ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Α και Β Γενικού Λυκείου. ε 3. ε 2. Γ ε 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Α και Β Γενικού Λυκείου. ε 3. ε 2. Γ ε 1"

Transcript

1 ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Α και Β Γενικού Λυκείου ε 3 Κ Ε Γ ε 1 ε 2 Ι Ο Ζ μ α Ψ Θ Η Α ε 4 Β Τόμος 3ος

2

3 ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ ΑΡΓΥΡΟΠΟΥΛΟΣ ΗΛΙΑΣ ΒΛΑΜΟΣ ΠΑΝΑΓΙΩΤΗΣ ΚΑΤΣΟΥΛΗΣ ΓΕΩΡΓΙΟΣ ΜΑΡΚΑΤΗΣ ΣΤΥΛΙΑΝΟΣ ΣΙΔΕΡΗΣ ΠΟΛΥΧΡΟΝΗΣ ΤΟΜΟΣ 3ος ΚΕΦΑΛΑΙΑ

4

5 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΟΜΑΔΑ ΣΥΓΓΡΑΦΗΣ Αργυρόπουλος Ηλίας Διδάκτωρ Μαθηματικών Ε.Μ.Πολυτεχνείου Βλάμος Παναγιώτης Διδάκτωρ Μαθηματικών Ε.Μ.Πολυτεχνείου Κατσούλης Γεώργιος Μαθηματικός Μαρκάτης Στυλιανός Επίκουρος Καθηγητής, Τομέα Μαθηματικών Ε.Μ. Πολυτεχνείου Σίδερης Πολύχρονης Μαθηματικός, τ. Σχολικός Σύμβουλος

6 Ιστορικά Σημειώματα: Βανδουλάκης Ιωάννης Διδάκτωρ Πανεπιστημίου Μ. Lomonosov Μόσχας Ιόνιο Πανεπιστήμιο Φιλολογική Επιμέλεια: Δημητρίου Ελένη Επιλογή εικόνων: Παπαδοπούλου Μπία Εικονογράφηση - Σελιδοποίηση: Αλεξοπούλου Καίτη ΠΡΟΣΑΡΜΟΓΗ ΤΟΥ ΒΙΒΛΙΟΥ ΓΙΑ ΜΑΘΗΤΕΣ ΜΕ ΜΕΙΩΜΕΝΗ ΟΡΑΣΗ Ομάδα εργασίας του Υπουργείου Παιδείας, Δια Βίου Μάθησης και Θρησκευμάτων

7 3.16 Σχετικές θέσεις δυο κύκλων Λ Κ Λ Κ Λ Κ Λ Κ Λ Κ Σχήμα 61α 5 / 63

8 Θεωρούμε δύο κύκλους (Κ, R) και (Λ, ρ) με R ρ. Οι σχετικές τους θέσεις φαίνονται στο παραπάνω σχήμα (σχ.61α). Το ευθύγραμμο τμήμα που ενώνει τα κέντρα δύο κύκλων λέγεται διάκεντρος των δύο κύκλων και συμβολίζεται με δ (σχ. 61β). Κ δ Λ Σχήμα 61β Οι σχετικές θέσεις δύο κύκλων εξαρτώνται από τη σχέση της διακέντρου με το άθροισμα ή τη διαφορά των ακτίνων τους. Διακρίνουμε τις παρακάτω περιπτώσεις: 6 / 63

9 Κύκλοι χωρίς κοινά σημεία (i) Ο κύκλος (Λ, ρ) βρίσκεται στο εσωτερικό του (Κ, R), αν και μόνο αν δ < R - ρ (σχ.62α). (α) δ Κ Λ (β) Κ δ Λ (γ) R Κ δ ρ Λ (δ) Κ R δ Λ (ε) Κ δ Λ Σχήμα 62 7 / 63-64

10 (ii) Οι κύκλοι (Κ, R) και (Λ, ρ) βρίσκεται ο ένας στο εξωτερικό του άλλου, αν και μόνο αν δ > R + ρ (σχ.62ε). Εφαπόμενοι κύκλοι (i) Οι κύκλοι εφάπτονται εσωτερικά, δηλαδή έχουν ένα κοινό σημείο και ο κύκλος (Λ, ρ) βρίσκεται στο εσωτερικό του (Κ, R), αν και μόνο αν δ = R - ρ (σχ.62β). (ii) Οι κύκλοι εφάπτονται εξωτερικά, δηλαδή έχουν ένα κοινό σημείο και ο ένας βρίσκεται στο εξωτερικό του άλλου, αν και μόνο αν δ = R + ρ (σχ.62δ). Το κοινό σημείο δύο εφαπτόμενων κύκλων λέγεται σημείο επαφής και είναι σημείο της διακέντρου. Πράγματι, αν το σημείο επαφής Α (σχ.63) δεν είναι σημείο της διακέντρου, τότε από το τρίγωνο 8 / 64

11 ΑΚΛ έχουμε ΚΛ < ΚΑ + ΑΛ, δηλαδή δ < R + ρ, που είναι άτοπο. Κ R δ Α ρ Λ Σχήμα 63 Τεμνόμενοι κύκλοι Οι κύκλοι τέμνονται, δηλαδή έχουν δύο κοινά σημεία, αν και μόνο αν R - ρ < δ < R + ρ (σχ.62γ). Το ευθύγραμμο τμήμα ΑΒ που ενώνει τα κοινά σημεία λέγεται κοινή χορδή των δύο κύκλων. Ισχύει το επόμενο θεώρημα. Θεώρημα. Η διάκεντρος δύο τεμνόμενων κύκλων είναι μεσοκάθετος της κοινής χορδής τους. 9 / 64

12 Απόδειξη Έστω οι κύκλοι (Κ,R) και (Λ, ρ) του σχ.64 και Α, Β τα σημεία τομής τους. Επειδή ΚΑ = ΚΒ = R, το σημείο Κ είναι σημείο της μεσοκαθέτου του ΑΒ. Όμοια από την ΛΑ = ΛΒ = ρ προκύπτει ότι και το Λ είναι σημείο της μεσοκαθέτου του ΑΒ. Άρα, η ΚΛ είναι μεσοκάθετος της κοινής χορδής ΑΒ του κύκλου. Κ R R Α Β ρ ρ Λ Σχήμα / 64

13 ΠΑΡΑΤΗΡΗΣΗ Στην περίπτωση που οι τεμνόμενοι κύκλοι (Κ, R) και (Λ, ρ) (σχ.65) είναι ίσοι, δηλαδή έχουν R = ρ, τότε και η κοινή χορδή είναι μεσοκάθετος της διακέντρου. Πράγματι, επειδή R = ρ, θα είναι ΑΚ = ΑΛ και ΒΚ = ΒΛ. Άρα τα Α και Β είναι σημεία της μεσοκαθέτου του ΚΛ και επομένως η κοινή χορδή ΑΒ είναι μεσοκάθετος της διακέντρου ΚΛ. Α Κ Λ Β Σχήμα / 64

14 ΕΦΑΡΜΟΓΗ Δύο κύκλοι εφάπτονται εξωτερικά στο Α (σχ.66). Μία ευθεία ε εφάπτεται και στους δύο κύκλους στα Β, Γ αντίστοιχα, όπως στο σχ.66. Να αποδειχθεί ότι: (i) Η εφαπτομένη ζ του ενός κύκλου στο Α είναι και εφαπτομένη του άλλου. (ii) Η ευθεία ζ διχοτομεί το τμήμα ΒΓ. Β ζ Μ Γ ε Κ Α Λ Απόδειξη (i) Έστω ότι η ζ εφάπτεται στον κύκλο (Κ) στο Α. Τότε ζ ΚΑ(1). 12 / 65

15 Επειδή όμως οι κύκλοι εφάπτονται, το Α είναι σημείο της διακέντρου ΚΛ, οπότε από την (1) προκύπτει ότι ζ ΑΛ, επομένως η ευθεία ζ είναι και εφαπτομένη του κύκλου (Λ). (ii) Έστω Μ το σημείο τομής της ζ με την ε. Τότε ΜΑ = ΜΒ, ως εφαπτόμενα τμήματα του (Κ) και ΜΑ = ΜΓ, ως εφαπτόμενα τμήματα του (Λ). Από τις ισότητες αυτές προκύπτει ότι ΜΒ = ΜΓ. ΣΧΟΛΙΟ Η ευθεία ε του παραπάνω σχήματος, που εφάπτεται και στους δύο κύκλους και τους αφήνει προς το ίδιο μέρος της λέγεται κοινή εξωτερική εφαπτομένη, ενώ η ευθεία ζ που έχει τους κύκλους στους οποίους εφάπτεται εκατέρωθεν αυτής λέγεται κοινή εσωτερική εφαπτομένη. 13 / 65

16 ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ Ερωτήσεις Κατανόησης 1. Αν (Κ, R) και (Λ, ρ) είναι δύο κύκλοι που έχουν διαφορετικά κέντρα και R > ρ, ΚΛ = δ, να αντιστοιχίσετε κάθε φράση της πρώτης στήλης με την αντίστοιχη σχέση στη δεύτερη στήλη. Στήλη Α Στήλη Β α. Ο κύκλος (Λ,ρ) είναι 1. δ > + ρ εσωτερικός του (K,R). 2. δ = R + ρ β. Ο κύκλος (Λ,ρ) 3. δ = R - ρ εφάπτεται εσωτερικά 4. δ < R-ρ του (KR). γ. Οι κύκλοι (KR) και (Λ,ρ) τέμνονται. 6. ρ < δ < R 5. δ= R - ρ δ. Οι κύκλοι εφάπτονται εξωτερικά. 8. R - ρ < 7. 2δ = Rρ ε. Κάθε κύκλος είναι < δ < R + ρ εξωτερικός του άλλου. 14 / 65

17 Math Composer ht t p: / / www. m at hcom poser. com 2. Χαρακτηρίστε ως σωστή (Σ) ή λάθος (Λ) καθεμία από τις επόμενες προτάσεις και αιτιολογήστε την απάντησή σας. i) Η διάκεντρος δύο κύκλων είναι μεσοκάθετος της κοινής χορδής. Σ Λ ii) Η κοινή χορδή δύο ίσων κύκλων είναι μεσοκάθετος της διακέντρου. Σ Λ iii) Το σημείο επαφής δύο εφαπτόμενων κύκλων είναι σημείο της διακέντρου. Σ Λ Ασκήσεις Εμπέδωσης 1. Να προσδιορισθούν οι σχετικές θέσεις των κύκλων (K, ρ) και (Λ, 2ρ) αν i) ΚΛ = ρ ii) ΚΛ = ρ, 2, iii) ΚΛ = 2ρ, iv) ΚΛ = 3ρ, ν) ΚΛ = 4ρ. 15 / 65

18 2. Δίνεται κύκλος (Ο, ρ) και μια ακτίνα του ΟΑ. Γράφουμε κύκλο με διάμετρο ΟΑ. Ποια είναι η σχετική θέση των δύο κύκλων; 3. Δίνεται ευθύγραμμο τμήμα ΑΒ και το μέσο του Ο. Γράφουμε τον κύκλο (Α, ΑΟ) και τον κύκλο με διάμετρο ΟΒ. Ποια είναι η σχετική θέση των δύο κύκλων; Αποδεικτικές Ασκήσεις 1. Δίνεται κύκλος (Ο, R) και εξωτερικό σημείο του Ρ, ώστε ΟΡ < 2R. Γράφουμε τον κύκλο (Ο, 2R). Να αποδείξετε ότι: i) ο κύκλος (O,2R) τέμνει τον κύκλο (Ρ, ΡΟ) σε δύο σημεία Γ και Δ, ii) τα ευθύγραμμα τμήματα ΟΓ και ΟΔ τέμνουν τον κύκλο (Ο,R) στα σημεία Α και Β, iii) τα ΡΑ και ΡΒ εφάπτονται στον (Ο, R). 16 / 65-66

19 2. Δίνονται δύο κύκλοι (Ο 1, R 1 ) και (Ο 2, R 2 ) με Ο 2 > R 1 + R 2 > 2R 2. i) Nα αποδείξετε ότι ο ένας βρίσκεται στο εξωτερικό του άλλου. ii) Εστω ότι η διάκεντρος τέμνει τον (Ο 1 ) στα σημεία Μ, Μ και τον (Ο 2 ) στα σημεία Ν, Ν αντίστοιχα με τα Μ, Ν μεταξύ των Μ', Ν'. Να αποδείξετε ότι MN AB M'N', όπου Α, Β τυχαία σημεία των κύκλων (Ο 1 ) και (Ο 2 ) αντίστοιχα. 3. Ένας κύκλος κέντρου Κ είναι εξωτερικός ενός άλλου κύκλου κέντρου Λ. Μια κοινή εξωτερική εφαπτομένη και μια κοινή εσωτερική εφαπτομένη των δύο κύκλων τέμνονται στο Ρ. Να αποδείξετε ότι ΚΡΛ = Μπορείτε να ζωγραφίσετε 12 κύκλους, ώστε ο καθένας από 17 / 66

20 αυτούς να εφάπτεται σε 5 ακριβώς από τους δοσμένους κύκλους; ΙΣΤΟΡΙΚΟ ΣΗΜΕΙΩΜΑ Οι γεωμετρικές κατασκευές Τα πρώτα προβλήματα γεωμετρικών κατασκευών απαντώνται στα «Στοιχεία.» του Ευκλείδη. Οι μαθηματικές προτάσεις διαιρούνται σε «θεωρήματα», όπου ζητείται να αποδειχθεί ότι ένα αντικείμενο έχει μια ορισμένη ιδιότητα και σε «προβλήματα», όπου ζητείται να κατασκευασθεί κάποιο αντικείμενο που να έχει ορισμένη ιδιότητα. Στα «Στοιχεία» οι κατασκευές στηρίζονται στα τρία πρώτα αιτήματα του Βιβλίου I (βλ. Τα μη επιλύσιμα γεωμετρικά προβλήματα της 18 / 66

21 αρχαιότητας). Ως τα τέλη του 4ου αι. πρέπει να είχε εδραιωθεί η πεποίθηση ότι ορισμένα προβλήματα, όπως π.χ. το πρόβλημα του διπλασιασμού του κύβου δεν είναι επιλύσιμο με τα επιτρεπτά τότε κατασκευαστικά εργαλεία. Έτσι εμφανίζεται η πρώτη ιεράρχηση των προβλημάτων με βάση τα επιτρεπτά κατασκευαστικά εργαλεία επιλυσιμότητάς τους. Ως επίπεδα προβλήματα θεωρούνται αυτά που μπορούν να κατασκευαστούν με κανόνα και διαβήτη, στερεά προβλήματα είναι εκείνα που λύνονται με τη βοήθεια κωνικών τομών, και γραμμικά προβλήματα είναι όλα τα υπόλοιπα. Ο Πάππος μάλιστα θεωρούσε σοβαρό λάθος τη λύση ενός επίπεδου προβλήματος με τη βοήθεια κωνικών τομών. 19 / 66

22 Γεωμετρικές κατασκευές Στην 2.7 αναφέραμε την έννοια της γεωμετρικής κατασκευής. Η αντιμετώπιση ενός προβλήματος κατασκευής ακολουθεί τα εξής στάδια: την κατασκευή (ή σύνθεση), την απόδειξη και τη διερεύνηση. Η κατασκευή είναι όλες εκείνες οι ενέργειες που οδηγούν στη σχεδίαση του σχήματος. Η απόδειξη είναι η επιβεβαίωση ότι το σχήμα που κατασκευάστηκε έχει ως στοιχεία τα δοσμένα. Η διερεύνηση είναι η αναγραφή όλων εκείνων των συνθηκών, που πρέπει να ικανοποιούν τα δεδομένα, ώστε το πρόβλημα να έχει λύση. Στη διερεύνηση εξετάζεται επίσης και το πλήθος των λύσεων του προβλήματος. 20 / 66

23 ΣΧΟΛΙΟ Όταν η κατασκευή του ζητούμενου σχήματος δεν είναι άμεσα φανερή, τότε, πριν από την κατασκευή κάνουμε, ως βοηθητικό βήμα, και τη λεγόμενη ανάλυση. Σε προβλήματα επόμενων κεφαλαίων θα χρησιμοποιήσουμε και την ανάλυση Απλες γεωμετρικές κατασκευές Στην παράγραφο αυτή παρουσιάζουμε ορισμένες γεωμετρικές κατασκευές με τις οποίες κατοχυρώνουμε κατασκευαστικά στοιχειώδη γεωμετρικά αντικείμενα και διαδικασίες. 21 / 66-67

24 ΠΡΟΒΛΗΜΑ 1 Δίνεται γωνία x Ο y και η ημιευθεία Ο'x'. Να κατασκευασθεί γωνία ίση με τη x Ο y η οποία έχει ως μια πλευρά, την Ο'x' και κορυφή το Ο'. y y' Β Β' Ο Α x Ο' Α' x' Σχήμα 67 Κατασκευή Καθιστούμε τη γωνία x Ο y (σχ.67) επίκεντρη γράφοντας κύκλο με κέντρο Ο και τυχαία ακτίνα ρ. Έστω ΑΒ το αντίστοιχο τόξο της. Με 22 / 67

25 κέντρο Ο' και ακτίνα την ίδια, γράφουμε άλλον κύκλο που τέμνει την Ο'x' στο Α'. Ακολούθως γράφουμε τον κύκλο (A', AB) του οποίου ένα κοινό σημείο με τον (Ο',ρ) είναι το B'. Φέρουμε την ημιευθεία Ο'Β'. Η γωνία x' Ο 'Β', δηλαδή η x' Ο 'y' είναι η ζητούμενη. Απόδειξη Οι γωνίες x Ο y και x' Ο 'y' είναι ίσες, γιατί είναι επίκεντρες στους ίσους κύκλους (Ο,ρ), (Ο',ρ) και βαίνουν στα ίσα τόξα AB και Α'Β' αντίστοιχα. ( 2.18) Διερεύνηση Για να έχει το πρόβλημα λύση, θα πρέπει οι κύκλοι (Ο',ρ) και (Α', ΑΒ) να τέμνονται. Αυτό όμως, συμβαίνει πάντοτε, επειδή για τη διάκεντρό τους Ο'Α' = ρ ισχύει: 23 / 67

26 Math Composer ht t p: / / www. m at hcom poser. com ρ - ΑΒ < ρ < ρ + ΑΒ (λόγω της τριγωνικής ανισότητας στο τρίγωνο ΟΑΒ). Μια δεύτερη λύση του προβλήματος αντιστοιχεί στο δεύτερο κοινό σημείο των κύκλων (Ο',ρ) και (Α', ΑΒ). ΠΡΟΒΛΗΜΑ 2 Να κατασκευασθεί η μεσοκάθετος ενός ευθύγραμμου τμήματος. Γ Α Δ ε Σχήμα 68 Κατασκευή Έστω τμήμα ΑΒ (σχ.68). Με κέντρα τα άκρα του Α, Β και ακτίνα ρ > ΑΒ 2 24 / 67 Β

27 γράφουμε δύο ίσους κύκλους. Αν Γ, Δ είναι τα κοινά σημεία των κύκλων αυτών, η ευθεία ε που ορίζουν είναι η ζητούμενη. Απόδειξη Η ευθεία ε είναι κοινή χορδή ίσων κύκλων, επομένως είναι κάθετη στη διάκεντρο ΑΒ ( 3.16) Διερεύνηση Για να έχει το πρόβλημα λύση θα πρέπει οι κύκλοι (Α, ρ) και (Β, ρ) να τέμνονται. Αυτό όμως ισχύει, αφού η διάκεντρό τους ΑΒ ικανοποιεί την ρ - ρ < ΑΒ < ρ + ρ. ΠΑΡΑΤΗΡΗΣΗ: Με την παραπάνω κατασκευή βρίσκουμε και το μέσο ενός ευθύγραμμου τμήματος. Αρκετές φορές τα παραπάνω βήματα: κατασκευή, απόδειξη, διερεύνηση μπορεί να παρουσιάζονται ενοποιημμένα. 25 / 67-68

28 ΠΡΟΒΛΗΜΑ 3 Δίνεται ευθεία ε και σημείο Α. Να κατασκευασθεί ευθεία που να διέρχεται από το Α κάθετη στην ε, όταν: (i) το Α είναι σημείο της ευθείας ε, (ii) το Α δεν είναι σημείο της ε. Λύση (i) Με κέντρο το Α (σχ.69) και τυχαία ακτίνα γράφουμε κύκλο, ο οποίος τέμνει την ε στα σημεία Β και Γ. Β Α ζ ε Γ Σχήμα 69 Έτσι το Α έγινε μέσο του τμήματος ΒΓ και επομένως η ζητούμενη κάθετος είναι η μεσοκάθετος του 26 / 68

29 τμήματος ΒΓ (προηγούμενη κατασκευή). (ii) Με κέντρο το Α (σχ.70) και κατάλληλη ακτίνα γράφουμε κύκλο που τέμνει την ευθεία ε στα Β και Γ. Η μεσοκάθετος ζ του τμήματος ΒΓ, που κατασκευάζεται όπως προηγουμένως, είναι η ζητούμενη κάθετος. Πράγματι, επειδή ΑΒ = ΑΓ, ως ακτίνες του ίδιου κύκλου, η μεσοκάθετος της χορδής ΒΓ διέρχεται από το Α. Β ζ Α ε Γ Σχήμα / 68

30 ΠΡΟΒΛΗΜΑ 4 Να κατασκευασθεί η διχοτόμος μιας γωνίας. Λύση Έστω γωνία x Ο y (σχ.71). Με κέντρο το Ο και τυχαία ακτίνα, γράφουμε κύκλο, που τέμνει τις πλευρές της γωνίας στα Α, Β αντίστοιχα. Φέρουμε τη μεσοκάθετο δ (Πρόβλημα 2) της χορδής ΑΒ που είναι και η ζητούμενη διχοτόμος. y Β δ Ο Α Σχήμα 71 x Πράγματι η ευθεία δ, ως μεσοκάθετος χορδής κύκλου, διέρχεται από το κέντρο του κύκλου και διχοτομεί 28 / 68

31 το αντίστοιχο τόξο ΑΒ της γωνίας x Ο y ( 3.6). Επομένως είναι διχοτόμος της. ΕΦΑΡΜΟΓΗ Να κατασκευασθεί η εφαπτομένη ενός κύκλου (Ο,ρ) σε ένα σημείο του Α. Λύση Στην προέκταση της ακτίνας ΟΑ (σχ.72) παίρνουμε το σημείο Β, ώστε να είναι ΑΒ = ΟΑ. Ο Α Β ε Σχήμα / 68

32 Στη συνέχεια φέρουμε τη μεσοκάθετο του ΟΒ που είναι η εφαπτομένη του κύκλου, γιατί είναι κάθετη στην ακτίνα στο άκρο της Α. ΣΗΜΕΙΩΣΗ: Για την κατασκευή των εφαπτόμενων από σημείο εκτός κύκλου βλέπε σελ Βασικές κατασκευές τριγώνων Σε αντιστοιχία με τα τρία κριτήρια ισότητας τριγώνων ( ) έχουμε τις επόμενες γεωμετρικές κατασκευές. ΠΡΟΒΛΗΜΑ 1 Να κατασκευαστεί τρίγωνο ΑΒΓ, του οποίου δίνονται οι πλευρές ΑΒ = γ, ΑΓ = β και η περιεχόμενη γωνία Α = ω. 30 / 68-69

33 Α β γ ω γ Β β Γ ω x y Σχήμα 73 Λύση Με πλευρά μια ημιευθεία Ax κατασκευάζουμε ( 3.17) γωνία x Α y = ω (σχ.73). Στις πλευρές Ax, Ay παίρνουμε, με το διαβήτη, τα σημεία Β, Γ αντίστοιχα, ώστε ΑΒ = γ και ΑΓ = β. Το τρίγωνο ΑΒΓ είναι το ζητούμενο. Πράγματι, από την κατασκευή, το τρίγωνο ΑΒΓ έχει ΑΓ = γ, ΑΓ = β και Α = ω. Με τον περιορισμό 0 < ω < 180 ( 3.10 Πορίσματα (ii)) το πρόβλημα έχει πάντα μοναδική λύση. 31 / 69

34 ΠΡΟΒΛΗΜΑ 2 Να κατασκευασθεί τρίγωνο ΑΒΓ, του οποίου δίνεται η πλευρά ΒΓ = α και οι προσκείμενες σε αυτή γωνίες Γ = ω και Β = φ. α ω φ ω φ Β Σχήμα 74 Λύση Θεωρούμε τμήμα ΒΓ = α και με κορυφές τα Β, Γ (σχ.74) κατασκευάζουμε, προς το ίδιο μέρος της ΒΓ, γωνίες Γ Β x = ω και Β Γ y = φ. Οι πλευρές Bx,Γy των γωνιών αυτών τέμνονται στο σημείο Α. Το τρίγωνο ΑΒΓ είναι το 32 / 69 y Α x Γ

35 ζητούμενο. Πράγματι, από την κατασκευή, το τρίγωνο ΑΒΓ έχει ΒΓ = α, Β = ω και Γ = φ. Με τον περιορισμό 0 < ω + φ < 180 ( 3.10 Πορίσματα (ii)) το πρόβλημα έχει πάντα μοναδική λύση. Στο επόμενο κεφάλαιο ( 4.2) θα δούμε ότι ο περιορισμός ω + φ < 180 εξασφαλίζει την τομή των ημιευθειών Βx και Γy ΠΡΟΒΛΗΜΑ 3 Να κατασκευασθεί τρίγωνο ΑΒΓ, του οποίου δίνονται οι πλευρές ΒΓ = α, ΑΓ = β και ΑΒ = γ. Λύση Θεωρούμε τμήμα ΒΓ = α (σχ.75) και γράφουμε τους κύκλους (Β,γ) και (Γ,β). Αν οι κύκλοι τέμνονται και Α είναι το ένα από τα σημεία τομής τους, το τρίγωνο ΑΒΓ είναι το ζητούμενο. 33 / 69

36 α β γ Α γ β Β α Γ Α' Σχήμα 75 Πράγματι το τρίγωνο ΑΒΓ, από την κατασκευή, έχει ΒΓ = α, ΑΒ = γ ως ακτίνα του (Β,γ) και ΑΓ = β ως ακτίνα του (Γ, β). Για να έχει λύση το πρόβλημα, πρέπει οι κύκλοι (Β,γ) και (Γ,β) να τέμνονται, το οποίο συμβαίνει ( 3.16) όταν β - γ < α < β + γ (β > γ). Αν Α' είναι το δεύτερο κοινό σημείο των κύκλων (Β, γ) και (Γ, β), το τρίγωνο Α'ΒΓ είναι ίσο με το ΑΒΓ, επομένως δεν αποτελεί νέα λύση 34 / 69-70

37 του προβλήματος, αφού τα τρίγωνα είναι ίσα. ΣΗΜΑΝΤΙΚΗ ΠΑΡΑΤΗΡΗΣΗ Από την παραπάνω κατασκευή προκύπτει ότι τρία τμήματα α,β,γ είναι πλευρές τριγώνου αν και μόνον αν ισχύει β - γ < α < β + γ (β γ). Αν υποθέσουμε ότι α > β και α > γ, η τελευταία διπλή ισότητα είναι ισοδύναμη με την α < β + γ. ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ Ερωτήσεις Κατανόησης 1. Πώς θα χωρισθεί με κανόνα και διαβήτη ένα ευθύγραμμο τμήμα σε τέσσερα ίσα τμήματα; 2. Πώς θα βρεθεί με κανόνα και διαβήτη το μέσο ενός τόξου δοσμένου κύκλου; 3. Πώς θα βρεθεί το κέντρο ενός κύκλου που έχει γραφεί με ένα νόμισμα; 35 / 69-70

38 4. Τα τμήματα α, β, γ με α > β και α > γ είναι πλευρές τριγώνου όταν: α. α = β + γ β. α > β + γ γ. α < β + γ δ. α < 2(β + γ) ε. Τίποτε από τα προηγούμενα. Κυκλώστε το γράμμα της σωστής απάντησης και αιτιολογήστε την απάντησή σας. Ασκήσεις Εμπέδωσης 1. Να κατασκευάσετε γεωμετρικά γωνία Να χωρίσετε δοσμένη γωνία σε τέσσερις ίσες γωνίες. 3. Να κατασκευάσετε ισόπλευρο τρίγωνο με πλευρά γνωστό τμήμα α. 4. Να κατασκευάσετε ισοσκελές τρίγωνο του οποίου δίνονται η βάση α και το αντίστοιχο σε αυτήν ύψος υ. 36 / 70

39 5. Να κατασκευάσετε ορθογώνιο τρίγωνο ΑΒΓ με Α = 90, όταν δίνονται: i) ΑΒ = γ και ΑΓ = β, ii) ΑΒ = γ και ΒΓ = α, όπου α, β, γ γνωστά τμήματα. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1. Έστω τρίγωνα ΑΒΓ και Α'Β'Γ' τέτοια, ώστε ΑΓ = Α'Γ', Γ = Γ' και Β + Β' = 2L. i) Να αποδείξετε ότι AB = Α'Β', ii) Διατυπώστε λεκτικά την άσκηση αυτή. 2. Δίνεται ισόπλευρο τρίγωνο ΑΒΓ και με πλευρές τις ΑΒ, ΒΓ, ΓΑ κατασκευάζουμε εξωτερικά του ΑΒΓ τρία ισόπλευρα τρίγωνα Α'ΒΓ, ΑΒ'Γ και ΑΒΓ'. Να αποδείξετε ότι ΑΑ' = ΒΒ' = ΓΓ'. 37 / 70

40 Math Composer ht t p: / / www. m at hcom poser. com Math Composer ht t p: / / www. m at hcom poser. com Math Composer ht t p: / / www. m at hcom poser. com 3. Αν OK, ΟΛ είναι αντίστοιχα τα αποστήματα των χορδών ΑΒ, ΓΑ κύκλου (O,R), να αποδείξετε ότι ΑΒ < ΓΑ, αν και μόνον αν OK > ΟΛ. 4. Δίνεται ισόπλευρο τρίγωνο ΑΒΓ και τα σημεία Δ, Ε, Ζ των πλευρών του ΑΒ, ΒΓ και ΓΑ αντίστοιχα, ώστε ΑΔ = ΒΕ = ΓΖ. Αν K, Λ, Μ τα σημεία τομής των ΑΕ, ΓΔ και ΒΖ, να αποδείξετε ότι το τρίγωνο ΚΛΜ είναι ισόπλευρο. 5. Δίνεται τρίγωνο ΑΒΓ με Β < 1L και ΑΓ = 2ΑΒ. Να αποδείξετε ότι Γ < Α 2 6. Έστω τρίγωνο ΑΒΓ με ΑΒ = ΒΓ 2 και Γ < Β. Να αποδείξετε ότι 2 Α = 1L. 38 / 70

41 7. Να αποδείξετε ότι δύο τρίγωνα τα οποία έχουν δύο πλευρές ίσες μία προς μία και τις αντίστοιχες διαμέσους που περιέχονται στις πλευρές αυτές ίσες μία προς μία είναι ίσα. 8. Δίνεται μια γωνία x Ο y και δύο εσωτερικά της σημεία Α και Β. Έστω Α' το συμμετρικό του Α ως προς την Ox και Β' το συμμετρικό του Β ως προς την Oy. Αν Μ, Ν είναι τυχαία σημεία των Ox, Oy αντίστοιχα, να αποδείξετε ότι ΑΜ + ΜΝ + ΝΒ = Α 'Μ + ΜΝ + ΝΒ'. Με τη βοήθεια της σχέσης αυτής να βρείτε τις θέσεις των Μ, Ν, για τις οποίες το άθροισμα ΑΜ + ΜΝ + ΝΒ είναι το μικρότερο δυνατό. 39 / 70

42 ΑΝΑΚΕΦΑΛΑΙΩΣΗ Τα τρίγωνα ταξινομούνται σε σκαληνά, ισοσκελή και ισόπλευρα, ως προς τις πλευρές τους. οξυγώνια, ορθογώνια, αμβλυγώνια, ως προς τις γωνίες τους. Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του, ενώ οι διάμεσοι, οι διχοτόμοι και τα ύψη του λέγονται δευτερεύοντα στοιχεία. Δύο τρίγωνα είναι ίσα όταν έχουν: Δύο πλευρές ίσες μία προς μία και τις περιεχόμενες σε αυτές γωνίες ίσες (ΠΓΠ). Μία πλευρά και τις προσκείμενες σε αυτή γωνίες ίσες μία προς μία (ΓΠΓ). Και τις τρεις πλευρές τους ίσες μία προς μία (ΠΠΠ). 40 / 71

43 Ειδικότερα δύο ορθογώνια τρίγωνα είναι ίσα όταν έχουν: Δύο οποιεσδήποτε ομόλογες πλευρές τους ίσες μία προς μία. Μια πλευρά και την προσκείμενη σε αυτήν οξεία γωνία αντίστοιχα, ίσες μία προς μία. Στο ισοσκελές τρίγωνο: Οι προσκείμενες στη βάση γωνίες είναι ίσες. Η διχοτόμος της γωνίας της κορυφής είναι διάμεσος και ύψος. Η διάμεσος που αντιστοιχεί στη βάση είναι ύψος και διχοτόμος. Το ύψος, που αντιστοιχεί στη βάση, είναι διχοτόμος και διάμεσος. Στον κύκλο: Αν δύο τόξα είναι ίσα, τότε και οι χορδές τους είναι ίσες και αντίστροφα. 41 / 71

44 Δύο χορδές είναι ίσες, αν και μόνον αν τα αποστήματά τους είναι ίσα. Ο φορέας του αποστήματος μιας χορδής: - διέρχεται από το κέντρο του κύκλου, - είναι μεσοκάθετος της χορδής, - διχοτομεί το αντίστοιχο τόξο της χορδής. Βασικοί γεωμετρικοί τόποι είναι: ο κύκλος, η μεσοκάθετος ευθύγραμμου τμήματος και η διχοτόμος γωνίας. Η μεσοκάθετος ενός ευθύγραμμου τμήματος είναι ο γεωμετρικός τόπος των σημείων του επιπέδου, που ισαπέχουν από τα άκρα του. Η διχοτόμος μιας γωνίας είναι ο γεωμετρικός τόπος των σημείων της γωνίας, που ισαπέχουν από τις πλευρές της. 42 / 71

45 Δύο σχήματα Σ, Σ' λέγονται συμμετρικά ως προς ένα σημείο Ο ή μια ευθεία ε, όταν κάθε σημείο του Σ' είναι συμμετρικό ενός σημείου του Σ, ως προς το Ο ή την ε και αντίστροφα. Ανισοτικές σχέσεις στο τρίγωνο: Κάθε εξωτερική γωνία ενός τριγώνου είναι μεγαλύτερη από τις απέναντι γωνίες του τριγώνου. Απέναντι από άνισες πλευρές βρίσκονται όμοια άνισες γωνίες. Κάθε πλευρά τριγώνου είναι μικρότερη από το άθροισμα των δύο άλλων και μεγαλύτερη από τη διαφορά τους. Βασική συνέπεια: Αν σε ένα τρίγωνο ΑΒΓ είναι Β = Γ, τότε θα είναι και β = γ. Έστω τρίγωνο ΑΒΓ και σημείο Δ της βάσης ΒΓ. Αν η ΑΔ είναι διχοτόμος και διάμεσος ή 43 / 71

46 διχοτόμος και ύψος ή διάμεσος και ύψος, τότε το τρίγωνο είναι ισοσκελές. ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΡΑΜΜΑ ΤΡΙΓΩΝΑ Είδη - Στοιχεία Κριτήρια Ισότητας: ΠΓΠ ΓΠΓ ΠΠΠ Ιδιότητες: ισοσκελών τριγώνων μεσοκαθέτου χορδών - τόξων 44 / 71-72

47 Κριτήρια ισότητας ορθογωνίων τριγώνων Σχέση χορδών και αποστημάτων Βασικοί γεωμετρικοί τόποι: κύκλος μεσοκάθετος διχοτόμος Συμμετρία ως προς κέντρο και άξονα Ανισοτικές σχέσεις - Κάθετες και πλάγιες Σχετικές θέσεις: ευθείας και κύκλου δύο κύκλων Απλές γεωμετρικές κατασκευές - Βασικές κατασκευές τριγώνων 45 / 72

48 4 ΚΕΦΑΛΑΙΟ Παράλληλες Ευθείες Στο κεφάλαιο αυτό θα μελετήσουμε τις παράλληλες ευθείες. Αρχικά, με βάση τις γωνίες που σχηματίζουν δύο παράλληλες και μία τέμνουσα θα κατασκευάσουμε από σημείο εκτός ευθείας μία παράλληλη προς αυτή. Στη συνέχεια, θα δεχθούμε ως αξίωμα το αίτημα παραλληλίας, που είναι ισοδύναμο με το Ευκλείδειο αίτημα και θα μελετήσουμε τις συνέπειές του στα τρίγωνα. 46 / 73

49 Lazlo Moholy - Nagy, (Ούγκρος, ), «Χρώμα - δικτύωμα vo.1» / 74

50 4.1 Εισαγωγή Όπως είδαμε στην 2.3, δύο διαφορετικές ευθείες μπορεί να έ- (α) χουν ένα μόνο κοινό σημείο ή να μην έχουν κανένα κοινό σημείο. Επομένως, οι σχετικές θέσεις δυο ευθειών ε 1 και ε 2, οι οποίες βρίσκονται στο ίδιο επίπεδο, είναι οι παρακάτω: i) ταυτίζονται (σχ.1α), ii) τέμνονται (σχ. 1β), iii) δεν τέμνονται (σχ.1γ). Στην τρίτη περίπτωση οι ευθείες ε 1 και ε 2 λέγονται παράλληλες, ώστε: Δυο ευθείες ε 1 και ε 2 που βρίσκονται στο ίδιο επίπεδο και δεν έχουν κοινό σημείο λέγονται παράλληλες ευθείες. Για να δηλώσουμε ότι οι ε 1 και ε 2 είναι παράλληλες, γράφουμε ε 1 //ε / 75

51 (α) ε 1 = ε 2 (β) Α ε 1 (γ) ε 1 ε 2 Σχήμα Τέμνουσα δυο ευθειών - Ευκλείδειο αίτημα Ας θεωρήσουμε δύο ευθείες ε 1 και ε 2 του επιπέδου, οι οποίες τέμνονται από τρίτη ευθεία ε 3. Παρατηρούμε ότι σχηματίζονται οκτώ γωνίες. Οι γωνίες γ, δ, ε, ζ που βρίσκονται μεταξύ των ε 1, ε 2 λέγονται "εντός", 49 / 75

52 ενώ οι γωνίες α, β, η, θ λέγονται "εκτός". Δύο γωνίες που βρίσκονται προς το ίδιο μέρος της τέμνουσας ε 3 λέγονται "επί τα αυτά μέρη", ενώ δύο γωνίες που βρίσκονται εκατέρωθεν της ε 3 λέγονται "εναλλάξ". η ζ θ ε β γ α δ ε 1 ε 2 Σχήμα 2 Έτσι, με συνδυασμό και των δύο χαρακτηρισμών, οι γωνίες ε και γ λέγονται εντός εναλλάξ, οι γωνίες ε και α λέγονται εντός εκτός και επί τα αυτά μέρη, ενώ οι γωνίες ε και δ λέγονται εντός και επί τα αυτά μέρη. 50 / 75

53 Χρησιμοποιώντας τις παραπάνω γωνίες, θα αποδείξουμε το επόμενο θεώρημα, που εξασφαλίζει την ύπαρξη παράλληλων ευθειών. Θεώρημα. Αν δυο ευθείες τεμνόμενες από τρίτη σχηματίζουν δυο εντός εναλλάξ γωνίες ίσες, τότε είναι παράλληλες. Γ Α ω φ Β ε 1 ε 2 Σχήμα 3 Απόδειξη Έστω ότι ω = φ. Αν οι ευθείες ε 1,ε 2 τέμνονται σε σημείο Γ, η εξωτερική γωνία φ του τριγώνου ΑΒΓ θα είναι 51 / 75-76

54 ίση με την απέναντι εσωτερική γωνία ω, που είναι άτοπο. ( 3.10) Άρα ε 1 //ε 2. ΠΟΡΙΣΜΑ Ι Αν δυο ευθείες τεμνόμενες από τρίτη σχηματίζουν δυο εντός, εκτός και επί τα αυτά μέρη γωνίες ίσες ή δυο εντός και επί τα αυτά μέρη παραπληρωματικές, τότε είναι παράλληλες. ΠΟΡΙΣΜΑ ΙΙ Δυο ευθείες κάθετες στην ίδια ευθεία, σε διαφορετικά σημεία της, είναι μεταξύ τους παράλληλες. Απόδειξη Πράγματι οι γωνίες ω και φ (σχ.4α) είναι ορθές, οπότε ω = φ. Άρα ε 1 //ε / 76

55 Α ε 1 (α) ω Β Α φ ε 2 ε' (β) Β ε Σχήμα 4 Θα εξετάσουμε τώρα αν από σημείο εκτός ευθείας μπορούμε να φέρουμε παράλληλες ευθείες προς αυτή και πόσες. Έστω λοιπόν, ευθεία ε και σημείο Α εκτός αυτής (σχ.4β). Φέρουμε την ΑΒ ε και ονομάζουμε ε' την ευθεία που είναι κάθετη στην ΑΒ στο σημείο Α. Τότε ε'//ε (αφού και οι δύο είναι κάθετες στην ΑΒ). 53 / 76

56 Έτσι λοιπόν υπάρχει ευθεία ε' που διέρχεται από ένα σημείο Α που δεν ανήκει στην ε και είναι παράλληλη προς την ευθεία ε. Δεχόμαστε ως αξίωμα ότι η ευθεία αυτή είναι μοναδική, δηλαδή: Αίτημα παραλληλίας Από σημείο εκτός ευθείας άγεται μία μόνο παράλληλη προς αυτή. ΣΧΟΛΙΟ Το παραπάνω αξίωμα είναι ισοδύναμο με το 5 ο αίτημα των "Στοιχείων" του Ευκλείδη (Ευκλείδειο αίτημα). Το Ευκλείδειο αίτημα ή κάποιο ισοδύναμο του καθορίζει τη φύση ολόκληρης της Γεωμετρίας και αποτελεί βάση για τα περισσότερα θεωρήματα της Ευκλείδειας Γεωμετρίας. (βλ. Ιστορικό σημείωμα, σελ. 90) 54 / 76

57 Ιδιότητες παράλληλων ευθειών Άμεσες συνέπειες του αιτήματος παραλληλίας είναι οι παρακάτω προτάσεις. Πρόταση I Αν δυο παράλληλες ευθείες τέμνονται από τρίτη, σχηματίζουν τις εντός εναλλάξ γωνίες ίσες. Απόδειξη Έστω ότι ε 1 //ε 2 και ε μια τέμνουσα (σχ. 5). Θα αποδείξουμε π.χ. ότι ω = φ. Αν οι γωνίες ω και φ δεν είναι ίσες, φέρουμε την Αx ώστε οι γωνίες x A Β και φ να βρίσκονται εκατέρωθεν της ε και να είναι ίσες. Τότε Αx//ε 2 γιατί τεμνόμενες από την ΑΒ σχηματίζουν δύο εντός και εναλλάξ γωνίες ίσες. Κατά συνέπεια 55 / 77

58 υπάρχουν δύο παράλληλες από το Α προς την ε 2, που είναι άτοπο. Άρα ω = φ. x Α ω φ Β ε ε 1 ε 2 Σχήμα 5 Πόρισμα Αν δυο παράλληλες ευθείες τέμνονται από τρίτη σχηματίζουν i) τις εντός εκτός και επί τα αυτά μέρη γωνίες ίσες, ii) τις εντός και επί τα αυτά μέρη γωνίες παραπληρωματικές. Πρόταση II Αν δυο διαφορετικές ευθείες ε 1 και ε 2 είναι παράλληλες προς μία 56 / 77

59 τρίτη ευθεία ε, τότε είναι και μεταξυ τους παράλληλες, δηλαδή αν ε 1 //ε και ε 2 //ε, τότε ε 1 //ε 2. Απόδειξη Αν οι ε 1 και ε 2 τέμνονταν σε σημείο Α, θα είχαμε από το Α δύο παράλληλες προς την ε, που είναι άτοπο. Άρα ε 1 //ε 2. ε 1 ε 2 ε Α Σχήμα 6 Πρόταση III Αν δυο ευθείες ε 1 και ε 2 είναι παράλληλες και μία τρίτη ευθεία ε τέμνει τη μία από αυτές, τότε η ε θα τέμνει και την άλλη. 57 / 77

60 Απόδειξη Υποθέτουμε ότι η ε τέμνει την ε 1 στο Α. Αν η ε δεν έτεμνε την ε 2, θα ήταν ε//ε2 και έτσι θα είχαμε από το Α δύο παράλληλες προς την ε 2, πράγμα αδύνατο. Άρα η ε τέμνει την ε 2. Α ε ε 1 ε 2 Σχήμα 7 Πόρισμα Αν μια ευθεία είναι κάθετη σε μια από δυο παράλληλες ευθείες, τότε είναι κάθετη και στην άλλη. Πρόταση IV Αν δυο ευθείες τεμνόμενες από τρίτη σχηματίζουν τις εντός και 58 / 77-78

61 επί τα αυτά μέρη γωνίες με άθροισμα μικρότερο από 2 ορθές, τότε οι ευθείες τέμνονται προς το μέρος της τέμνουσας που βρίσκονται οι γωνίες. Απόδειξη Έστω ότι η ε τέμνει τις ε 1 ε 2 στα Α και Β (σχ. 8) αντίστοιχα και ότι φ + ω 2L. Τότε οι ε 1 και ε 2 δεν είναι παράλληλες, αφού φ + ω 2L (Πόρισμα σελ. 77). Έστω ότι οι ε 1 και ε 2 τέμνονται σε σημείο Κ, προς το μέρος της τέμνουσας, που δεν περιέχει τις γωνίες ω και φ. Τότε, όμως, η εξωτερική γωνία ω του τριγώνου ΑΚΒ είναι μεγαλύτερη από τη γωνία Α 1 δηλαδή ω > Α 1 = 2L- φ ή ω + φ > 2L, που είναι άτοπο. Άρα οι ε 1 ε 2 τέμνονται 59 / 78

62 προς το μέρος της τέμνουσας που βρίσκονται οι γωνίες ω και φ. Κ Α φ ω Β ε 1 ε 2 Σχήμα 8 ΣΧΟΛΙΟ Η πρόταση IV αποτελεί βασικό κριτήριο με το οποίο εξετάζουμε αν δύο ευθείες τέμνονται. ΠΟΡΙΣΜΑ Η κατασκευή τριγώνου με δοσμένη μία πλευρά και τις δυο προσκείμενες σε αυτή γωνίες έχει λυση, αν και μόνο αν το άθροισμα των δυο γωνιών είναι μικρότερο των δυο ορθών. (βλέπε Πρόβλημα 2) 60 / 78

63 4.3 Κατασκευή παράλληλης ευθείας Είδαμε παραπάνω ότι υπάρχει ευθεία ε', η οποία διέρχεται από ένα σημείο Α και είναι παράλληλη προς γνωστή ευθεία ε. Για την κατασκευή της ε' φέρουμε από το Α ένα πλάγιο τμήμα ΑΒ προς την ε και ονομάζουμε φτην οξεία γωνία που σχηματίζει το ΑΒ με την ε. Μεταφέρουμε τη γωνία φ ( 2.6) ώστε να έχει κορυφή το Α, η μια πλευρά της να είναι η ΑΒ και η άλλη πλευρά της ΑΓ να βρίσκεται στο ημιεπίπεδο που δεν ανήκει η γωνία φ. Επειδή Γ Α Β = φ έχουμε ΑΓ//ε, αφού τεμνόμενες από την ΑΒ, σχηματίζουν δύο εντός και εναλλάξ γωνίες ίσες. Έτσι η ευθεία ΑΓ είναι η ζητούμενη ευθεία ε'. 61 / 78

64 Γ Α φ φ Β Σχήμα 9 ε' ε 4.4 Γωνίες με πλευρές παράλληλες Ας θεωρήσουμε δύο γωνίες x Α y και x' B y' με Αx//Βx' και Αy//Βy', δηλαδή δύο γωνίες που έχουν τις πλευρές τους, μία προς μία παράλληλες. Αν προεκτείνουμε τις Βx' και Βy' θα τέμνουν τις Αx και Αy στα σημεία Γ και Δ αντίστοιχα. Έτσι όλες οι γωνίες του σχήματος 10 λόγω των παραλλήλων θα είναι ίσες με ω ή φ. Παρατηρούμε ότι: Αν και οι δυο γωνίες είναι οξείες (σχ.11), είναι ίσες. 62 / 79

65 φ Α ω φ Δ ω ω φ y φ ω Γ ω φ φ Β ω ω φ y' ω φ ε' ε Σχήμα 10 ω ω ω Σχήμα 11 Αν και οι δυο γωνίες είναι αμβλείες (σχ.12), είναι ίσες. 63 / 79

66 Αν η μία γωνία είναι οξεία και η άλλη αμβλεία (σχ.13), είναι παραπληρωματικές. φ φ φ Σχήμα 12 ω φ Σχήμα 13 Συμπεραίνουμε λοιπόν ότι: Δυο γωνίες που έχουν τις πλευρές τους παράλληλες, μία προς μία, είναι ίσες αν είναι και οι δυο οξείες ή αμβλείες, ενώ είναι 64 / 79

67 παραπληρωματικές αν η μία γωνία είναι οξεία και η άλλη αμβλεία. ΕΦΑΡΜΟΓΗ Έστω ε 1 και ε 2 δυο παράλληλες που τέμνονται από ευθεία ε. Να αποδειχθεί ότι (i) Οι διχοτόμοι δυο εντός εναλλάξ γωνιών είναι παράλληλες. (ii) Οι διχοτόμοι δυο εντός και επί τα αυτά μέρη γωνιών είναι κάθετες. ε Δ Α Μ ε 1 ω y x φ z ε 2 Β Γ Σχήμα 14 Απόδειξη (i) Έστω Αx, Βy οι διχοτόμοι των γωνιών Δ Α Β και Α Β Γ αντίστοιχα. 65 / 79

68 Math Composer ht t p: / / www. m at hcom poser. com Α Τότε ω = Δ B και φ = A Β Γ. Αλλά 2 2 Δ Α Β = Α Β Γ (ως εντός εναλλάξ). Από τα παραπάνω προκύπτει ότι ω = φ. Οι ω και φ όμως είναι εντός εναλλάξ γωνίες των ευθειών Αx και Βy με τέμνουσα την ΑΒ. Άρα Αx//Βy. (ii) Αν Αz διχοτόμος της Μ A Β, τότε Αz Αx (ως διχοτόμοι εφεξής και παραπληρωματικών γωνιών). Αφού Αx//Βy, θα είναι και Αz Βy. 4.5 Αξιοσημείωτοι κύκλοι τριγώνου Στην παράγραφο αυτή χρησιμοποιούμε το Ευκλείδειο αίτημα για να μελετήσουμε τους κύκλους που σχετίζονται με ένα τρίγωνο. Math Composer ht t p: / / www. m at hcom poser. com 66 / 79-80

69 Ο περιγεγραμμένος κύκλος τριγώνου Θα αποδείξουμε ότι για κάθε τρίγωνο υπάρχει κύκλος που διέρχεται από τις τρεις κορυφές του. Ο κύκλος αυτός λέγεται περιγεγραμμένος κύκλος του τριγώνου και επιπλέον αποδεικνύεται ότι το κέντρο του είναι ένα σημείο στο οποίο συντρέχουν και οι τρεις μεσοκάθετοι του τριγώνου και λέγεται περίκεντρο. Θεώρημα. Οι τρεις μεσοκάθετοι ενός τριγώνου διέρχονται από το ίδιο σημείο, το οποίο είναι κέντρο κύκλου που διέρχεται από τις κορυφές του τριγώνου. 67 / 80

70 Απόδειξη Έστω τρίγωνο ΑΒΓ και Κ, Λ, Μ τα μέσα των πλευρών του ΑΒ, ΒΓ και ΑΓ αντίστοιχα. Οι μεσοκάθετοι Κx και Λy των ΑΒ, ΒΓ θα τέμνονται σε σημείο Ο, αφού τέμνονται οι κάθετες ευθείες τους ΑΒ και ΒΓ. Το Ο ισαπέχει από τις κορυφές Α και Β αφού ανήκει στη μεσοκάθετο της πλευράς ΑΒ, δηλαδή ΟΑ = ΟΒ. Επίσης ΟΒ = ΟΓ, αφού το Ο ανήκει στη μεσοκάθετο της πλευράς ΒΓ. Επομένως ισχύει ότι ΟΑ = ΟΓ, οπότε το Ο θα ανήκει και στη μεσοκάθετο της ΑΓ. Άρα, ο κύκλος (O,OA) θα διέρχεται από τις τρεις κορυφές του τριγώνου ΑΒΓ και είναι ο περιγεγραμμένος κύκλος του τριγώνου. 68 / 80

71 Ο εγγεγραμμένος κύκλος τριγώνου Ένας άλλος σημαντικός κύκλος βρίσκεται στο εσωτερικό τριγώνου και εφάπτεται και στις τρεις πλευρές του. Θα αποδείξουμε ότι για κάθε τρίγωνο υπάρχει κύκλος με την ιδιότητα αυτή. Ο κύκλος αυτός λέγεται εγγεγραμμένος κύκλος του τριγώνου και το κέντρο του, το οποίο λέγεται έγκεντρο, θα είναι το σημείο τομής των διχοτόμων των γωνιών του τριγώνου. Α Β Κ Ο Λ M Γ y Σχήμα / 80

72 Θεώρημα. Οι διχοτόμοι των γωνιών ενός τριγώνου διέρχονται από το ίδιο σημείο, το οποίο είναι κέντρο κύκλου που εφάπτεται και στις τρεις πλευρές του τριγώνου. Απόδειξη Έστω τρίγωνο ΑΒΓ και οι διχοτόμοι BE και ΓΖ των γωνιών του Β και Γ αντίστοιχα. Οι BE και ΓΖ τέμνονται σε σημείο I αφού Ε Β Γ + Ζ Γ Β = Β + Γ < Β + Γ < 2L. 2 2 Math Composer ht t p: / / www. m at hcom poser. com ( Πρόταση IV) Το I ως σημείο της διχοτόμου της Β θα ισαπέχει από τις πλευρές της ΒΑ και ΒΓ, δηλαδή ΙΛ = ΙΘ. Ανάλογα το I θα ισαπέχει από τις πλευρές της Γ, 70 / 80-81

73 δηλαδή ΙΘ = IN. Επομένως το I ισαπέχει από τις ΑΒ και ΑΓ και θα ανήκει στη διχοτόμο της γωνίας Α. Τελικά, το I είναι το σημείο τομής και των τριών διχοτόμων του τριγώνου. Με κέντρο το I και ακτίνα την κοινή απόσταση του I από τις πλευρές του ΑΒΓ, γράφεται κύκλος που εφάπτεται και στις τρεις πλευρές του τριγώνου. Ζ Λ Α Ι Ν Ε Β Θ Δ Σχήμα 16 Γ 71 / 81

74 ΕΦΑΡΜΟΓΗ Οι παρεγγεγραμμένοι κύκλοι τριγώνου Η ιδιότητα των εσωτερικών διχοτόμων ενός τριγώνου να διέρχονται από το ίδιο σημείο ισχύει και όταν θεωρήσουμε δύο εξωτερικές και μία εσωτερική διχοτόμο του τριγώνου. Οι τρεις αυτές διχοτόμοι τέμνονται σε σημείο το οποίο είναι κέντρο κύκλου που εφάπτεται στη μία πλευρά του τριγώνου και στις προεκτάσεις των δύο άλλων. Ο κύκλος αυτός λέγεται παρεγγεγραμμένος και το κέντρο του παράκεντρο του τριγώνου. Σε κάθε τρίγωνο υπάρχουν τρία παράκεντρα, τα οποία συμβολίζουμε I α, I β, I γ, και κατά συνέπεια τρεις παρεγγεγραμμένοι κύκλοι (σχ.17α,β). 72 / 81

75 Οι διχοτόμοι δύο εξωτερικών γωνιών ενός τριγώνου και η ημιευθεία που διχοτομεί την τρίτη γωνία του τριγώνου διέρχονται από το ίδιο σημείο, το οποίο είναι κέντρο κύκλου που εφάπτεται στη μία πλευρά του τριγώνου και στις προεκτάσεις των δύο άλλων. Απόδειξη Α Β Γ I α x y Σχήμα 17α 73 / 81

76 Ι γ Α Ι β Β Γ Ι α Σχήμα 17β Ας θεωρήσουμε τις διχοτόμους Βx και Γy των δύο εξωτερικών γωνιών B εξ και Γ εξ αντίστοιχα, του τριγώνου ΑΒΓ. Οι Βx και Γy τέμνονται σε σημείο Ι α, αφού ισχύει ότι: 74 / 81-82

77 Math Composer ht t p: / / www. m at hcom poser. com x Β Γ + y Γ B = Math Composer ht t p: / / www. m at hcom poser. com = 2L - Β + 2 Γ Β < 2L. εξ + εξ 2 Γ = Το Ι α ισαπέχει από τη ΒΓ και την προέκταση της ΑΒ, καθώς και από την προέκταση της ΑΓ. Επομένως ανήκει στη διχοτόμο της γωνίας Α, αφού ισαπέχει από τις πλευρές της. ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ Ερωτήσεις Κατανόησης 1. i) Πώς ονομάζονται οι γωνίες α και β του παρακάτω σχήματος; Τι σχέση έχουν μεταξύ τους; ii) Τι ισχύει για τις γωνίες γ και δ; 75 / 82

78 γ α ε δ ε 1 ε 2 β 2. Να εξηγήσετε γιατί η ΑΒ είναι παράλληλη της ΓΔ. Α Β 65 Γ Δ Αν ω = θ και φ = 60 + θ να εξηγήσετε γιατί xx'//yy'. x' ω x y' φ y 76 / 82

79 4. Να αναφέρετε πέντε (5) τρόπους για να αποδείξουμε ότι δύο ευθείες είναι παράλληλες. 5. Δύο οξείες γωνίες που έχουν τις πλευρές τους παράλληλες είναι: i) συμπληρωματικές, ii) ίσες, iii) παραπληρωματικές, iv) κανένα από τα παραπάνω. Να δικαιολογήσετε την απάντησή σας. Ασκήσεις Εμπέδωσης 1. Δίνεται ισοσκελές τρίγωνο ΑΒΓ και ευθεία ε παράλληλη προς τη βάση του ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα Δ και Ε αντίστοιχα. Να αποδείξετε ότι το τρίγωνο ΑΔΕ είναι ισοσκελές. 2. Δίνεται γωνία x Ο y και σημείο Α της διχοτόμου της. Αν η παράλληλη από το Α προς την Ox τέμνει την 77 / 82

80 Oy στο Β, να αποδείξετε ότι το τρίγωνο ΟΑΒ είναι ισοσκελές. 3. Δίνεται γωνία x Ο y και η διχοτόμος της ΟΔ. Από σημείο Α της Oy φέρουμε παράλληλη προς την ΟΔ που τέμνει την προέκταση της Ox στο Β. Να αποδείξετε ότι OA = OB. 4. Δίνεται ισοσκελές τρίγωνο ΑΒΓ (AB = ΑΓ) και σημείο Δ της πλευράς ΑΒ. Αν ο κύκλος (Δ,ΔΒ) τέμνει τη ΒΓ στο Ε, να αποδείξετε ότι ΔΕ//ΑΓ. 5. Στις προεκτάσεις των πλευρών ΒΑ, ΓΑ τριγώνου ΑΒΓ παίρνουμε αντίστοιχα τα τμήματα: ΑΔ = ΑΒ και ΑΕ = ΑΓ. Να αποδείξετε ότι ΔΕ//ΒΓ. 6. Δίνεται κύκλος (Ο,ρ) και Μ το μέσο χορδής του ΑΒ. Φέρουμε Ox OM. Να αποδείξετε ότι Ox//Β. 78 / 82

81 Αποδεικτικές Ασκήσεις 1. Δίνεται ισοσκελές τρίγωνο ΑΒΓ (AB = ΑΓ) και η διάμεσος του ΑΜ. Φέρουμε Γx ΒΓ προς το ημιεπίπεδο που δεν ανήκει το Α και παίρνουμε σε αυτή τμήμα ΓΔ = ΑΒ. Να αποδείξετε ότι η ΑΔ είναι διχοτόμος της γωνίας Μ A Γ. 2. Δίνεται τρίγωνο ΑΒΓ και η διχοτόμος του ΑΔ. Από την κορυφή Β φέρουμε ΒΕ//ΑΔ που τέμνει την προέκταση της ΓΑ στο Ε. Να αποδείξετε ότι ΕΓ = ΑΒ + ΑΓ. 3. Δίνεται τρίγωνο ΑΒΓ με ΑΒ < ΑΓ και η εξωτερική διχοτόμος του Αx. Από την κορυφή Β φέρουμε ΒΔ//Αx που τέμνει την ΑΓ στο Δ. Να αποδείξετε ότι ΔΓ = ΑΓ - ΑΒ. 4. Από το έγκεντρο I, τριγώνου ΑΒΓ φέρουμε ευθεία παράλληλη της ΒΓ που τέμνει τις ΑΒ και ΑΓ στα σημεία 79 / 82-83

82 Δ και Ε αντίστοιχα. Να αποδείξετε ότι ΔΕ = ΒΔ + ΓΕ. 5. Από το έγκεντρο I τριγώνου ΑΒΓ φέρουμε ΙΔ//ΑΒ και ΙΕ//ΑΓ. Να αποδείξετε ότι η περίμετρος του τριγώνου ΔΙΕ ισούται με τη ΒΓ. Α Β Δ I Σύνθετα θέματα 1. Δίνεται τρίγωνο ΑΒΓ, η διχοτόμος του ΒΔ και η εξωτερική διχοτόμος του Βx. Θεωρούμε δύο σημεία Ε και Κ της πλευράς ΑΒ. Αν ο κύκλος (Ε,ΕΒ) τέμνει τη ΒΔ στο Ζ, ενώ ο κύκλος (Κ,ΚΒ) τέμνει τη Βx στο Μ, να αποδείξετε ότι ΕΖ//ΜΚ. 80 / 83 E Γ

83 2. Από τα άκρα ευθύγραμμου τμήματος ΑΒ φέρουμε προς το ίδιο ημιεπίπεδο δύο παράλληλες ημιευθείες Αx και Βy. Παίρνουμε Γ τυχαίο σημείο του ΑΒ, και στις Αx,Βy τα σημεία Δ και Ε αντίστοιχα, ώστε ΑΔ = ΑΓ και ΒΕ = ΒΓ. Να αποδείξετε ότι η γωνία Δ Γ Ε είναι ορθή. 3. Από το παράκεντρο Ι α τριγώνου ΑΒΓ με ΑΒ < ΑΓ φέρουμε παράλληλη στην ΑΒ, που τέμνει τις πλευρές ΒΓ και ΑΓ στα σημεία Δ και Ε αντίστοιχα. Να αποδείξετε ότι ΔΕ = ΑΕ - ΒΔ. 4. Δίνεται τρίγωνο ΑΒΓ με ΑΒ < ΑΓ και Μ σημείο της πλευράς ΒΓ. Από το Μ φέρουμε παράλληλη προς τη διχοτόμο ΑΔ της γωνίας A, που τέμνει τις ΑΒ και ΑΓ στα σημεία Ε και Ζ αντίστοιχα. Να αποδείξετε ότι: 81 / 83

84 Math Composer ht t p: / / www. m at hcom poser. com i) Το τρίγωνο ΕΑΖ είναι ισοσκελές. ii) ΒΕ + ΓΖ = σταθερό. iii) Αν Μ μέσο της ΒΓ τότε: Math Composer ht t p: / / www. m at hcom poser. com α) BE = ΓZ = β) AE = AZ = AΓ + AB, 2 AΓ - AB Άθροισμα γωνιών τριγώνου Η παραλληλία επιτρέπει να μεταφέρουμε τις γωνίες ενός τριγώνου, ώστε να έχουν κοινή κορυφή μια οποιαδήποτε κορυφή του τριγώνου και να σχηματίζουν ευθεία γωνία (σχ.18). Έτσι μπορούμε να υπολογίσουμε το άθροισμα των γωνιών του τριγώνου. 82 / 83

85 x ω Α φ y Β Γ Σχήμα 18 Θεώρημα. Το άθροισμα των γωνιών κάθε τριγώνου είναι 2 ορθές. Απόδειξη Από μια κορυφή, π.χ. την Α, φέρουμε ευθεία xy//bγ. Τότε ω = Β (1) και φ = Γ (2), ως εντός και εναλλάξ των παραλλήλων xy και ΒΓ με τέμνουσες ΑΒ και ΑΓ αντίστοιχα. 83 / 83

86 Αλλά ω + Α + φ = 2L (3). Από τις (1), (2) και (3) προκύπτει ότι Α + Β + Γ = 2L. Πορίσματα i) Κάθε εξωτερική γωνία τριγώνου είναι ίση με το άθροισμα των δύο απέναντι εσωτερικών γωνιών του τριγώνου. ii) Αν δυο τρίγωνα έχουν δυο γωνίες ίσες, μία προς μία, έχουν και τις τρίτες γωνίες τους ίσες. iii) Οι οξείες γωνίες ενός ορθογώνιου τριγώνου είναι συμπληρωματικές. iv) Κάθε γωνία ισόπλευρου τριγώνου είναι 60 ο. Απόδειξη i) Έχουμε Α + Β + Γ = 2L και Γ εξ + Γ = 2L, οπότε 84 / 83-84

87 Α + Β + Γ = + Γ ή = Α + Γ εξ Γ εξ Β ii) - iv) Προφανή. Α Γ εξ Β Γ x 4.7 Γωνίες με πλευρές κάθετες Θεώρημα. Δυο οξείες γωνίες που έχουν τις πλευρές τους κάθετες είναι ίσες. Απόδειξη Έστω οι γωνίες x Ο y = ω και x' Ο' y'= φ με Ox O'x' και Oy O'y' Τα τρίγωνα ΟΑΓ και Ο'ΒΓ έχουν 85 / 84

88 A = B = 1L και Γ 1 = Γ 2 (κατακορυφήν). Άρα θα έχουν και τις άλλες γωνίες ίσες, οπότε ω = φ. z Ο θ Α y ω 1 Γ Β x y' 2 x' θ' φ O' z' Σχήμα 20 Πορίσματα i) Δυο αμβλείες γωνίες που έχουν τις πλευρές τους κάθετες είναι ίσες. 86 / 84

89 ii) Δυο γωνίες που έχουν τις πλευρές τους κάθετες αλλά η μία είναι οξεία και η άλλη αμβλεία είναι παραπληρωματικές. Απόδειξη i) Πράγματι, (σχ. 20) είναι θ + ω =2L, θ' + φ = 2L, οπότε θ = θ', αφού ω = φ. ii)πράγματι, (σχ.20) είναι θ + ω = 2L, οπότε θ + φ = 2L, αφού ω = φ. 4.8 Άθροισμα γωνιών κυρτού ν-γώνου Ας θεωρήσουμε κυρτό πεντάγωνο ΑΒΓΔΕ και Ο τυχαίο εσωτερικό σημείο του. Αν ενώσουμε το Ο με τις κορυφές του πενταγώνου, σχηματίζονται πέντε τρίγωνα. Το άθροισμα των γωνιών κάθε τριγώνου είναι 2 ορθές. Έτσι το άθροισμα των γωνιών και των πέντε τριγώνων είναι (2-5) ορθές. 87 / 84-85

90 Αν αφαιρέσουμε το άθροισμα των γωνιών Α 1 + Α 2 +Α 3 +Α 4 +Α 5 = 4 ορθές, θα μείνει το άθροισμα των γωνιών του πενταγώνου, δηλαδή: A + B + Γ + Δ + Ε = (2 5-4) ορθές. Ε Α 5 4 Ο Β Γ Δ Σχήμα 21 Όμοια, αν το κυρτό πολύγωνο έχει ν πλευρές και ενώσουμε το Ο με τις κορυφές του σχηματίζονται ν τρίγωνα. Το άθροισμα των γωνιών των ν τριγώνων είναι 2ν ορθές. Αν αφαιρέσουμε το άθροισμα των 88 / 85

91 γωνιών Ο 1 + Ο 2 + Ο Ο 4 = 4 ορθές έχουμε: + A 2 + A A ν = (2ν - 4) ορθές. A 1 Καταλήξαμε λοιπόν στο συμπέρασμα ότι πρέπει: Το άθροισμα των γωνιών κυρτού ν-γώνου να είναι 2ν - 4 ορθές. Α 1 Α ν ν - 1 ν Ο Α ν - 1 Α 4 Α 5 Α 2 Α 3 Σχήμα / 85

92 Α 1 Α ν - 1 Α 2 Α 5 Α 3 Α 4 Α 4 Α 5 Σχήμα 23 Άλλη απόδειξη. Ας θεωρήσουμε κυρτό πολύγωνο Α 1 Α 2 Α ν με ν πλευρές και ας φέρουμε από μια κορυφή του, π.χ. την Α 1 όλες τις διαγωνίους που διέρχονται από αυτή. Έτσι το πολύγωνο διαιρείται σε ν - 2 τρίγωνα, γιατί σε καθεμιά από τις πλευρές του, εκτός των Α 1 Α 2 και Α 1 Α ν που διέρχονται από την κορυφή Α 1, αντιστοιχεί ένα τρίγωνο. Επειδή το άθροισμα των 90 / 85

93 γωνιών των ν - 2 τριγώνων είναι 2(ν - 2) = (2ν - 4) ορθές και ισούται με το άθροισμα των γωνιών του πολυγώνου, προκύπτει ότι: Το άθροισμα των γωνιών κυρτού ν-γώνου είναι 2ν - 4 ορθές. Πορίσμα Το άθροισμα των εξωτερικών γωνιών κυρτού ν - γώνου είναι 4 ορθές. Απόδειξη Έχουμε Α 1εξ + Α 1 = 2L Α 2εξ + Α 2 = 2L Math Composer ht t p: / / www. m at hcom poser. com = προσθέτουμε κατά μέλη οπότε: Α νεξ + Α ν = 2L 91 / 85

94 (Α 1εξ + A 2εξ + + Α νεξ ) + + (Α 1 + Α Α ν ) = 2νL ή (Α 1εξ + Α 2εξ + + Α νεξ ) + + (2ν - 4)L = 2vL ή Α 1εξ + Α 2εξ + + Α νεξ = 4L. Α 1 Α 2 Α 3 Α 4 Σχήμα / 85

95 Math Composer ht t p: / / www. m at hcom poser. com ΕΦΑΡΜΟΓΗ 1η Θεωρούμε τρίγωνο ΑΒΓ και τη διχοτόμο Ax της εξωτερικής γωνίας Α του τριγώνου. Να αποδειχθεί ότι το τρίγωνο είναι ισοσκελές, αν και μόνο αν Αx // ΒΓ. 1 Α ω x ω 2 γ β ω ω Β α Γ Απόδειξη (i) Αν β = γ τότε Β = Γ = ω. Όμως Αεξ = Β + Γ = 2ω, οπότε Α εξ = ω ή A 1 = Γ = ω. Άρα 2 93 / 86

96 Math Composer ht t p: / / www. m at hcom poser. com Αx//ΒΓ, αφού σχηματίζουν δύο εντός και εναλλάξ γωνίες ίσες. (ii) Αν Αx//ΒΓ τότε A 1 = Γ (ως εντός εναλλάξ) και A 2 = Β (ως εντός εκτός και επί τα αυτά μέρη). Άρα Β = Γ (αφού Α 1 = Α 2 ), οπότε β = γ. ΕΦΑΡΜΟΓΗ 2η Σε τρίγωνο ΑΒΓ φέρουμε τις εσωτερικές και εξωτερικές διχοτόμους των γωνιών του Β και Γ. Να αποδειχθεί ότι (i) Η γωνία των δύο εσωτερικών διχοτόμων είναι ίση με 90 + A 2. (ii) Η γωνία μίας εσωτερικής και μίας εξωτερικής διχοτόμου είναι 94 / 86

97 Math Composer ht t p: / / www. m at hcom poser. com Math Composer ht t p: / / www. m at hcom poser. com ίση με A 2. (iii) Η γωνία των δύο εξωτερικών A διχοτόμων είναι ίση με Απόδειξη Οι εσωτερικές διχοτόμοι τέμνονται στο έγκεντρο I. Οι εξωτερικές διχοτόμοι των εξωτερικών γωνιών Β και Γ τέμνονται στο παράκεντρο Ι α και η εσωτερική διχοτόμος της Β με την εξωτερική διχοτόμο της Γ τέμνονται στο παράκεντρο Ι β. (i) Από το τρίγωνο ΒΙΓ παίρνουμε: ΒΙΓ + Β 1 + Γ 1 = 180 ή ΒΙΓ = Β 1 - Γ 1 ή 95 / 86

98 Math Composer ht t p: / / www. m at hcom poser. com Math Composer ht t p: / / www. m at hcom poser. com Math Composer ht t p: / / www. m at hcom poser. com Math Composer ht t p: / / www. m at hcom poser. com BIΓ = 180 o - B 2 - Γ 2 ή BIΓ = 90 o + 90 o - B 2 - Γ 2 ή BIΓ = 90 o + A 2 (επειδή A 2 + B 2 + Γ 2 = 90o ). (1) Α I β Β 2 1 I 1 2 Γ I α 96 / 86

99 Math Composer ht t p: / / www. m at hcom poser. com Math Composer ht t p: / / www. m at hcom poser. com (ii) Η εσωτερική και εξωτερική διχοτόμος μιας γωνίας τέμνονται κάθετα. Έτσι στο τρίγωνο ΙΓΙ β είναι: Γ = 90 και ΒΙΓ = 90 + Ι β (2) (ως εξωτερική γωνία). Από τις (1) και (2) προκύπτει ότι I β = A 2. (3) (iii) Όμοια στο τρίγωνο Ι α ΒΙ β είναι Β = 90, οπότε Ι α + Ι β = 90 ή Ι α = 90 - Ι β. (4) Από τις (3) και (4) προκύπτει ότι I α = 90 o - A / 86

100 ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ Ερωτήσεις Κατανόησης 1. Να υπολογίσετε τη γωνία ω στο παρακάτω σχήμα. ω 50 ο 120 ο 2. Αν AB = AT και Γx διχοτόμος της ΑΓΔ, να υπολογίσετε τη γωνία φ (βλ. σχήμα). Α φ 55 ο Β Γ Δ 98 / 87

101 Math Composer ht t p: / / www. m at hcom poser. com 3. Υπάρχει κυρτό ν-γωνο τέτοιο, ώστε το άθροισμα των εσωτερικών γωνιών του να ισούται με το άθροισμα των εξωτερικών γωνιών του; 4. Να εξηγήσετε γιατί αν ένα ισοσκελές τρίγωνο έχει μια γωνία 60 είναι ισόπλευρο. 5. Το άθροισμα των εξωτερικών γωνιών ενός τριγώνου είναι: α) 180 β) 270 γ) 360 δ) 540 ε) κανένα από τα παραπάνω Να δικαιολογήσετε την απάντησή σας. Ασκήσεις Εμπέδωσης 1. Σε ορθογώνιο τρίγωνο μια γωνία 2 του είναι ίση με τα μιας άλλης 3 γωνίας του. Να υπολογισθούν όλες οι γωνίες του (δύο περιπτώσεις). 99 / 87

102 2. Σε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ = ΑΓ) είναι A = B 2. Αν I το έγκεντρο του τριγώνου να υπολογισθεί η γωνία ΒΙΓ. (Εφαρμογή 2-4.8) 3. Σε τρίγωνο ΑΒΓ η γωνία Α είναι τριπλάσια της γωνίας Β. Αν Γ εξ = 144 να βρεθεί το είδος του τριγώνου ως προς τις πλευρές του. 4. Δίνεται ορθογώνιο τρίγωνο ΑΒΓ (Α = 90 ) και το ύψος του ΑΔ. Να αποδείξετε ότι Β = ΔΑΓ και Γ = ΔΑΒ. 5. Στο παρακάτω σχήμα είναι: ΑΒ = ΑΓ = ΔΒ και xαγ = 108. Να υπολογισθεί η γωνία Α. Math Composer ht t p: / / www. m at hcom poser. com 100 / 87

103 Α x 108 o Δ Β 6. Στο παρακάτω σχήμα είναι: Α = 90, ΑΔ διχοτόμος, ΔΕ//ΑΒ. Αν η γωνία Β είναι 20 μεγαλύτερη από τη Γ να υπολογίσετε τις γωνίες ω και φ. Α Γ Ε Β ω φ Δ 101 / 87 Γ

104 Math Composer ht t p: / / www. m at hcom poser. com Math Composer ht t p: / / www. m at hcom poser. com Math Composer ht t p: / / www. m at hcom poser. com 7. Το άθροισμα των γωνιών κυρτού πολυγώνου είναι 900. Να βρεθεί το πλήθος των πλευρών του. Αποδεικτικές Ασκήσεις 1. Σε τρίγωνο ΑΒΓ είναι Β εξ = 90 o + A 2. Να αποδείξετε ότι ΑΒ = ΑΓ. 2. Δίνεται τρίγωνο ΑΒΓ με Β > Γ και η διχοτόμος του ΑΔ. Να αποδείξετε ότι i) ΑΔΓ - ΑΔΒ = Β - Γ, ii) ΑΔΒ = 90 - Β - Γ 2 ΑΔΓ = 90 - Β - Γ 2,. 102 / 87

105 Math Composer ht t p: / / www. m at hcom poser. com Math Composer ht t p: / / www. m at hcom poser. com 3. Σε τρίγωνο ΑΒΓ με Β > Γ φέρουμε το ύψος ΑΔ και τη διχοτόμο ΑΕ. Να αποδείξετε ότι ΔΑΕ = Β - Γ Αν οι διχοτόμοι των γωνιών Α, Β κυρτού τετραπλεύρου ΑΒΓΑ τέμνονται σε σημείο Ε, να αποδείξετε ότι ΑΕB = Γ + Δ 2 5. Από τυχαίο σημείο Δ της βάσης ΒΓ ισοσκελούς τριγώνου ΑΒΓ φέρουμε τη ΑΕ ΑΓ. Να αποδείξετε ότι Α = 2ΕΔΓ. 6. Σε ορθογώνιο τρίγωνο ΑΒΓ (Α = 90 ) το ύψος του ΑΔ και η διχοτόμος του ΒΖ τέμνονται σε 103 / 87.

106 Math Composer ht t p: / / www. m at hcom poser. com σημείο Ε. Να αποδείξετε ότι το τρίγωνο ΑΕΖ είναι ισοσκελές. 7. Δίνεται ορθογώνιο τρίγωνο ΑΒΓ (Α = 90 ). Η διχοτόμος της γωνίας Β τέμνει την ΑΓ στο Ζ και την κάθετη στη ΒΓ στο σημείο Γ, στο Η. Να αποδείξετε ότι ΖΓ = ΓΗ. Σύνθετα Θέματα 1. Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ = ΑΓ) και τυχαίο σημείο Δ της πλευράς ΑΒ. Στην προέκταση της ΓΑ προς το Α, παίρνουμε τμήμα ΑΕ = ΑΔ. Να αποδείξετε ότι ΔΕ ΒΓ. 2. Δίνεται τρίγωνο ΑΒΓ με Β > Γ και η διχοτόμος του ΑΔ. Από την κορυφή Β φέρουμε ευθεία κάθετη στην ΑΔ, που τέμνει την ΑΓ στο Ε. Να αποδείξετε ότι ΕBΓ = B - Γ / 87-88

107 3. Σε ορθογώνιο τρίγωνο ΑΒΓ προεκτείνουμε την υποτείνουσα ΓΒ κατά τμήμα ΒΔ = ΑΒ. Φέρουμε κάθετη στη ΒΓ στο σημείο Γ και παίρνουμε σε αυτή -προς το μέρος του Α- τμήμα ΓΕ = ΑΓ. Να αποδείξετε ότι τα σημεία Δ, Α, Ε είναι συνευθειακά. 4. Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ = ΑΓ) και το ύψος του ΒΔ. Φέρουμε ΔΗ ΑΒ, που τέμνει την προέκταση της ΒΓ στο Ε. Να αποδείξετε ότι: i) ΒΔ = ΔΕ, ii) ΒΓ > ΓΕ. 5. Σε τρίγωνο ΑΒΓ, προεκτείνουμε τα ύψη του ΒΔ και ΓΕ, προς το μέρος των κορυφών και επί των προεκτάσεων παίρνουμε τμήματα ΒΖ = ΑΓ και ΓΗ = ΑΒ αντίστοιχα. Να αποδείξετε ότι i) ΑΖ = ΑΗ, ii) ΑΖ ΑΗ. 105 / 88

108 Math Composer ht t p: / / www. m at hcom poser. com 6. Θεωρούμε τετράπλευρο ΑΒΓΔ με Α > Γ και ονομάζουμε φ την οξεία γωνία των διχοτόμων των γωνιών Β και Δ. Να αποδείξετε ότι φ = A - Γ Δύο επίπεδα κάτοπτρα Κ 1,Κ 2 είναι κάθετα. Φωτεινή ακτίνα α προσπίπτει αρχικά στο Κ 1 και μετά την ανάκλαση στο Κ 2, εξέρχεται κατά την ακτίνα β. Τι πορεία θα ακολουθήσει, σε σχέση με την αρχική ακτίνα α; K 1 ω α ω φ β φ 106 / 88 Κ 2

109 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1. Δίνεται τρίγωνο ΑΒΓ με Α = 60 και οι διχοτόμοι του ΒΔ και ΓΕ. Να αποδείξετε ότι ΒΔΓ = ΓΕΑ. 2. Θεωρούμε ισόπλευρο τρίγωνο ΑΒΓ (ΑΒ = ΑΓ = ΒΓ= α) και τα σημεία Δ και Ε των πλευρών του ΑΒ και ΒΓ αντίστοιχα, ώστε Math Composer ht t p: / / www. m at hcom poser. com ΑΔ = ΒΕ = 1 3 α. Να αποδείξετε ότι ΔΕ ΒΓ. 3. Δίνεται ορθογώνιο τρίγωνο ΑΒΓ (Α = 90 ) και η διχοτόμος του ΑΔ. Φέρουμε Δx ΒΓ, που τέμνει την ΑΒ στο Ε και την προέκτασή της ΑΓ στο Ζ. Να αποδείξετε ότι ΒΕ = ΖΓ. 4. Θεωρούμε τετράπλευρο ΑΒΓΔ με Α = Γ = 90 και ΒΓ = ΓΔ. Στην προέκταση της ΑΔ παίρνουμε 107 / 88

110 τμήμα ΔΕ = ΑΒ. Να αποδείξετε ότι ΑΓ ΓΕ. 5. Δίνεται τρίγωνο ΑΒΓ με ΑΒ < ΑΓ. Να αποδείξετε ότι: i) Το ύψος ΑΔ = υ α σχηματίζει με τη μικρότερη πλευρά μικρότερη γωνία. ii) Η διάμεσος ΑΜ = μ α σχηματίζει με τη μικρότερη πλευρά μεγαλύτερη γωνία. iii) Το ύψος υ α και η διάμεσος μ α βρίσκονται εκατέρωθεν της διχοτόμου ΑΕ = δ α. 6. Τρεις κύκλοι με κέντρα Κ 1,Κ 2,Κ 3 εφάπτονται εξωτερικά στα Α,Β,Γ. Να αποδείξετε ότι ο περιγεγραμμένος κύκλος του τριγώνου ΑΒΓ είναι εγγεγραμμένος στο τρίγωνο Κ 1 Κ 2 Κ / 88

111 7. Θεωρούμε τρίγωνο ΑΒΓ, τον εγγεγραμμένο κύκλο του (Ι,ρ) και τον παρεγγεγραμμένο κύκλο του (Ι α,ρ α ). Ονομάζουμε Δ,Ε,Ζ και Δ',Ε',Ζ' τα σημεία επαφής των (Ι,ρ) και (Ι α,ρ α με τις ευθείες ΒΓ,ΓΑ,ΑΒ αντίστοιχα. Να αποδείξετε ότι: i) ΑΖ = ΑΕ = τ - α, ΒΔ = ΒΖ = τ - β, ΓΔ = ΓΕ = τ - γ, ii) ΑΖ' = ΑΕ' = τ, iii) ΖΖ' = ΕΕ' = α, ΔΔ' = β - γ. 109 / 88

112 Δραστηριότητες 1. Να συμπληρώσετε τον πίνακα για κυρτά ν-γωνα. αριθμός πλευρών άθροισμα γωνιών κυρτού ν-γώνου 4 I ν - 4 ορθές άθροισμα εξωτερικών γωνιών κυρτού ν-γώνου 4 ορθές ν i) Τι παρατηρείτε για το άθροισμα των γωνιών κυρτού ν-γώνου; Εξαρτάται από τον αριθμό των 110 / 89

113 πλευρών ν; Τι ισχύει όταν αυξάνεται το ν; ii) Τι παρατηρείτε για το άθροισμα των εξωτερικών γωνιών κυρτού ν-γώνου. Να σχολιάσετε τη σχέση του με τον αριθμό των πλευρών ν. 2. Να κατασκευάσετε δύο γωνίες με πλευρές παράλληλες (3 περιπτώσεις). Να εξετάσετε τι ισχύει για τις διχοτόμους τους (παράλληλες, κάθετες κτλ.) Να κάνετε το ίδιο για δύο γωνίες με πλευρές κάθετες. Εργασία Να υπολογίσετε τις γωνίες ισοσκελούς τριγώνου ΑΒΓ (ΑΒ = ΑΓ), το οποίο είναι δυνατόν να χωρισθεί σε δύο άλλα ισοσκελή τρίγωνα. 111 / 89

114 Υπόδειξη: Η ευθεία που χωρίζει το ΑΒΓ σε δυο ισοσκελή τρίγωνα πρέπει να διέρχεται από μια κορυφή του τριγώνου. Να διακρίνετε δύο περιπτώσεις: i) με ευθεία ΑΔ από την κορυφή Α. ii) με ευθεία ΒΕ από την κορυφή Β. ΙΣΤΟΡΙΚΟ ΣΗΜΕΙΩΜΑ Η θεωρία των παραλλήλων Το αίτημα του Ευκλείδη. Στο Βιβλίο I των «Στοιχείων» του ο Ευκλείδης ι ορίζει ως παράλληλες «τις ι ευθείες εκείνες που ι βρίσκονται στο ίδιο επίπεδο και προεκτεινόμενες επ' άπειρον και από τα δύο μέρη [ δε συναντώνται σε κανένα απ' αυτά» (Ορισμός 23). Αμέσως μετά διατυπώνει 'πέντε αιτήματα, τα τέσσερα πρώτα από τα οποία 112 / 90

115 εκφράζουν τις βασικές ιδιότητες των γεωμετρικών κατασκευών με τη βοήθεια του κανόνα και του διαβήτη, ενώ το πέμπτο αποφαίνεται ότι: «Εάν μια ευθεία που τέμνει δύο ευθείες σχηματίζει τις εντός και επί τα αυτά μέρη γωνίες μικρότερες από δύο ορθές, τότε οι δύο ευθείες προεκτεινόμενες επ άπειρον συναντώνται στο μέρος που οι σχηματιζόμενες γωνίες είναι μικρότερες από δύο ορθές» (Αίτημα V). Το αίτημα αυτό αποδεικνύεται ισοδύναμο με τις εξής προτάσεις: (Ε1) Υπάρχει ευθεία α και σημείο Α εκτός αυτής τέτοιο, ώστε από το Α διέρχεται μία μοναδική ευθεία που δεν τέμνει την α. (Ε2) Υπάρχει τετράπλευρο με τέσσερις ορθές γωνίες. 113 / 90

116 (Ε3) Το άθροισμα των γωνιών τυχόντος τριγώνου ισούται με δύο ορθές. (Ε4) Υπάρχει τρίγωνο, το άθροισμα των γωνιών του οποίου να ισούται με δύο ορθές. (Ε5) Αν μια ευθεία τέμνει δύο παράλληλες ευθείες, οι αντίστοιχες γωνίες είναι ίσες. (Ε6) Τα σημεία που κείνται προς το ίδιο μέρος από δεδομένη ευθεία και σε μία και την αυτή απόσταση, σχηματίζουν ευθεία. (Ε7) Αν μια ευθεία τέμνει δύο άλλες ευθείες και αυτές αποκλίνουν η μία από την άλλη από το ένα μέρος, τότε από το άλλο μέρος συγκλίνουν. (Ε8) Υπάρχουν όμοια τρίγωνα. (Ε9) Υπάρχουν τρίγωνα με οσοδήποτε μεγάλο μέγεθος. 114 / 90

117 (Ε10) Έστω α τυχούσα ευθεία και Α σημείο εκτός αυτής. Τότε στο επίπεδο που ορίζεται από την ευθεία α και το σημείο Α υπάρχει όχι περισσότερες από μία ευθεία που διέρχεται από το σημείο Α και δεν τέμνει την ευθεία α (Αξίωμα παραλληλίας). Το αίτημα του Ευκλείδη ή κάποιο ισοδύναμό του καθορίζει τη φύση ολόκληρης της γεωμετρίας και αποτελεί βάση για τα περισσότερα θεωρήματα της Ευκλείδειας γεωμετρίας. Η θεωρία των παραλλήλων στην αρχαιότητα και το Βυζάντιο. Είναι πιθανό πριν τη διατύπωση του πέμπτου αιτήματος των «Στοιχείων» του Ευκλείδη να υπήρξαν προσπάθειες να αποδειχθεί. Όμως οι διαθέσιμες μαρτυρίες είναι πενιχρότατες και αποσπασματικές. 115 / 90

118 Ενδείξεις υπάρχουν στα «Αναλυτικά Ύστερα» του Αριστοτέλη, όπου συνδέεται το πρόβλημα των παραλλήλων με την πρόταση (Ε3). Ο Αριστοτέλης ασκεί κριτική στις προσπάθειες μαθηματικών (που δεν κατονομάζονται) να αποδείξουν το Ευκλείδειο αίτημα ότι υποπίπτουν στο λογικό σφάλμα της «λήψης του ζητουμένου» (petitio principi), δηλαδή ότι κατά την απόδειξη χρησιμοποιούν πρόταση ισοδύναμη προς την αποδεικτέα. Άλλη πηγή είναι τα «Σχόλια για τις δυσκολίες στην εισαγωγή του βιβλίου του Ευκλείδη» του Ομάρ Χαγιάμ όπου αναφέρει ότι «η αιτία του λάθους των ύστερων επιστημόνων στην απόδειξη αυτής της υπόθεσης είναι ότι δε λάμβαναν υπόψη τους τις αρχές του φιλοσό- 116 / 90

119 φου [δηλαδή, του Αριστοτέλη]» και παραθέτει πέντε αρχές, τέσσερις, από τις οποίες απαντώνται.] με λίγο διαφορετική διατύπωση στα «Φυσικά» και το; «Περί Ουρανού». Το πρώτο γνωστό έργο της αρχαιότητας, που λίγες μόλις δεκαετίες μετά τα «Στοιχεία» αναφέρεται στη θεωρία των παραλλήλων, είναι η χαμένη πραγματεία του Αρχιμήδη «Περί παραλλήλων», που μνημονεύει ο βιβλιογράφος Ιμπν αλ- Ναντίμ (πέθανε το 993) στο «Βιβλίο της βιβλιογραφίας των επιστημών», μαζί με άλλα έργα του Αρχιμήδη που διασώθηκαν μόνο στα Αραβικά. Το βιβλίο αυτό ήταν πιθανότατα γνωστό στον Θαμπίτ ιμπν Κούρρα ( ), συγγραφέα δύο πραγματειών σχετικών με τη θεωρία των παραλλήλων. Σύμφωνα με μαρτυρία του Πρόκλου, ο οποίος 117 / 90

