Όριο και συνέχεια συναρτήσεων (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 8: Εφαρμογές παραγώγων Μελέτη και βελτιστοποίηση συναρτήσεων μιας μεταβλητής (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 8: Το γραμμικό τετραγωνικό πρόβλημα ρύθμισης (LQ) για συστήματα διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 10: Ειδικές περιπτώσεις επίλυσης με τη μέθοδο simplex (2o μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα #5: Διαγράμματα ροής (Flow Charts), Δομές επανάληψης Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Διαγράμματα ροής (Flow Charts), Δομές επανάληψης

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός 1/8 Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.05: Ολοκλήρωση Ρητών Συναρτήσεων Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.

Διαβάστε περισσότερα

2 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

2 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 2 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων Περιεχόμενα η Άσκηση... 3 2 η Άσκηση... 4 3 η Άσκηση... 5 4 η Άσκηση... 7 Χρηματοδότηση... 9 Σημείωμα Αναφοράς... 0 Σημείωμα Αδειοδότησης... 2 Ενδεικτικές λύσεις

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 9: Ολοκληρώματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος)

Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος) Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος) 1 Περιεχόμενα 1 η Άσκηση Λειτουργίες του βιβλίου διευθύνσεων σε ένα πρόγραμμα ηλεκτρονικού ταχυδρομείου... 4 2 η Άσκηση Λειτουργίες

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα #5: Δομές επιλογής Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Δομές επιλογής MATLAB Programming Α. Καλαμπούνιας Η δομή επιλογής if Η δομή if στο

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι μια πρώτη επαφή με την έννοια των τετραγωνικών

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 5: Ανάλυση της Διακύμανσης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 1: Συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 2: Θερμοδυναμικές συναρτήσεις. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 2: Θερμοδυναμικές συναρτήσεις. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 2: Θερμοδυναμικές συναρτήσεις Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η εισαγωγή νέων θερμοδυναμικών συναρτήσεων

Διαβάστε περισσότερα

Φυσική Οπτική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 1: Υπολογισμός εστιακής απόστασης θετικού φακού από την μετατόπισή του. Αθανάσιος Αραβαντινός

Φυσική Οπτική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 1: Υπολογισμός εστιακής απόστασης θετικού φακού από την μετατόπισή του. Αθανάσιος Αραβαντινός Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική Οπτική (Ε) Ενότητα : Υπολογισμός εστιακής απόστασης θετικού φακού από την μετατόπισή του Αθανάσιος Αραβαντινός Τμήμα Οπτικής και

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενότητα 1: Εισαγωγή Βασικές Έννοιες Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΦΡΑΓΚΙΣΚΟΣ ΚΟΥΤΕΛΙΕΡΗΣ Εισαγωγή 2 Περιεχόμενα 1. Εισαγωγή 2. Αριθμητική παραγώγιση

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 10: Πρότυπα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Εντολές for, while, do-while Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Εντολές for, while, do-while Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Εντολές for, while, do-while Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 11. Διεπιφάνειες Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 4: Το γενικευμένο πρόβλημα βέλτιστου ελέγχου για συστήματα συνεχούς Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.02: Βασικά Θεωρήματα Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Γ.02: Βασικά

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Επαναληπτικές Ασκήσεις Ενότητας 4 Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.08.: Επίπεδα Εμβαδά Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.9: Το Διαφορικό Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.9: Το Διαφορικό 1 Άδειες

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 1: Εισαγωγή Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. 3 η ενότητα. Τμήμα. Τεχνολόγων Περιβάλλοντος. ΤΕΙ Ιονίων Νήσων. Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων

Προγραμματισμός Η/Υ. 3 η ενότητα. Τμήμα. Τεχνολόγων Περιβάλλοντος. ΤΕΙ Ιονίων Νήσων. Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Προγραμματισμός Η/Υ 3 η ενότητα Τμήμα Τεχνολόγων Περιβάλλοντος ΤΕΙ Ιονίων Νήσων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 5: Ακολουθίες, όρια, σειρές (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 10: Συστήματα γραμμικών εξισώσεων (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Βάσεις Περιβαλλοντικών Δεδομένων

Βάσεις Περιβαλλοντικών Δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Συναρτήσεις 60 Ροή ελέγχου Είναι η σειρά µε την οποία εκτελούνται οι εντολές. Μέχρι τώρα, «σειριακή»,

Διαβάστε περισσότερα

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 9: Ολοκληρώματα (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 5: H ΓΛΩΣΣΑ C++ Εισαγωγή στην C++ ΔΙΔΑΣΚΟΝΤΕΣ:Iωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής H Γλώσσα C++ ΙΣΤΟΡΙΑ 1967:

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 7: Αλγόριθμοι γραμμικής άλγεβρας

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 7: Αλγόριθμοι γραμμικής άλγεβρας ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 7: Αλγόριθμοι γραμμικής άλγεβρας Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αλγόριθµοι γραµµικής άλγεβρας 1 Ο συµβολισµός µεγάλο O Εστω συναρτήσεις f(n), g(n)

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο

Διαβάστε περισσότερα

Μάρκετινγκ Αγροτικών Προϊόντων

Μάρκετινγκ Αγροτικών Προϊόντων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μάρκετινγκ Αγροτικών Προϊόντων Ενότητα 4 η : Οι Παραγωγοί Αγροτικών Προϊόντων Χρίστος Καμενίδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 12: Ελαχιστοποίηση κόστους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Ελαχιστοποίηση κόστους

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Ορισμός κανονικής τ.μ.

