Συστήματα Επικοινωνιών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συστήματα Επικοινωνιών"

Transcript

1 Συστήματα Επικοινωνιών Ενότητα 5: Pulse Code Modulation (PCM) Σαγκριώτης Εμμανουήλ Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

2 Σκοποί ενότητας 1. Γνωριμία με την περισσότερο εφαρμοζόμενη τεχνική ψηφιακής διαβίβασης αναλογικού σήματος, το PCM. 2. Ανάδειξη των πλεονεκτημάτων της διαβίβασης αναλογικού σήματος με PCM. 3. Γνωριμία με τις διαδικασίες δειγματοληψίας αναλογικού σήματος και κβάντισης των δειγμάτων του. 4. Προσδιορισμός της σχέσης ποιότητας στον προορισμό και εύρους ζώνης στη διαβίβαση αναλογικού σήματος με PCM 2

3 Περιεχόμενα ενότητας 1. Η διαδικασία δειγματοληψίας αναλογικού σήματος. 2. Η ανάγκη της κβάντισης των δειγμάτων σήματος και η σχέση μεταξύ του ρυθμού κωδικοποίησης και ποιότητας στον προορισμό. 3. Το PCM, οι επιδόσεις του και οι εφαρμογές του. 4. Λογαριθμικό PCM και η ανάγκη χρήσης του. 3

4 Ενότητα 5 Pulse Code Modulation (PCM)

5 Το PCM είναι ένα σύστημα, με το οποίο μπορούμε να διαβιβάσουμε ένα αναλογικό (συνεχές) σήμα x(t) μέσω διακριτού καναλιού. Το τμήμα του PCM που βρίσκεται στον πομπό ψηφιοποιεί το σήμα x(t) και το μετατρέπει σε μία ακολουθία δυαδικών δεδομένων {d k }. Από την ακολουθία {d k } το τμήμα του PCM που βρίσκεται στο δέκτη ανακατασκευάζει το αρχικό συνεχές σήμα x(t). Αναλ. Σήμα x(t) Πεπερασμένο W και PDF f X (x) Δειγματολήπτης Sampler Τμ. PCM στον Πόμπό {x n } Κβαντιστής {x qn } Κωδικοποιητής {d k } Quantizer Πηγής {d k } Δυαδικό Κανάλι {d k } Τμ. PCM στον Δέκτη {d k } Αποκωδικοποιητής {x qn } Ανακατακευή του x(t) Πηγής x(t)+n q (t) 5

6 Να διευκρινίσουμε ότι στις βαθμίδες του PCM δεν συμπεριλαμβάνεται το διακριτό κανάλι μέσω του οποίου διαβιβάζεται η ακολουθία δυαδικών δεδομένων {d k }. Επίσης παρατηρήστε ότι το σήμα x(t) φθάνει στον προορισμό συνοδευόμενο από τον προσθετικό θόρυβο n q (t). Ο θόρυβος αυτός οφείλεται κυρίως στην βαθμίδα του κβαντιστή. Θυμηθείτε ότι η δειγματοληψία του σήματος x(t) γίνεται με συχνότητα f S 2W και ότι Τ S =1/f S. Επίσης θυμηθείτε ότι το x(t) μπορεί να ανακατασκευαστεί από την ακολουθία {x n } πρακτικά με αμελητέο θόρυβο. Επειδή όμως τα στοιχεία της {x n }είναι πραγματικοί αριθμοί που ανήκουν σε ένα συνεχές διάστημα είναι αδύνατο να κωδικοποιηθούν, ώστε να γίνει η διαβίβαση μέσα από διακριτό κανάλι. 6

7 Μέτρο Παραμόρφωσης για τα Διακριτά στο Χρόνο και Συνεχή στην Τιμή Σύμβολα x μιας Πηγής. Έστω η ακολουθία δειγμάτων x1, x2,, xi, ενός αναλογικού σήματος x(t). Οι τιμές των δειγμάτων της ακολουθίας ανήκουν σε ένα διάστημα πραγματικών αριθμών δ. Αν, αποφασίσουμε να αποθηκεύσουμε σε μνήμη την ακολουθία {x i }, ή να τη διαβιβάσουμε μέσα από διακριτό κανάλι, είναι αδύνατον να κατασκευάσουμε τον απαιτούμενο κώδικα πηγής αφού το αλφάβητο της ακολουθίας είναι συνεχές. 7

8 Ο μοναδικός τρόπος που είναι γνωστός μέχρι σήμερα για να λυθεί το πρόβλημα της κωδικοποίησης της ακολουθίας {x n } είναι η προσέγγιση των δειγμάτων της με τα στοιχεία ενός πεπερασμένου αλφάβητου Α, υποσύνολου του διαστήματος δ. Με την προσέγγιση αυτή η αρχική ακολουθία αντικαθίσταται με την ακολουθία: ˆ, ˆ,, ˆ,... x1 x2 x i όλα τα στοιχεία της ακολουθίας αυτής ανήκουν στο αλφάβητο Α, το οποίο περιέχει το πεπερασμένο πλήθος συμβόλων, Ν. Xˆ ˆ ˆ 1, X 2,, X N 8

9 Μια τεχνική ορισμού του αλφαβήτου Xˆ ˆ ˆ 1, X 2,, X N x και αντικατάσταση της {x i } από την είναι η βαθμωτή κβάντιση (scalar quantization) ˆi x i xˆi 9

10 1. Στο πιο κάτω σχήμα το πεδίο τιμών της ακολουθία δειγμάτων {x n } είναι ολόκληρος ο άξονας των πραγματικών αριθμών. 2. Διαχωρίζεται το πεδίο τιμών της {x n } στα Ν διαδοχικά διαστήματα s 1, s 2,, s N και σε κάθε διάστημα s n ορίζεται μία στάθμη κβάντισης. ˆ n X 3. Για κάθε x i της ακολουθίας {x n } προσδιορίζεται το διάστημα s λ στο οποίο ανήκει το x i και τίθεται x ˆ. ˆi X 10

11 Μέση παραμόρφωση της κβαντιζόμενης ακολουθίας Με τον κβαντιστή που παρουσιάσαμε στην προηγούμενη διαφάνεια η αρχική ακολουθία δειγμάτων: {x n }=x 1, x 2,, x i, Αντικαταστάθηκε από την ακολουθία των κβαντισμένων δειγμάτων { xˆ } xˆ, xˆ,, xˆ, n 1 2 Κάθε στοιχείο x i της {x n } αλλάξει κατά την ποσότητα. Η i i i ακολουθία { x n αποτελεί } τον θόρυβο κβάντισης και η μέση τιμή του τετραγώνου της, D είναι γνωστή ως Παραμόρφωση (Distortion). D E xi x ˆ 2 i i x x xˆ 11

12 Αν ορίσουμε με Q(x) τη συνάρτηση που από το κάθε δείγμα x προκύπτει η αντίστοιχη στάθμη κβάντισης 2 2 D E x ˆ i x i x Q x fx x dx Με βάση τον ορισμό της παραμόρφωσης μπορούμε να υπολογίσουμε την παραμόρφωση του κβαντιστή της βαθμωτής κβάντισης ως: a N 2 2 a 2 ˆ ˆ 1 X i1 X D x X f x dx x X f x dx ai i1 Xˆ i a N1 2 ˆ N X x X f x dx 12

13 Σε μια βαθμίδα κβάντισης η παραμόρφωση D μιας κβαντισμένης ακολουθίας είναι ανάλογη της διακύμανσης σ 2 της ακολουθίας και επιπλέον εξαρτάται: 1. Από τον αριθμό Ν των σταθμών κβάντισης. 2. Από τον τρόπο επιλογής της ακολουθίας των διαστημάτων και των αντίστοιχων σταθμών κβάντισης σε συνδυασμό με το PDF f X (x) της ακολουθίας δειγμάτων. 3. Από την τάξη του κβαντιστή. 13

14 Ρυθμός κωδικοποίησης της κβαντισμένης ακολουθίας Η βαθμίδα του κωδικοποιητή πηγής αντιστοιχεί σειρές από bits 0 και 1 στα κβαντισμένα δείγματα της { xˆ n }. Ρυθμός Κωδικοποίησης R (Coding Rate) καλείται ο μέσος αριθμός bits να δείγμα που αντιστοιχεί ο κωδικ. Στην ακολουθία.. { ˆ } x n Ο ρυθμός κωδικοποίησης R σε έναν κβαντιστή εξαρτάται από: 1. Από τον αριθμό Ν των σταθμών κβάντισης. 2. Από τον τρόπο επιλογής της ακολουθίας των διαστημάτων και των αντίστοιχων σταθμών κβάντισης σε συνδυασμό με το PDF f X (x) της ακολουθίας δειγμάτων. 3. Από την τάξη του κβαντιστή. 14

15 Αν θεωρήσουμε καθορισμένο το PDF του δειγματοληπτυμένου σήματος, την διακύμανσή του σ 2, καθώς και την τάξη του κβαντιστή η σχέση μεταξύ του ρυθμού R και της παραμόρφωσης D είναι μια φθίνουσα συνάρτηση η οποία εξαρτάται από τον τρόπο επιλογής των διαστημάτων κβάντισης s i και της θέσης των σταθμών κβάντισης X. ˆ i Όταν έχουν επιλεγεί με βέλτιστο τρόπο τα s i και τα βελτιώνεται με την τάξη του κβαντιστή. η σχέση R-D Διανυσματικός Κβαντιστής (Κβαντιστής τάξης μεγαλύτερης από 1) Έστω η ακολουθία δειγμάτων x 1, x 2,, x i, ενός αναλογικού σήματος x(t) με Gaussian PDF. Θεωρείστε το διαχωρισμό των δειγμάτων σε ζεύγη: (x 1,x 2 ), (x 3,x 4 ),,(x 2i-1,x 2i ), Xˆ i 15

16 x 2i Κάθε ζεύγος δειγμάτων τοποθετείται στο Καρτεσιανό επίπεδο, ευρίσκεται το κελί στο οποίο ανήκει και αντικαθίσταται από τη στάθμη κβάντισης x 2i-1 Ο κβαντιστής αυτός καλείται κβαντιστής δευτέρας τάξης, ενώ εκείνος με τη βαθμωτή κβάντιση θεωρείται πρώτης τάξης. Η ιδέα μπορεί να γενικευθεί και να διαχωριστεί η ακολουθία δειγμάτων σε n-άδες οι οποίες θα κβαντιστούν από κβαντιστή n τάξης, σε κελιά στις n διαστάσεις. 16

17 Αποδεικνύεται ότι για βέλτιστο καθορισμό των οριακών γραμμών (γενικότερα υπερεπιφανειών) των κελιών και των αντίστοιχων σταθμών κβάντισης, η σχέση R-D βελτιώνεται ή παραμένει αναλλοίωτη. Για Gaussian PDF έχουμε πάντα βελτίωση της σχέσης R-D με την αύξηση της τάξης του κβαντιστή Ο Shannon για Gaussian PDF έδωσε τη βέλτιστη σχέση R-D: 17

18 ΘΕΩΡΗΜΑ SHANON Βέλτιστη Σχέση μεταξύ Παραμόρφωσης και Ρυθμού Κωδικοποίησης για τα Συνεχή Σύμβολα μιας Διακριτής σε Χρόνο Πηγής. Έστω πηγή που παράγει διακριτά στο χρόνο σύμβολα, x 1,x 2,..., x n,..., τα οποία είναι πραγματικοί αριθμοί, ακολουθούν Gaussian Κατανομή, και είναι μεταξύ τους στατιστικά ανεξάρτητα. Κάθε προσπάθεια κωδικοποίησης της πιο πάνω ακολουθίας x 1,x 2,..., x n,..., δημιουργεί παραμόρφωση στην ανακτημένη ακολουθία D που εξαρτάται από το ρυθμό κωδικοποίησης R. Η ευνοϊκότερη σχέση μεταξύ R και D αποδεικνύεται ότι είναι: R D 2 1 log D 2 D 0 αλλιώς 18

19 ΘΕΩΡΗΜΑ SHANON Βέλτιστη Σχέση Ρυθμού-Παραμόρφωσης (Rate-Distortion Function) Με ρυθμό R=0, έχουμε πεπερασμένη παραμόρφωση, D=σ 2!!! 19

20 ΠΑΡΑΔΕΙΓΜΑ 20

21 Το PCM της Σταθερής Τηλεφωνίας. Η απλούστερη μορφή PCM είναι αυτή της σταθερής τηλεφωνίας. Το PCM αυτό θεωρεί το σήμα x(t) ότι έχει ένα συμμετρικό PDF γύρω από το μηδέν του οποίου οι μη μηδενικές τιμές εκτείνονται στο πεπερασμένο διάστημα [ x max, x max ]. Στο PCM αυτό χρησιμοποιούμε έναν ομοιόμορφο κβαντιστή με Ν στάθμες κβάντισης όπου Ν είναι δύναμη του 2 με φυσικό αριθμό για εκθέτη: Ν=2 ν Για κωδικοποιητή πηγής χρησιμοποιείται συνήθως η απλή δυαδική αρίθμηση. 21

22 Παλμοκωδική Διαμόρφωση (PCM) Θεωρείστε ότι το σήμα x(t) έχει PDF f X (x) συμμετρικό ως προς το μηδέν και ότι ισχύει f X (x)=0 εκτός του πεπερασμένου διαστήματος [ x max, x max ]. Ορίζουμε έναν ομοιόμορφο κβαντιστή με Ν διαστήματα κβάντισης ίσου μήκους Δ και ορίζουμε το μέσον κάθε διαστήματος ως στάθμη κβάντισης. Προφανώς ισχύει: 2x max =N Δ 22

23 Το σταθερό μήκος των διαστημάτων καβάντισης καλείται Βήμα Κβάντισης (Quantisation Step) Επιπλέον ο κβαντιστής στην εφαρμογή αυτή της σταθερής τηλεφωνίας κατασκευάζεται με: 1. Ν πολύ μεγάλο, Ν>= Ν ισούται με ακέραια δύναμη του 2 (Ν=2 ν, ν θετικός ακέραιος.) Ο ειδικός αυτός τρόπος υλοποίησης του κβαντιστή έχει ως αποτέλεσμα να απλοποιηθεί η διαδικασία του υπολογισμού της παραμόρφωσης ή του μέσου τετραγωνικού σφάλματος κβάντισης D. Πράγματι το σταθερό μήκος δυο Δ και η επιλογή τυ μέσου ως της στάθμης κβάντισης οδηγεί στο ότι για το σφάλμα κβάντισης: x x xˆ i i i σε οποιοδήποτε διάστημα κβάντισης s j και αν ανήκει το x i, ισχύει: x

24 Επιπλέον ο μεγάλος αριθμός Ν των διαστημάτων στα οποία διαχωρίζεται το διάστημα τιμών της {x n } έχει ως αποτέλεσμα να ισχύει με καλή προσέγγιση ότι το σε κάθε διάστημα s i το x έχει ομοιόμορφη κατανομή μεταξύ των δύο άκρων του διαστήματος. Επειδή ισχύει x x Xˆ x i s istart s 2 το σφάλμα κβάντισης έχει ομοιόμορφο κατανομή στο διάστημα τιμών του. iend 24

25 Δηλαδή ανεξάρτητα από σε ποιο διάστημα βρισκόμαστε και ανεξάρτητα από το PDF του σήματος, f X (x), ισχύει: 1/Δ fx x -Δ/2 Δ/2 25

26 Στο PCM η κωδικοποίηση γίνεται με κώδικα σταθερού μήκους. Για το λόγο αυτό επιλέγουμε το πλήθος των διαστημάτων κβάντισης Ν ίσο με δύναμη του 2 (2 ν ) και επομένως οι δυαδικές κωδικές λέξεις θα έχουν μήκος v. Συνήθως χρησιμοποιείται η απλή δυαδική αρίθμηση. Για παράδειγμα, αν στον κβαντιστή της προηγούμενης διαφάνειας χρησιμοποιήσουμε 256 στάθμες κβάντισης, αυτές θα είναι: ˆ ˆ X 0 x ˆ max, X1 xmax, X Και γενικά ισχύει: ˆ X, 0,1,,255 i xmax i i 2 26

27 Στη συνέχεια οι Ν στάθμες κβάντισης κωδικοποιούνται με λέξεις των ν bits, συνήθως τον ισοδύναμο δυαδικό αριθμό του δείκτη της στάθμης κβάντισης: Xˆ : , Xˆ : , Xˆ : , , Xˆ ,..., Xˆ Το μέσο πλήθος Bits να δείγμα που χρησιμοποιούμε για την κωδικοποίηση καλούμε Μέσο Ρυθμό Κωδικοποίησης R. Επειδή στο PCM που περιγράφουμε χρησιμοποιούμε κωδικές λέξεις σταθερού μήκους με v bits v=log 2 (N), ισχύει: Ρυθμός Κωδικοποίησης: ν=log 2 (N) Και επομένως 2x N max x max 1 2 v 27

28 Έχοντας το PDF του σφάλματος κβάντισης μπορούμε να υπολογίσουμε τη διακύμανση του σφάλματος αυτού. Και επομένως το πηλίκο σήμα προς θόρυβο, SQNR, του κβαντισμένου σήματος γίνεται: Στον τελευταίο τύπο διακρίνουμε τον παράγοντα X x 2 2 max 28

29 Το πηλίκο αυτό εξαρτάται από τη στατιστική του σήματος x(t) και μπορούμε να διακρίνουμε ότι είναι η διακύμανση του σήματος x(t)/x max. Δηλαδή το πηλίκο αυτό ισούται με την ισχύ της κανονικοποιημένης μορφής του σήματος x(t). Θα συμβολίζουμε λοιπόν το πηλίκο αυτό με P mn P mn X x 2 2 max Οπότε: SQNR 34 v Pmn 29

30 και αν υπολογίσουμε την ποιότητα σε decibels SQNR 6v 4.8 P db mn db Ο τελευταίος τύπος μας δείχνει ότι κάθε αύξηση της τιμής του ρυθμού κωδικοποίησης ν κατά μία μονάδα, αυξάνει την ποιότητα του σήματος κατά 6 db. Στον ίδιο τύπο διακρίνουμε τον προσθετέο P mndb της οποίας η τιμή εξαρτάται αποκλειστικά από το PDF f X (x) του σήματος που διαβιβάζεται μέσω του PCM. Για ένα σήμα x(t) με ομοιόμορφο PDF η P mn Για παράδειγμα όταν το σήμα x(t) παρουσιάζει ομοιόμορφο PDF η P mn =1/3 και P mndb =-4.8 db. 30

31 1/(2x max ) fx x -x max x max Πράγματι, αν το PDF του διαβιβαζόμενου σήματος είναι όπως στο σχήμα, θα ισχύει: Ex 0 και xmax xmax x E X x f X xdx x dx 2x max 3 0 άρα P mn =1/3 και P mndb =-4.8 db 31

32 Οπότε για σήμα x(t) με ομοιόμορφο PDF οι αντίστοιχοι τύποι της ποιότητας απλοποιούνται σε SQNR v 4 2 2v SQNRdB 6v 32

33 Απαιτήσεις ενός συστήματος PCM σε Εύρος Ζώνης BC και Ισχύ Λήψης PR Ρυθμός Δημιουργίας Δυαδικών Δεδομένων, R b Αν f S είναι η συχνότητα δειγματοληψίας του αναλογικού σήματος και ν bits/sample ο ρυθμός κωδικοποίησης του PCM, τότε ο Ρυθμός Δημιουργίας Δυαδικών Δεδομένων R b ισούται με: R b =f S v Ποιότητα Σήματος στον Προορισμό, (S/N) d - Πιθανότητα Κατωφλίου P th. Όταν τα δυαδικά δεδομένα που δημιουργήθηκαν από το PCM διαβιβαστούν μέσα από ένα δυαδικό κανάλι με πιθανότητα σφάλματος P b, τα ανακατασκευασμένα δείγματα στον δέκτη θα έχουν υποστεί μια επιπλέον παραμόρφωση που οφείλεται στα σφάλματα του καναλιού. Αποδεικνύεται ότι η παραμόρφωση αυτή (θόρυβος) έχει ως αποτέλεσμα η ποιότητα του σήματος στον προορισμό να γίνει τελικά (S/N) d. 33

34 S/ N d SN max 1 4P 4 v b όπου (S/N) max είναι η ποιότητα της ακολουθίας των κβαντισμένων δειγμάτων αμέσως μετά την κβάντιση και v είναι ο ρυθμός κωδικοποίησης των δειγμάτων. (S/N) ddb P b 9-bit-PCM 8-bit-PCM 7-bit-PCM Στο παραπλεύρως διάγραμμα έχει χαραχθεί η σχέση του (S/N) d-db συναρτήσει της P b για ένα σήμα με ομοιόμορφο PDF και για ρυθμούς κωδικοποίησης v=7,8 και 9 bits/sample. Από το διάγραμμα αυτό μπορείτε να διαπιστώσετε ότι για μικρές τιμές της πιθανότητας σφάλματος, P b του δυαδικού καναλιού, η ποιότητα (S/N) d-db =6v, δηλαδή είναι ίδια με την ποιότητα στην έξοδο του κβαντιστή. 34

35 Αντίθετα για μεγάλες πιθανότητες σφάλματος η τιμή της ποιότητας καταρρέει. Στην πράξη ορίζεται η τιμή P th ως η τιμή της P b που εξασφαλίζει ποιότητα ίση με 1 db μικρότερη από τη μέγιστη τιμή. Εφαρμόζοντας τον ορισμό αυτό προκύπτει ότι η P th δίνεται από τη σχέση: P th 2 4 v Αν εξασφαλιστεί να ισχύει P b <P th, τότε η ποιότητα του σήματος στον προορισμό είναι περίπου ίση με αυτήν της εξόδου στον κβαντιστή. Σημειώστε ότι τιμή της P b πολύ μικρότερη της P th δεν προσφέρει καμία αύξηση στην ποιότητα αλλά απλώς αυξάνει την απαίτηση της ισχύος λήψης στο δέκτη. Στο διάγραμμα διακρίνονται οι τιμές της P th για τις αντίστοιχες τιμές του v. 35

36 Παράδειγμα Ένα σήμα ομιλίας με ομοιόμορφο PDF και με εύρος ζώνης W=5 KHz διαβιβάζετε με σύστημα PCM. Για το σκοπό αυτό το σήμα δειγματοληπτείται με ρυθμό f S =12 KHz και τα δυαδικά δεδομένα διαβιβάζονται χρησιμοποιώντας ένα AWGN κανάλι με φασματική πυκνότητα Ν 0 /2=10-12 Watt/Hz. Για τα ακόλουθα συστήματα PCM: 7 bits/b-pam 7 bits/q-psk 7 bits/8-pam 7 bits/8-psk 8 bits/b-pam 8 bits/q-psk 8 bits/8-pam 8 bits/8-psk 10 bits/b-pam 10 bits/q-psk 10 bits/8-pam 10 bits/8-psk Να προσδιορίσετε: α) την ποιότητα στον προορισμό (S/N) d,db, τον απαιτούμενο ρυθμό διαβίβασης δυαδικών δεδομένων R b, και τον αντίστοιχο ρυθμό διαβίβασης συμβόλων, R. β) Την τιμή της πιθανότητας κατωφλίου P th την αντίστοιχη τιμή της πιθανότητας σφάλματος ανά σύμβολο, P e και την ισχύ λήψης, P R. 36

37 Λύση Με δεδομένο ότι θα έχει επιλεγεί P b <P th, η ποιότητα στον προορισμό θα είναι ίση με την ποιότητα στην έξοδο του κβαντιστή, ίση με 6ν db. Επομένως ανεξάρτητα από το ψηφιακό σύστημα διαβίβασης της δυαδικής ακολουθίας θα ισχύει: S / N 6v Παρόμοια ανεξάρτητα από το σύστημα διαβίβασης θα ισχύει: Οπότε: R b f v S και S/ Nd d 7 bits-pcm 42 db 84 Kbit/sec 4Χ bits -PCM 48 db 96 Kbit/sec bits -PCM 60 db 120 Kbit/sec 6.4Χ10-8 P th 2 4 v R b P th 37

38 Ο ρυθμός διαβίβασης συμβόλων R δίνεται από τη σχέση. R R log M f v log M b 2 s 2 Οπότε: 7 bits/b-pam R=84 Ksymbols/sec 7 bits/q-psk R=42 Ksymbols/sec 7 bits/8-pam & 7 bits/8-psk R=28 Ksymbols/sec 8 bits/b-pam R=96 Ksymbols/sec 8 bits/q-psk R=48 Ksymbols/sec 8 bits/8-pam & 8 bits/8-psk R=32 Ksymbols/sec 10 bits/b-pam R=120 Ksymbols/sec 10 bits/q-psk R=60 Ksymbols/sec 10 bits/8-pam & 10 bits/8-psk R=40 Ksymbols/sec Για τον προσδιορισμό της ισχύος λήψης πρέπει να γίνει χωριστός υπολογισμός για κάθε σύστημα ψηφιακής διαβίβασης. Έτσι για B- PAM : 2P R 1 2 N0 Pb Q Pth PR Q Pth Rb RN b 0 2 Όπου Q -1 η αντίστροφη συνάρτηση της Q(k). 38

39 Και αντικαθιστώντας P th και R b για 7,8 &10 bits PCM υπολογίζουμε την απαιτούμενη ισχύ.βλέπε επόμενο πίνακα. Για QPSK P 2 Q 2P, P P 2 Q 2P P R R e b e th RbN 0 RbN 0 2 P Q P R N R th b Ομοίως αντικαθιστώντας P th και R b για 7,8 &10 bits PCM υπολογίζουμε την απαιτούμενη ισχύ. Βλέπε επόμενο πίνακα. Για 8-PAM M 1 6log M P P P Q P P Q P 2 R R e 2 2 b 8 3 th M M 1 Rb N Rb N0 39

40 Οπότε: Pth N0 PR 7 Q Rb 14 2 Και για P th και R b για 7,8 &10 bits PCM υπολογίζουμε την απαιτούμενη ισχύ. Βλέπε επόμενο πίνακα. Για 8-PSK P Q 2log M P P P 2 Q 23P P 2 R 8 R e 2 sin b sin th RbN RbN 0 8 Οπότε: Pth N0 PR Q R 2 b 3sin Και για P th και R b για 7,8 &10 bits PCM υπολογίζουμε την απαιτούμενη ισχύ. Βλέπε επόμενο πίνακα. 40

41 41

42 MH ΟΜΟΙΟΜΟΡΦΟ (ΛΟΓΑΡΙΘΜΙΚΟ) PCM Η Τεχνική Companding (compressing-expanding) Συμπιεστής Αποσυμπιεστής 42

43 Συμπιεστής τύπου μ (ΗΠΑ) g x log 1 xx log 1 max sgn x 43

44 Συμπιεστής τύπου Α (Καναδάς-Ευρώπη) g x A x xmax sgn x, 0 x xmax 1 A 1 log A 1 log A x x max sgn x, 1 A x xmax 1 1 log A 44

45 Τέλος Ενότητας Pulse Code Modulation

46 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 46

47 Σημειώματα

48 Σημείωμα Αναφοράς Copyright Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών, Σαγκριώτης Εμμανουήλ. «Εισαγωγή στα Συστήματα Επικοινωνιών. Ενότητα 5: Pulse Code Modulation». Έκδοση: 1.01 Αθήνα Διαθέσιμο από τη δικτυακή διεύθυνση: 48

49 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. 49

50 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. 50

ΕΙΣ. ΣΥΣΤ. ΕΠΙΚΟΙΝΩΝΙΩΝ /2/ :09:46 µµ

ΕΙΣ. ΣΥΣΤ. ΕΠΙΚΟΙΝΩΝΙΩΝ /2/ :09:46 µµ ΕΙΣ. ΣΥΣΤ. ΕΠΙΚΟΙΝΩΝΙΩΝ 013-14 18//014 1:09:46 µµ PULSE CODE MODULATION (PCM) 18//014 Το PCM είναι ένα σύστηµα, µε το οποίο µπορούµε να διαβιβάσουµε ένα αναλογικό (συνεχές) σήµα x(t) µέσω διακριτού καναλιού.

Διαβάστε περισσότερα

ΣΤOIΧΕΙΑ ΑΠΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ και PCM

ΣΤOIΧΕΙΑ ΑΠΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ και PCM ΣΤOIΧΕΙΑ ΑΠΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ και PCM ΠΗΓΗ ΜΕ ΔΙΑΚΡΙΤΑ ΣΥΜΒΟΛΑ Τα στοιχεία της ακολουθίας των συμβόλων Διακριτή Πηγή Χωρίς Μνήμη-DMS Σύμβολα μεταξύ τους στατιστικά ανεξάρτητα: (X i =α k & X j =α l )=

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 3: Σύγκριση ψηφιακών Συστημάτων Σαγκριώτης Εμμανουήλ Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σκοποί ενότητας 1. Ανάδειξη τεχνικών για τη σύγκριση των

Διαβάστε περισσότερα

Επεξεργασία Στοχαστικών Σημάτων

Επεξεργασία Στοχαστικών Σημάτων Επεξεργασία Στοχαστικών Σημάτων Βέλτιστα γραμμικά χρονικά αναλλοίωτα συστήματα Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Βέλτιστα γραμμικά χρονικά αναλλοίωτα συστήματα

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 4: Μετατροπή Αναλογικών Σημάτων σε Ψηφιακά Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Δειγματοληψία: Ιδανική

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Άσκηση 5.1 Για ένα σήμα που έχει τη σ.π.π. του σχήματος να υπολογίσετε: μήκος του δυαδικού κώδικα για Ν επίπεδα κβάντισης για σταθερό μήκος λέξης;

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 11: Ψηφιακή Διαμόρφωση Μέρος Α Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή διαμόρφωσης παλμών κατά

Διαβάστε περισσότερα

Επεξεργασία Στοχαστικών Σημάτων

Επεξεργασία Στοχαστικών Σημάτων Επεξεργασία Στοχαστικών Σημάτων Ψηφιακή Μετάδοση Αναλογικών Σημάτων Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ψηφιακή Μετάδοση Αναλογικών Σημάτων Τα σύγχρονα συστήματα

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 9: Παλμοκωδική Διαμόρφωση (PCM) Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της μεθόδου παλμοκωδικής

Διαβάστε περισσότερα

Ψηφιακές Επικοινωνίες

Ψηφιακές Επικοινωνίες Ψηφιακές Επικοινωνίες Ενότητα 3: Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Μέρος Α 3 Διαμόρφωση βασικής ζώνης (1) H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 8: Δειγματοληψία - Διαμόρφωση παλμών Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της διαδικασίας

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνων

Ψηφιακή Επεξεργασία Εικόνων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 8: Ορθομοναδιαίοι μετασχηματισμοί Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Ορθομοναδιαίοι μετασχηματισμοί ισοδύναμη

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ασκήσεις ΦΙΙΙ Ασκήσεις κυκλωμάτων συνεχούς ρεύματος. Κανόνες Kirchhoff. Γ. Βούλγαρης 2 Ο Νόμος των Ρευμάτων

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Ορισμός κανονικής τ.μ.

Ορισμός κανονικής τ.μ. Πιθανότητες και Στατιστική Ενότητα 4: Τυχαίες τυχαίες μεταβλητές Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Ορισμός κανονικής τ.μ. Ορισμός κανονικής τ.μ. Μια συνεχής τ.μ.

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Συστήματα αρίθμησης

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Συστήματα αρίθμησης ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Συστήματα αρίθμησης Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 8 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας

Διαβάστε περισσότερα

Επεξεργασία Στοχαστικών Σημάτων

Επεξεργασία Στοχαστικών Σημάτων Επεξεργασία Στοχαστικών Σημάτων Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Η Έννοια της τυχαίας Διαδικασίας Η έννοια της τυχαίας διαδικασίας βασίζεται στην επέκταση

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 2: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Τυχαίες Διαδικασίες: Ορισμοί, Μέσες τιμές συνόλου (Ensemble averages),

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 10 Βάσεις Groebner ενός ιδεώδους 10.1 Τρίτο μέρος Επαναλαμβάνουμε

Διαβάστε περισσότερα

Ψηφιακές Επικοινωνίες

Ψηφιακές Επικοινωνίες Ψηφιακές Επικοινωνίες Ενότητα 4: Ψηφιακές Διαμορφώσεις Υψηλής Φασματικής Αποδοτικότητας Παναγιώτης Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ψηφιακές Διαμορφώσεις Υψηλής

Διαβάστε περισσότερα

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10

Διαβάστε περισσότερα

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας 5.7. ΔΕΙΓΜΑΤΟΛΗΨΙΑ (1) 5.7.1. Το Εργαστήριο πρέπει να διαθέτει σχέδιο και διαδικασία δειγματοληψίας,

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 8: Το γραμμικό τετραγωνικό πρόβλημα ρύθμισης (LQ) για συστήματα διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 7: Κανονικότητες, συμμετρίες και μετασχηματισμοί στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 7: Απόδοση συστημάτων γωνίας υπό θόρυβο Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση της γενικής

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Αναλογικά Ψηφιακά Σήματα Αναλογικό Σήμα x t, t [t min, t max ], x [x min, x max ] Δειγματοληψία t n, x t x n, n = 1,, N Κβάντιση x n x(n) 3 Αλφάβητο

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Γενική Φυσική Ενότητα: Ταλαντώσεις

Γενική Φυσική Ενότητα: Ταλαντώσεις Γενική Φυσική Ενότητα: Ταλαντώσεις Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Ταλαντώσεων... 4 1.1 Ερώτηση 1... 4 2. Ασκήσεις Ταλαντώσεων... 4 2.1 Άσκηση 1... 4 2.2 Άσκηση

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 10: Ψηφιακή Μετάδοση Βασικής Ζώνης Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση των πινάκων αναζήτησης

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 11 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 4: Το γενικευμένο πρόβλημα βέλτιστου ελέγχου για συστήματα συνεχούς Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Ενότητα. Εισαγωγή στις βάσεις δεδομένων

Ενότητα. Εισαγωγή στις βάσεις δεδομένων Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνων

Ψηφιακή Επεξεργασία Εικόνων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 12: Ψηφιακή Διαμόρφωση Μέρος B Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της διαμόρφωσης παλμών

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 5: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Πλεονεκτήματα-Μειονεκτήματα ψηφιακών επικοινωνιών, Κριτήρια Αξιολόγησης

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 1: Κρίσιμα συμβάντα Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Απομαγνητοφώνηση αποσπάσματος από Β Λυκείου

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Εισαγωγή στην Πληροφορική Αριθμητικά Συστήματα ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Συντήρησης Πολιτισμικής Κληρονομιάς Βασικές Έννοιες Ένα Αριθμητικό Σύστημα αποτελείται από ένα

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 12: Ελαχιστοποίηση κόστους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Ελαχιστοποίηση κόστους

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 11: Μεγιστοποίηση κέρδους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Οικονομικό κέρδος Μια

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος

Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Δυναμικής Άκαμπτου Σώματος... 4 1.1 Ερώτηση 1... 4 1.2 Ερώτηση 2... 4 1.3 Ερώτηση

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 1

Διδακτική των εικαστικών τεχνών Ενότητα 1 Διδακτική των εικαστικών τεχνών Ενότητα 1 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 1. Ιστορική αναδρομή της διδακτικής της

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 3

Διδακτική των εικαστικών τεχνών Ενότητα 3 Διδακτική των εικαστικών τεχνών Ενότητα 3 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 3. Ο ρόλος του εκπαιδευτικού: σχεδιασμός

Διαβάστε περισσότερα

Υπολογιστική άλγεβρα Ενότητα 3: Πολυώνυμα τρίτου βαθμού

Υπολογιστική άλγεβρα Ενότητα 3: Πολυώνυμα τρίτου βαθμού Υπολογιστική άλγεβρα Ενότητα 3: Πολυώνυμα τρίτου βαθμού Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Μέρος II Πολυώνυμα μίας μεταβλητής 17 Κεφάλαιο 3 Πολυώνυμα τρίτου βαθμού 3.1 Μάθημα

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 23: Υπολογισμοί σε Κβαντικά Κυκλώματα ΙΙ Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Υπολογισμοί

Διαβάστε περισσότερα

Βάσεις Περιβαλλοντικών Δεδομένων

Βάσεις Περιβαλλοντικών Δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Ενότητα: Ασκήσεις Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σελίδα 2 1. Άσκηση 1... 5 2. Άσκηση 2... 5 3. Άσκηση 3... 7 4. Άσκηση 4...

Διαβάστε περισσότερα

Αναλογικές και Ψηφιακές Επικοινωνίες

Αναλογικές και Ψηφιακές Επικοινωνίες Αναλογικές και Ψηφιακές Επικοινωνίες Ενότητα : Βέλτιστος δέκτης για ψηφιακά διαμορφωμένα σήματα Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Επικοινωνιών Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας

Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ασκήσεις στην Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας... 4 1.1

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2 Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2 Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2 Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2 Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:

Διαβάστε περισσότερα

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 8: Εφαρμογές παραγώγων Μελέτη και βελτιστοποίηση συναρτήσεων μιας μεταβλητής (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα

Διαβάστε περισσότερα

Φιλοσοφία της Ιστορίας και του Πολιτισμού

Φιλοσοφία της Ιστορίας και του Πολιτισμού Φιλοσοφία της Ιστορίας και του Πολιτισμού Ενότητα 1: Εισαγωγή στις έννοιες Ιστορίας και Πολιτισμού Λάζου Άννα Εθνικὸ και Καποδιστριακὸ Πανεπιστήμιο Aθηνών Τμήμα Φιλοσοφίας Παιδαγωγικής και Ψυχολογίας Φιλοσοφία

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2 Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 4: Απόδοση συστημάτων AM υπό θόρυβο Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση της γενικής μορφής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Σημάτων. Άσκηση 3η. Στυλιανού Ιωάννης. Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Σημάτων. Άσκηση 3η. Στυλιανού Ιωάννης. Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Σημάτων Άσκηση 3η Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος

Διαβάστε περισσότερα

Εφαρμοσμένη Βελτιστοποίηση

Εφαρμοσμένη Βελτιστοποίηση Εφαρμοσμένη Βελτιστοποίηση Ενότητα 3: Αναλυτικές μέθοδοι βελτιστοποίησης για συναρτήσεις μιας μεταβλητής Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Συστήματα Πολυμέσων Ενότητα 7: Ψηφιοποίηση και ψηφιακή επεξεργασία σήματος.

Συστήματα Πολυμέσων Ενότητα 7: Ψηφιοποίηση και ψηφιακή επεξεργασία σήματος. Συστήματα Πολυμέσων Ενότητα 7: Ψηφιοποίηση και ψηφιακή επεξεργασία σήματος. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

P (B) P (B A) = P (AB) = P (B). P (A)

P (B) P (B A) = P (AB) = P (B). P (A) Πιθανότητες και Στατιστική Ενότητα 2: Δεσμευμένη πιθανότητα και στοχαστική ανεξαρτησία Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Διαισθητική έννοια ανεξαρτησίας Διαισθητική

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6: Ανάδραση Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα 9: Τρανζίστορ Επίδρασης Πεδίου (FET) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα 9: Τρανζίστορ Επίδρασης Πεδίου (FET) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενο ενότητας (1 από 2) Τύποι τρανζίστορ επίδρασης πεδίου (JFET, MOSFET, MESFET). Ομοιότητες και διαφορές των FET με τα διπολικά

Διαβάστε περισσότερα

Έλεγχος Ποιότητας Φαρμάκων

Έλεγχος Ποιότητας Φαρμάκων Έλεγχος Ποιότητας Φαρμάκων Ενότητα 6: Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Συσκευές Αποσάθρωση Δισκίων (ενός καλαθιού (δεξιά) και δύο καλαθιών (αριστερά) 2 Συσκευή Αποσάθρωσης 4

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Άσκηση 1 Ενότητα : Υλοποίηση Λεξικών µε

Διαβάστε περισσότερα

Λογικός Προγραμματισμός Ασκήσεις

Λογικός Προγραμματισμός Ασκήσεις Λογικός Προγραμματισμός Ασκήσεις Παναγιώτης Σταματόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα 1. Α Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2010-11... 3 1.1 Άσκηση 1...

Διαβάστε περισσότερα

Μάθημα: Εργαστηριακά Συστήματα Τηλεπικοινωνιών

Μάθημα: Εργαστηριακά Συστήματα Τηλεπικοινωνιών Μάθημα: Εργαστηριακά Συστήματα Τηλεπικοινωνιών Ενότητα 1: Εργαστηριακά Συστήματα Τηλεπικοινωνιών Διδάσκων: Βανδίκας Ιωάννης Ε.ΔΙ.Π. Τμήμα: Ηλεκτρολόγων Μηχανικών Τ.Ε. 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 10 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,

Διαβάστε περισσότερα

Ψηφιακές Επικοινωνίες

Ψηφιακές Επικοινωνίες Ψηφιακές Επικοινωνίες Ενότητα 2: Παναγιώτης Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Εισαγωγή (1) Οι Ψηφιακές Επικοινωνίες (Digital Communications) καλύπτουν σήμερα το

Διαβάστε περισσότερα

Εννοιες και Παράγοντες της Ψηφιακής Επεξεργασίας Εικόνας

Εννοιες και Παράγοντες της Ψηφιακής Επεξεργασίας Εικόνας Εννοιες και Παράγοντες της Ψηφιακής Επεξεργασίας Εικόνας Δειγματοληψία Βάθος χρώματος Ψηφιακή φωτογραφική μηχανή CCD Δυναμικό Εύρος Αναπαραγωγή εικόνας Χρωματικά μοντέλα και Χρωματικοί Χώροι Το ορατό φως,

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται βασικές

Διαβάστε περισσότερα