120 θεωρεί ότι το αίτημα του Ευκλείδη είναι θεώρημα και επιχειρεί να δώσει μια δική του απόδειξη, ο Ποσειδώνιος είχε προτείνει έναν ορισμό των παραλλήλων, διαφορετικό από αυτόν του Ευκλείδη. Παράλληλες ονομάζει τις ευθείες που βρίσκονται στο ίδιο επίπεδο, δε συγκλίνουν ούτε αποκλίνουν και όλες οι κάθετες από τα σημεία της μιας προς την άλλη είναι ίσες μεταξύ τους. Ο ορισμός αυτός όμως βασίζεται στο ισοδύναμο αξίωμα (Ε6). Ο Πρόκλος αναφέρεται επίσης εκτεταμένα στις προσπάθειες του Κλαύδιου Πτολεμαίου και άλλων μαθηματικών, τους οποίους δεν κατονομάζει, να αποδείξουν το Ευκλείδειο αίτημα. 118 / 90

121 ΙΣΤΟΡΙΚΟ ΣΗΜΕΙΩΜΑ Με την απόδειξη του Ευκλείδειου αιτήματος ασχολήθηκε ο Διόδωρος (1ος αι. π.χ.). Στα Αραβικά διατηρήθηκαν και οι προσπάθειες κάποιου Αγάνη και του Σιμπλίκιου που στηρίζονται στον ορισμό του Ποσειδωνίου και, επομένως, στο αξίωμα (Ε6). Η θεωρία των παραλλήλων στα Αραβικά μαθηματικά. Η πρώτη γνωστή προσπάθεια απόδειξης του Ευκλείδειου αιτήματος στα Αραβικά μαθηματικά έγινε από τον αλ-τζαουχαρί στο έργο του «Τελειοποίηση του βιβλίου των "Στοιχείων"», το περιεχόμενο του οποίου μεταφέρει ο Νασίρ αντ-ντιν αλ-τουσί. Όμως στην απόδειξή του χρησιμοποιεί την ισοδύναμη προς το αποδεικτέο πρόταση ότι «αν μία ευθεία τέμνει δύο άλλες ευθείες έτσι ώστε οι εντός εναλλάξ γωνίες να 119 / 91

122 είναι ίσες, τότε το ίδιο ισχύει όταν οι δύο ευθείες τέμνονται από οποιαδήποτε άλλη ευθεία». Οι πρώτες προσπάθειες αντικατάστασης του Ευκλείδειου αιτήματος με το αξίωμα της ύπαρξης «ισαπεχόντων» ευθειών ανάγονται στον αλ-ναιριζί και τον Ιμπν Σίνα (Αβικέννα). Οι άραβες μαθηματικοί ανέπτυξαν δύο κυρίως προσεγγίσεις στην απόδειξη του Ευκλείδειου αιτήματος, που εγκαινιάζονται στο έργο του Θαμπίτ ιμπν Κούρρα ( ): τη γεωμετρική και την κινηματική προσέγγιση. Η κινηματική προσέγγιση ακολουθεί το πνεύμα του Αρχιμήδη και αναπτύχθηκε από τον Ιμπν αλ-χαιθάμ. Η πρωτοτυπία της μεθόδου του αλ-χαιθάμ, την οποία ακολούθησαν συχνά οι γεωμέτρες στη συνέχεια, είναι ότι υποθέτει την ύπαρξη ενός τετραπλεύρου με τρεις 120 / 91

123 ορθές γωνίες και εξετάζει τις περιπτώσεις η τέταρτη γωνία να είναι οξεία ή αμβλεία, προσπαθώντας να καταλήξει σε αντίφαση με τον ορισμό των παραλλήλων ως «ισαπεχόντων» ευθειών. Η γεωμετρική προσέγγιση αναπτύχθηκε κυρίως από τον Ομαρ Χαγιάμ. Ξεκινώντας από την απόδειξη της πρότασης (Ε2) και με συλλογισμούς συγγενείς με αυτούς του Πρόκλου, αποδεικνύει το Ευκλείδειο αίτημα χωρίς να υποπέσει στο λογικό σφάλμα της «λήψης του ζητουμένου». Ο εγκυκλοπαιδιστής φιλόσοφος, μαθηματικός και αστρονόμος Νασίρ αντ-ντιν αλ-τουσί ( ) στη δική του πρωτότυπη απόδειξη του αξιώματος των παραλλήλων ακολουθεί το ύφος του Ιμπν Κούρρα και του Ιμπν αλ-χαιθάμ, αλλά στηρίζεται σε αξίωμα που αποτελεί 121 / 91

124 ισχυρότερη μορφή του αιτήματος παραλληλίας. Στη διάρκεια του 13ου αι. συνεχίζονται οι αναζητήσεις απόδειξης του Ευκλείδειου αιτήματος. Ο αλ-χαναφί, ακολουθώντας παλαιότερες τάσεις που εκδηλώνονται στο έργο του αλ- Κιντί, του αλ-μπιρουνί (973-περ. 1050) και του Ομάρ Χαγιάμ, συνδέουν το πρόβλημα του Ευκλείδειου αιτήματος με την έννοια της επ' άπειρον διαιρετότητας των γεωμετρικών μεγεθών. Ιδιαίτερα διαδεδομένη ήταν η θεωρία των παραλλήλων του αλ-αμπχαρί (ή αλ-αμπαχρί, πέθανε το 1263). Συγγενής προς αυτήν ήταν η θεωρία του αλ- Μαγκριμπί. Στις δύο τελευταίες θεωρίες βρίσκει κανείς ίχνη του ύφους των συλλογισμών του Σιμπλίκιου. Στα τέλη του 13ουαρχές 14ου αι. μια ακόμα 122 / 91

125 αξιοσημείωτη προσπάθεια γίνεται από τον αντ- Ντιν ασ-σιραζί ( ), μαθητή του αλ-τουσί. Παρ' όλες τις προσπάθειες που σκιαγραφήσαμε οι Άραβες μαθηματικοί ήταν πολύ μακριά από την ιδέα ότι είναι δυνατή μια άλλη γεωμετρία. Απλώς προσπαθούσαν να αποδείξουν το Ευκλείδειο αίτημα από υποθέσεις που θεωρούσαν πιο προφανείς. Στην πορεία των προσπαθειών τους απέδειξαν την ισοδυναμία του Ευκλείδειου αιτήματος με διάφορες προτάσεις που μπορούν να θεωρηθούν ισοδύναμες με το πέμπτο αίτημα, καθώς και πολλά θεωρήματα που σήμερα εμπίπτουν στο πεδίο της Υπερβολικής και της Ελλειπτικής Γεωμετρίας. Η θεωρία των παραλλήλων στην Ευρώπη από τον 13ο ως το 18ο αι. Η πρώτη γνωστή απόπειρα 123 / 91

126 απόδειξης του Ευκλείδειου αιτήματος στη μεσαιωνική Ευρώπη απαντάται το 13ο αι. στο σύγγραμμα του Βιτέλο (Vitelo, περίπου ) «Οπτική» ή «Προοπτική» (1572). Βασική πηγή του Βιτέλο είναι το έργο του Ιμπν αλ-χαιθάμ. Ωστόσο, η απόδειξή του υστερεί ως προς το επίπεδο αυστηρότητας που είχαν φτάσει οι Άραβες μαθηματικοί. Δύο άλλες απόπειρες απαντώνται το 14ο αι. στα «Σχόλια» του Γερσωνίδη (Levi ben Gerson ή Gersonides, ) και στο έργο κάποιου Αλφό- νσο, ο οποίος εικάζεται ότι είναι ο Ισπανός ιατρός και συγγραφέας πολεμικών θρησκευτικών έργων Αλφόνσο του Βαλλαντολίντ ( ). Στις αρχές του 16ου αι. η θεωρία παραλλήλων εξετάζεται στο «Κάτοπτρο 124 / 91

127 αστρονομικό που περικλείει την ανθρώπινη σοφία σε κάθε επιστήμη» του Φ. Μπ. Γκρισογκόνο ( ), που εκδίδεται στη Βενετία το Το 1574 εμφανίζεται μία πρωτότυπη απόδειξη του πέμπτου αιτήματος από τον Κλάβιο (Clavius (Schlussel), ) που εργαζόταν στη Ρώμη και συμμετείχε στην επεξεργασία του Γρηγοριανού ημερολογίου. Η απόδειξη του Κλάβιου στηρίζεται στην πρόταση (Ε6). Η απόδειξή του παρουσιάζει ομοιότητες με αυτές του Ιμπν Κούρρα και του Ιμπν αλ-χαιθάμ, τις οποίες ίσως γνώριζε από δεύτερο χέρι. Τον 17ο αι. παρατηρείται κάποια ένταση των προσπαθειών στη θεωρία των παραλλήλων, η οποία όμως δεν απέφερε ιδιαίτερα αξιόλογους καρπούς. Δημοσιεύονται το 1603 στην Μπολόνια δύο τομίδια 125 / 91

128 ΙΣΤΟΡΙΚΟ ΣΗΜΕΙΩΜΑ του Πιέτρο Α. Κατάλντι ( ), το 1658 στην Πίζα η επεξεργασμένη από τον Τζ.Α. Μπορέλλι ( ) έκδοση των «Στοιχείων» του Ευκλείδη, και το 1680 ανάλογη έκδοση των «Στοιχείων» από τον Βιτάλε Τζορντάνο ( ). Το 1693 δημοσιεύεται η πραγματεία του Τζ. Ουώλλις (J. Wal- lis, ) «Το πέμπτο αίτημα και ο πέμπτος ορισμός του Βιβλίου VI του Ευκλείδη», το δεύτερο μέρος της οποίας περιέχει μετάφραση μιας απόδειξης που αποδίδεται στον αλ-τουσί, και στο τρίτο εκτίθεται απόδειξη του Ουώλλις, που βασίζεται στην πρόταση (Ε9), την οποία θεωρεί φυσική «Κοινή Έννοια». Από την πραγματεία του Ουώλλις γνωρίστηκε με την αποδιδόμενη 126 / 92

129 στον αλ-τουσί απόδειξη του πέμπτου αιτήματος ο Τζιρόλαμο Σακκέρι (G.G. Saccheri, ). Ο Σακκέρι ξεκινώντας από το ισόπλευρο τετράπλευρο με τις δύο ορθές του Ομάρ Χαγιάμ και του αλ- Τουσί αναλύει τις ίδιες τρεις υποθέσεις για τις άλλες δύο γωνίες. Αποκλείει την υπόθεση της οξείας γωνίας επειδή θεωρεί ότι στην περίπτωση αυτή, όπως και στην περίπτωση της ορθής γωνίας ισχύει το πέμπτο αίτημα, δηλαδή επειδή αντιφάσκει στα αξιώματα της συνήθους γεωμετρίας του Ευκλείδη. Στην περίπτωση της αμβλείας γωνίας ο Σακκέρι προχωρεί όσο κανείς άλλος πριν από αυτόν στην απόδειξη θεωρημάτων της σημερινής Υπερβολικής Γεωμετρίας. Όμως διολισθαίνοντας σε λάθος συλλογισμό κατέληξε σε 127 / 92

130 αντίφαση, οπότε συμπέρανε ότι η περίπτωση της ορθής γωνίας (δηλαδή της Ευκλείδειας γεωμετρίας) είναι η μόνη δυνατή. Πιο σημαντική είναι η προσπάθεια του Γερμανού μαθηματικού Λάμπερτ (J.H. Lambert, ). Ξεκινώντας από το ίδιο τετράπλευρο του Ομάρ Χαγιάμ και του Σακκέρι αποκλείει χωρίς δυσκολία την υπόθεση της οξείας γωνίας, στη βάση ότι στην περίπτωση αυτή δύο κάθετες στην ίδια ευθεία τέμνονται, πράγμα που, κατά τη γνώμη του, δεν αντιφάσκει στο πέμπτο αίτημα, αλλά στα υπόλοιπα αξιώματα της Γεωμετρίας του Ευκλείδη. Επίσης παρατηρεί ότι η υπόθεση της οξείας γωνίας ισχύει στην επιφάνεια της σφαίρας αν ως ευθείες ληφθούν οι μέγιστοι κύκλοι της σφαίρας. Εξετάζοντας την υπόθεση της 128 / 92

131 αμβλείας γωνίας ο Λάμπερτ αποδεινύει ακόμα περισσότερα και από τον Σακκέρι θεωρήματα της σημερινής Υπερβολικής Γεωμετρίας. Προσπαθώντας να λάβει κάποια παράδοξα αποτελέσματα παραδέχεται ότι δεν είναι εύκολο να αποκλεισθεί η υπόθεση της αμβλείας γωνίας. Αντίθετα με τον Σακκέρι, ούτε υποπίπτει σε σφάλμα, ούτε συμπεραίνει ότι η υπόθεση της αμβλείας γωνίας οδηγεί σε αντίφαση. Αντίθετα, εκφράζοντας κάποια έκπληξη για τις «περίεργες» ιδιότητες των σχημάτων στην περίπτωση αυτή (π.χ. ότι χάνεται η έννοια της ομοιότητας και της αναλογίας των σχημάτων, ότι το άθροισμα των γωνιών ενός τριγώνου αυξάνει όσο μειώνεται η επιφάνεια του τριγώνου, κ.α.) διατυπώνει την ιδιαίτερα βαθιά και διορατική σκέψη ότι «η τρίτη 129 / 92

132 υπόθεση ισχύει σε κάποια φανταστική σφαίρα». Από τις προσπάθειες μετά τον Λάμπερτ, αξίζει να αναφερθεί η «απόδειξη» του Λ. Μπερτράν (L. Ber- trand, ), μαθητή του Όυλερ, το 1778, του Α.Μ. Λεζάντρ ( ), που αφιέρωσε σαράντα χρόνια στις έρευνες στη θεωρία των παραλλήλων, του Σ.Ε. Γκούριεφ ( ), και του Φαρκάς Μπόλυαι (Farkas Bolyai, ), του πατέρα του Γιάνος Μπόλυαι, του μετέπειτα δημιουργού της μη Ευκλείδειας Γεωμετρίας. 130 / 92

133 ΑΝΑΚΕΦΑΛΑΙΩΣΗ Δύο ευθείες ενός επιπέδου ταυτίζονται όταν έχουν 2 κοινά σημεία. τέμνονται όταν έχουν 1 κοινό σημείο. είναι παράλληλες όταν δεν έχουν κοινό σημείο. Από σημείο Α εκτός ευθείας ε υπάρχει ευθεία ε'//ε. δεχόμαστε αξιωματικά ότι η ε' είναι μοναδική. (Αίτημα παραλληλίας) Α Β ε' ε 131 / 93

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Α και Β Γενικού Λυκείου ε 3 Γ ε 2 Κ Ε ε 1 Ι Ο Θ Η Ζ Α μ α Ψ ε 4 Β Β ( Σελ. 63 120 ) Τόμος 2ος ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία 2014 2015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΘΕΩΡΙΑ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 2 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ιδακτέα εξεταστέα ύλη σχολικού

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο η διάμεσος που αντιστοιχεί στην υποτείνουσα ισούται με το μισό της.

Διαβάστε περισσότερα

Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός)

Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός) Τρίγωνα Αθανασίου Δημήτρης (Μαθηματικός) www.peira.gr asepfreedom@yahoo.gr 1 3.1 Στοιχεία και είδη τριγώνων 2 Ένα τρίγωνο ΑΒΓ έχει τρεις κορυφές Α, Β, Γ, τρεις πλευρές ΒΓ, ΓΑ, ΑΒ και τρεις γωνίες Β ΑΓ,

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:

Διαβάστε περισσότερα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα Γεωμετρία Αˊ Λυκείου Κεφάλαιο 3 ο Τρίγωνα Κεφάλαιο 3 ο :Τρίγωνα 1. Τι λέγονται κύρια στοιχεία ενός τριγώνου; Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου. Για ευκολία οι

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

Παράλληλες Ευθείες. Αθανασίου Δημήτριος (Μαθηματικός)

Παράλληλες Ευθείες. Αθανασίου Δημήτριος (Μαθηματικός) Παράλληλες Ευθείες Αθανασίου Δημήτριος (Μαθηματικός) asepfreedom@yahoo.gr 1 4.1 Εισαγωγή 2 ΟΡΙΣΜΟΣ Δυο ευθείες ε 1 και ε 2 που βρίσκονται στο ίδιο επίπεδο και δεν έχουν κοινό σημείο λέγονται παράλληλες

Διαβάστε περισσότερα

ΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος» ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό-Λάθος» Σωστό Λάθος 1. Αν α είναι η απόσταση ευθείας ε από το κέντρο του κύκλου (Ο, ρ) τότε: αν α > ρ η ε λέγεται εξωτερική του κύκλου αν α = ρ η ε λέγεται τέμνουσα του

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος ) Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο; 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ

ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ Η ΓΕΩΜΕΤΡΙΑ της Α τάξης του ΕΠΑΛ με Φύλλα Μαθήματος & Εργασίας - ΕΠΑΛ ΚΑΛΑΜΑΡΙΑΣ 014 ΦΥΛΛΟ ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ ΓΕΩΜΕΤΡΙΑ Α ΕΠΑΛ ΚΕΦΑΛΑΙΟ 3 3.1-3.6 Τρίγωνα ΕΠΑΛ ΚΑΛΑΜΑΡΙΑΣ Ονομασία Πλευρών ΑΒ ή ΒΑ ή γ

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΩΜΤΡΙ ΛΥΚΙΟΥ ΠΝΛΗΠΤΙΚΟ ΦΥΛΛΙΟ ΠΙΜΛΙ ΥΡΙΝΟΣ ΣΙΛΗΣ ΠΙΜΛΙ: ΥΡΙΝΟΣ ΣΙΛΗΣ ΘΜΤ ΘΩΡΙΣ ΚΦΛΙΟ ο Τ ΣΙΚ ΩΜΤΡΙΚ ΣΧΗΜΤ ΘΜ ο Τι καλείται μέσο ενός ευθυγράμμου τμήματος και τι ισχύει γι αυτό ; ΠΝΤΗΣΗ Μέσο ενός ευθύγραμμου

Διαβάστε περισσότερα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=ΒΓ. Φέρνουμε το ΑΕ ΒΓ και έστω Ζ,Η τα μέσα των ΔΓ και ΑΒ αντίστοιχα. Ν.δ.ο. α) το ΖΓΒΗ είναι ρόμβος ( 9 μον.) β) ΗΖ=ΗΕ ( 8 μον.) γ)

Διαβάστε περισσότερα

2ο ΘΕΜΑ. μ Σε ισοσκελές τρίγωνο ΑΒΓ AB

2ο ΘΕΜΑ. μ Σε ισοσκελές τρίγωνο ΑΒΓ AB 2ο ΘΕΜΑ 2845. Σε ισοσκελές τρίγωνο ΑΒΓ AB A φέρουμε τη ΑΔ και μια ευθεία (ε) παράλληλη προς τη ΒΓ, που τέμνει τις πλευρές ΑΒ και ΑΓ στα σημεία Ε και Ζ αντίστοιχα. Να αποδείξετε ότι: α) Το τρίγωνο ΑΕΖ είναι

Διαβάστε περισσότερα

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 015-016 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 9 Ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΟΡΘΕΣ ΠΡΟΒΟΛΕΣ Το τμήμα ΒΔ λέγεται προβολή του.. πάνω στην Το τμήμα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο ΠΑΡΑΛΛΗΛΕΣ ΕΥΘΕΙΕΣ. Ποιες οι σχετικές θέσεις δύο ευθειών στο επίπεδο ; Πως ορίζονται οι παράλληλες ευθείες και πως συμβολίζονται ;

ΚΕΦΑΛΑΙΟ 4ο ΠΑΡΑΛΛΗΛΕΣ ΕΥΘΕΙΕΣ. Ποιες οι σχετικές θέσεις δύο ευθειών στο επίπεδο ; Πως ορίζονται οι παράλληλες ευθείες και πως συμβολίζονται ; ΚΦΛΙΟ 4ο ΠΡΛΛΗΛΣ ΥΘΙΣ Ποιες οι σχετικές θέσεις δύο ευθειών στο επίπεδο ; Πως ορίζονται οι παράλληλες ευθείες και πως συμβολίζονται ; Οι σχετικές θέσεις δυο ευθειών ε και ε, οι οποίες βρίσκονται στο ίδιο

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες

Διαβάστε περισσότερα

3o ΚΕΦΑΛΑΙΟ : Τρίγωνα

3o ΚΕΦΑΛΑΙΟ : Τρίγωνα 3o ΚΕΦΑΛΑΙΟ : Τρίγωνα 4 η διδακτική ενότητα : Ισότητα τριγώνων Ερωτήσεις κατανόησης 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις : α) Υπάρχουν σημεία του επιπέδου που

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Α και Β Γενικού Λυκείου. ε 3. ε 2. Γ ε 1

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Α και Β Γενικού Λυκείου. ε 3. ε 2. Γ ε 1 ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Α και Β Γενικού Λυκείου ε 3 Κ Ε Γ ε 1 ε 2 Ι Ο Ζ μ α Ψ Θ Η Α ε 4 Β Τόμος 2ος ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ

Διαβάστε περισσότερα

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γρήγορη Επανάληψη Θεωρίας Ένα τρίγωνο ανάλογα με το είδος των γωνιών του ονομάζεται: Σε κάθε ορθογώνιο τρίγωνο η πλευρά που

Διαβάστε περισσότερα

Ευκλείδεια Γεωμετρία

Ευκλείδεια Γεωμετρία Ευκλείδεια Γεωμετρία Γεωμετρία Γεω + μετρία Γη + μετρώ Οι πρώτες γραπτές μαρτυρίες γεωμετρικών γνώσεων ανάγονται στην τρίτη με δεύτερη χιλιετία π.χ. και προέρχονται από τους λαούς της αρχαίας Αιγύπτου

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν ΑΔ ΒΓ, ΕΔ ΑΒ τότε το τρίγωνο

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 Ο Βασικές Γεωμετρικές Έννοιες ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Μια τεντωμένη κλωστή με άκρα δύο σημεία Α και Β μας δίνει μια εικόνα της έννοιας του.. Τα σημεία Α και Β λέγονται.. 2. Τι ονομάζεται ευθεία;..

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία

Διαβάστε περισσότερα

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες. ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

Μεθοδική Επανάληψη Α Λυκείου

Μεθοδική Επανάληψη Α Λυκείου www.askisopolis.gr Μεθοδική Επανάληψη Α Λυκείου Στέλιος Μιχαήλογλου www.askisopolis.gr 3ο Κεφάλαιο: Τρίγωνα 3.1. Στοιχεία και είδη τριγώνων 1. Ποια είναι τα κύρια στοιχεία τριγώνου; Οι πλευρές και οι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ

Διαβάστε περισσότερα

β. Η πλευρά που βρίσκεται απέναντι από την κορυφή του ισοσκελούς τριγώνου καλείται βάση.

β. Η πλευρά που βρίσκεται απέναντι από την κορυφή του ισοσκελούς τριγώνου καλείται βάση. 1 Τρίγωνα 11 Στοιχεία και είδη τριγώνων 111 Κύρια στοιχεία τριγώνου Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου Συγκρίνοντας τις πλευρές του τριγώνου μεταξύ τους προκύπτουν

Διαβάστε περισσότερα

Σωστό -λάθος. 3) Δύο ευθείες κάθετες προς μία τρίτη ευθεία είναι μεταξύ τους παράλληλες.

Σωστό -λάθος. 3) Δύο ευθείες κάθετες προς μία τρίτη ευθεία είναι μεταξύ τους παράλληλες. Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1) Οι οξείες

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43. Ύλη: Όλη η ύλη

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43. Ύλη: Όλη η ύλη ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43 Ον/μο:.. Α Λυκείου Ύλη: Όλη η ύλη 08-05-16 Θέμα 1 ο : Α. Σε ποιες κατηγορίες ταξινομούνται τα τρίγωνα με βάση τις πλευρές τους και σε ποιες με βάση τις γωνίες τους; (αναλυτικά)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ 1 (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ Τι ονοµάζουµε γωνία σε ένα επίπεδο; Tι ονοµάζουµε κορυφή µιας γωνίας και τι πλευρά µιας γωνίας; Πότε δύο σχήµατα λέγονται ίσα; Τι ονοµάζουµε απόσταση δύο σηµείων; Τι ονοµάζουµε µέσο ενός ευθυγράµµου τµήµατος;

Διαβάστε περισσότερα

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες.

Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες. Όμοια τρίγωνα Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες. Συμβολισμός : Αν τα τρίγωνα ΑΒΓ, ΔΕΖ είναι όμοια γράφουμε Κριτήριο 1 Όταν δύο

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:

Διαβάστε περισσότερα

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και ΔΙΩΝΙΣΜ 1 Ο ΘΕΜ 1 Ο : ) Να αποδείξετε ότι : Το ευθύγραμμο τμήμα που ενώνει τα μέσα τα των δύο πλευρών τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ίση με το μισό της.(13 μονάδες) ) Να χαρακτηρίσετε

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130

ΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130 ΣΗΜΕΙΩΣΗ Οι λύσεις των θεμάτων είναι ενδεικτικές.πιθανόν να υπάρχουν και άλλες λύσεις και μάλιστα πιο απλές. ΘΕΜΑ 2 2814 α) Αφού ΑΒΓ ισοσκελές 180 ˆ ˆ ˆ Α 180 80 100 Β=Γ= = = = 50 2 2 2 Επειδή ΒΕ=ΒΔ θα

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να

Διαβάστε περισσότερα

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.

Διαβάστε περισσότερα

Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H

Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H, Z,. Τα τμήματα ΑΓ και ΗΕ έχουν κοινό μέσο γ. Το κέντρο του παραλληλογράμμου είναι

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα

Διαβάστε περισσότερα

Τηλ: Ανδρέου Δημητρίου 81 & Ακριτών 26 -ΚΑΛΟΓΡΕΖΑ [2]

Τηλ: Ανδρέου Δημητρίου 81 & Ακριτών 26 -ΚΑΛΟΓΡΕΖΑ [2] ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ ΠΕΜΠΤΗ 5 ΙΑΝΟΥΑΡΙΟΥ 2017 ΚΑΘ/ΤΗΣ ΣΠΑΝΟΣ Σ. ΒΑΘΜΟΣ: /100, /20 (1) (α) Να αποδείξετε ότι: Δυο χορδές ενός κύκλου είναι ίσες αν και μόνο αν

Διαβάστε περισσότερα

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1.

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. 1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. Διανύσματα Ισότητα διανυσμάτων Πρόσθεση διανυσμάτων Ερωτήσεις 1. Τ ι ονομάζουμε διάνυσμα;. Τι λέμε μέτρο ενός διανύσματος ;. Τι λέμε μηδενικό διάνυσμα; 4. Τι λέμε φορέα διανύσματος;

Διαβάστε περισσότερα

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1 ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και το 3.2 Ασκήσεις: 1-8 Θεωρία ως και το 3.4 Ασκήσεις: 9-13 Θεωρία ως και το 3.7 Ασκήσεις: 14-29

Διαβάστε περισσότερα

Εφαρμογές της αναλυτικοσυνθετικής μεθόδου. Δέκα Στοιχειώδεις Κατασκευές:

Εφαρμογές της αναλυτικοσυνθετικής μεθόδου. Δέκα Στοιχειώδεις Κατασκευές: Δέκα Στοιχειώδεις Κατασκευές: Κ 1 : Κατασκευή ευθείας διερχόμενης από δύο σημεία. Κ 2 : Κατασκευή κύκλου με δοθέν κέντρο και δοθείσα ακτίνα. Κ 3 : Κατασκευή ισοπλεύρου τριγώνου Κ 4 : Κατασκευή ευθυγράμμου

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ.

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ. 1 Δινεται τριγωνο ΑΒΓ και η διχοτομος ΒΕ της γωνιας B του τριγωνου Απο το Α φερνουμε παράλληλη της ΒΕ, που τεμνει τη ΒΓ 3 Να δειχτει οτι α + 11 α Ποτε ισχυει ΑΔ ΒΕ το ισον; οποτε οι γωνιες 3 3 Aν α, β

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Ευθεία Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Εξίσωση γραμμής Συντελεστής διεύθυνσης ευθείας Συνθήκες καθετότητας και παραλληλίας ευθειών Εξίσωση ευθείας ειδικές περιπτώσεις Σχόλιο Το σημείο είναι ο θεμελιώδης λίθος της

Διαβάστε περισσότερα

Γεωμετρία. I. Εισαγωγή

Γεωμετρία. I. Εισαγωγή I. Εισαγωγή Γεωμετρία Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι μαθητές έχουν έρθει σε

Διαβάστε περισσότερα

Ασκήσεις - Πυθαγόρειο Θεώρηµα

Ασκήσεις - Πυθαγόρειο Θεώρηµα Ασκήσεις - Πυθαγόρειο Θεώρηµα. Έστω ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) µε ΒΓ = 0 και ΑΓ =. Αν το µέσο της ΒΓ και Ε ΒΓ (Ε σηµείο της ΑΒ) τότε το µήκος της ΑΕ είναι: i) 3 3,5 i 4 iv) 4,5 v) 5. Έστω ορθογώνιο

Διαβάστε περισσότερα

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ  ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691 1.. 2.. 1.,. ( ) ( ) (2 ).. ( ) (5 ),,. ; ; 2.,,. 3.,.,,. (,,,, ). : ), ) ),, ),...1 16692 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 4. 5.. 6. (,, ). 1.,

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο Άσκηση 1 (2_18984) Θεωρούμε δύο τρίγωνα ΑΒΓ και ΔΕΖ. (α) Να εξετάσετε σε ποιες από τις παρακάτω περιπτώσεις τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια και να δικαιολογήσετε

Διαβάστε περισσότερα

3, ( 4), ( 3),( 2), 2017

3, ( 4), ( 3),( 2), 2017 ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x

Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x 1. Οι Πρωταρχικές Γεωμετρικές Έννοιες Σημείο Γραμμή Δεν έχει διαστάσεις!! Υπάρχει μόνο στο μυαλό μας. Συμβολίζεται με κεφαλαίο γράμμα. Κάθε γραμμή αποτελείται από άπειρα σημεία. Ευθεία Δεν είναι εύκολο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 1 Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του

Διαβάστε περισσότερα

Το επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του

Το επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του ΣΤΕΡΕΑ ΜΑΘΗΜΑ 10 Δίεδρες γωνίες Δύο επίπεδα α και β που τέμνονται, χωρίζουν τον χώρο σε τέσσερα μέρη, που λέγονται τεταρτημόρια. Ορίζουν επίσης σχήματα ανάλογα των γωνιών που ορίζουν δύο τεμνόμενες ευθείες

Διαβάστε περισσότερα

Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα

Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα ενώνουν. Τα τρία σημεία αυτά λέγονται κορυφές του τριγώνου.

Διαβάστε περισσότερα