Ορισμός κανονικής τ.μ. Πιθανότητες και Στατιστική Ενότητα 4: Τυχαίες τυχαίες μεταβλητές Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Ορισμός κανονικής τ.μ. Ορισμός κανονικής τ.μ. Μια συνεχής τ.μ.

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 4: Εκθετικές και λογαριθμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Δομημένος Προγραμματισμός

Δομημένος Προγραμματισμός Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 1: Εισαγωγή Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 5: Ακολουθίες, όρια, σειρές (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

ΔΡΔ: Διαγράμματα Ροής Δεδομένων

ΔΡΔ: Διαγράμματα Ροής Δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΔΡΔ: Διαγράμματα Ροής Δεδομένων Τεχνολογία Πολιτισμικού Λογισμικού Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Συντήρησης Πολιτισμικής Κληρονομιάς ΤΕΙ Ιονίων

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι Σημειώσεις MATLAB Ενότητα 4 ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 Σημειώσεις βασισμένες στο

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 9: Κριτήρια κατάταξης του κόστους Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 8: ΧΡΗΣΗ ΔΟΜΩΝ ΔΕΝΤΡΟΥ ΚΑΙ ΣΩΡΟΥ ΓΙΑ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗΣ ΑΛΓΟΡΙΘΜΟΣ HEAPSORT

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 8: ΧΡΗΣΗ ΔΟΜΩΝ ΔΕΝΤΡΟΥ ΚΑΙ ΣΩΡΟΥ ΓΙΑ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗΣ ΑΛΓΟΡΙΘΜΟΣ HEAPSORT Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 8: ΧΡΗΣΗ ΔΟΜΩΝ ΔΕΝΤΡΟΥ ΚΑΙ ΣΩΡΟΥ ΓΙΑ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗΣ ΑΛΓΟΡΙΘΜΟΣ HEAPSORT Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 23: Υπολογισμοί σε Κβαντικά Κυκλώματα ΙΙ Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Υπολογισμοί

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 2: Εισαγωγή στον βέλτιστο έλεγχο Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Πίνακες [2/2] (Δισδιάστατοι)

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Πίνακες [2/2] (Δισδιάστατοι) ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Πίνακες [2/2] (Δισδιάστατοι) Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 6 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 11 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Διαχείριση Έργων. Ενότητα 10: Χρονοπρογραμματισμός έργων (υπό συνθήκες αβεβαιότητας)

Διαχείριση Έργων. Ενότητα 10: Χρονοπρογραμματισμός έργων (υπό συνθήκες αβεβαιότητας) Διαχείριση Έργων Ενότητα 10: Χρονοπρογραμματισμός έργων (υπό συνθήκες αβεβαιότητας) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 16: Αναπαράσταση τελεστών με μήτρες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 16: Αναπαράσταση τελεστών με μήτρες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 16: Αναπαράσταση τελεστών με μήτρες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να αναπτύξει την μεθοδολογία εύρεσης ιδιοτιμών

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΗΘΙΚΗ. Ενότητα 9: Σχέση Ηθικής και Δικαιοσύνης. Παρούσης Μιχαήλ. Τμήμα Φιλοσοφίας

ΕΦΑΡΜΟΣΜΕΝΗ ΗΘΙΚΗ. Ενότητα 9: Σχέση Ηθικής και Δικαιοσύνης. Παρούσης Μιχαήλ. Τμήμα Φιλοσοφίας ΕΦΑΡΜΟΣΜΕΝΗ ΗΘΙΚΗ Ενότητα 9: Σχέση Ηθικής και Δικαιοσύνης Παρούσης Μιχαήλ Τμήμα Φιλοσοφίας 1 Σκοποί ενότητας Το σημερινό μάθημα αφορά την έννοια της δικαιοσύνης ως ηθικής αρχής. Κατά πόσο αυτή η αρχή μπορεί

Διαβάστε περισσότερα

Μηχανές Πλοίου ΙΙ (Ε)

Μηχανές Πλοίου ΙΙ (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυµα Αθήνας Μηχανές Πλοίου ΙΙ (Ε) Άσκηση 5 Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Επαναληπτικές Ασκήσεις Ενοτήτων 5, 6 & 7 Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι

Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Μέρος I Εναρξη μαθήματος 5 7 Υπολογιστική Άλγεβρα (439) ) Ευάγγελος

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα