ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης
|
|
- Ἰωράμ Αναγνωστάκης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης ιαχείριση Συναλλαγών II Tree Protocols Τζικούλης Βασίλειος redits:γιάννης Μακρυδάκης 1
2 ιαχείριση Συναλλαγών Συναλλαγή = Αδιάσπαστη Λογική Οµάδα Ενεργειών Περιέχει Αναγνώσεις(Read) ή/και Εγγραφές(Write) Οι συναλλαγές/δοσοληψίες επιθυµούµε να εναλλάσσονται στην εκτέλεση τους για λόγους απόδοσης της βάσης. Πρέπει να γίνεται µε συνέπεια εξασφαλίζοντας το I Ένα πρόγραµµα (χρονοπρόγραµµα) εκτέλεσης, περιλαµβάνει «ανάµικτες»(interleaved) ενέργειες από πολλές συναλλαγές. Με το 2PL εξασφαλίζουµε την σειριοποιησιµότητα, θεωρώντας ότι κάθε αντικείµενο είναι ανεξάρτητο από τα άλλα. 2
3 ιαχείριση Συναλλαγών TP Μια βάση δεδοµένων µπορεί να περιέχει και οµαδοποιηµένες περιοχές δεδοµένων µε διαφορετικό βαθµό οµαδοποίησης ή να υπάρχει µια µερική διάταξη των δεδοµένων. Για να εφαρµόσουµε πρωτόκολλα χρειάζεται να έχουµε γνώση αυτής της διάταξης ή οµαδοποίησης Ασχολούµαστε µε οµαδοποιήσεις ή διατάξεις που αποτελούν ένα δέντρο. TP#1 όταν έχουµε µερική διάταξη των δεδοµένων TP#2 όταν έχουµε οµαδοποίηση των δεδοµένων 3
4 ιαχείριση Συναλλαγών TP#1 Χαρακτηριστικά Έχουµε µόνο αποκλειστικά κλειδώµατα XL Το πρώτο κλείδωµα γίνεται σε οποιοδήποτε στοιχείο του δέντρου. Ένα κλείδωµα σε ένα στοιχείο γίνεται µόνο αν ο γονέας είναι ήδη κλειδωµένος από την ίδια συναλλαγή Καθοδική πορεία κλειδώµατος προς τα φύλλα. Κάθε στοιχείο κλειδώνεται µόνο µία φορά στην διάρκεια της συναλλαγής. Το ξεκλείδωµα µπορεί να γίνει οποιαδήποτε στιγµή εν υπάρχει φάση ανάπτυξης, συρρίκνωσης 4
5 ιαχείριση Συναλλαγών TP#1 T1 L1(), R1() L1(), R1() L1(), R1() T2 L2() R2() L2(H), R2(H) W2(), U2() Παράδειγµα 1: Πως θα εκτελεστεί µε το ΤP#1? S: R1() R1() R2() R2(H) W2() R1() W1() W1() W2(H) R1(G) W1(G) R2(K) W1(),U1() W1(), U1() W2(H) L1(G), R1(G) U1() L2(K), R2(K), U2(H), U2(K) G H I J W1(G),U1(G) K L 5
6 ιαχείριση Συναλλαγών TP#1 L1(), NO L1(), R1() L1(), R1(), U1() W1(), U1() T1 T2 T3 L2(), NO L2() R2() L2(), R2(), U2(), L2(), W2(), U2() R2(),U2() L3(), W3() L3(), R3() U3(), U3() Παράδειγµα 2 Πως θα εκτελεστεί µε το ΤP#1? S: W3()R1()R1()R2()W1() R2()W2()R3()R2() G K H I L J 6
7 ιαχείριση Συναλλαγών TP#1 T1 L1(), R1() L1(), R1(), U1() L1(), R1(), U1() W1(), L1(I) R1(I), U1(), U1(I) T2 L2() R2() L2() NO L2(), U2(), L2(), U2() R2(), U2() Παράδειγµα 3Α: Φτιάξτε χρονοπρόγραµµα me TP#1 T1: L1(),R1(),L1()R1(),U1(), L1(), R1(), U1(), W1(),L1(I), R1(I),U1(),U1(I) T2: L2(),R2(), L2(), U2() L2(),U2(), R2(), U2() G K H I L J 7
8 ιαχείριση Συναλλαγών TP#1 T1 L1(), R1() L1(), R1(), U1() L1(), R1(), U1() W1(), L1(I) R1(I), U1(), U1(I) T2 L2() R2() L2() NO L2(), U2(), L2(),U2() R2(), U2() Παράδειγµα 3Β: Φτιάξτε χρονοπρόγραµµα T1: L1(),R1(),L1()R1(),U1(), L1(), R1(), U1(), W1(),L1(I), R1(I),U1(),U1(I) T2: L2(),R2(), L2(), U2() L2(),U2(), R2(), U2() G K H I L J 8
9 ιαχείριση Συναλλαγών TP#1 T1 L1(), R1() L1(), R1(), U1() L1(), R1(), U1() T2 L2() R2() L2(), U2(), L2(),U2() Παράδειγµα 3Γ: Φτιάξτε χρονοπρόγραµµα T1: L1(),R1(),L1()R1(),U1(), L1(), R1(), U1(), W1(),L1(I), R1(I),U1(),U1(I) T2: L2(),R2(), L2(), U2() L2(),U2(), R2(), U2() W1(), L1(I) R2(), U2() G H I J R1(I), U1(), U1(I) K L 9
10 ιαχείριση Συναλλαγών TP#2 Κάθε κόµβος/φύλλο είναι δεδοµένο Ένας ενδιάµεσος κόµβος αντιπροσωπεύει τους απογόνους. Χαρακτηριστικά Έχουµε διαµοιραζόµενα ή αποκλειστικά κλειδώµατα και προειδοποιήσεις Το κλείδωµα ενός κόµβου κλειδώνει και όλους τους απογόνους του. (έµµεσα) στην ίδια κατάσταση Για να αποφύγω πολλαπλό κλείδωµα από συναλλαγές θέτω στους προγόνους µια προειδοποίηση(warning) πριν το κλείδωµα. ( ξεκινάµε από την ρίζα προς τα φύλλα ) Κλειδώνω κόµβο µόνο αν δεν υπάρχει ήδη κλείδωµα ή προειδοποίηση Ξεκλειδώνω ή αφαιρώ προειδοποίηση αν δεν υπάρχει κλείδωµα ή προειδοποίηση σε απόγονο. ( ξεκλείδωµα ή αφαίρεση προειδοποιήσεων από τα φύλλα προς την ρίζα) 10
11 ιαχείριση Συναλλαγών TP#2 Παράδειγµα Τα φύλλα (G, H, I, J, K, L, ) είναι δεδοµένα Οι ενδιάµεσοι κόµβοι αντιπροσωπεύουν τους απογόνους. Ο αντιπροσωπεύει τους G,H Η ρίζα αντιπροσωπεύει την βάση G H I J K L 11
12 ιαχείριση Συναλλαγών TP#2 Η τοποθέτηση στον κόµβο µιας προειδοποίησης/ πρόθεσης διαµοιραζόµενου κλειδώµατος: IS Η τοποθέτηση στον κόµβο µιας προειδοποίησης/ πρόθεσης αποκλειστικού κλειδώµατος: IΧ To κλείδωµα ενός κόµβου από µια διεργασία: Χ για αποκλειστικό και S για διαµοιραζόµενο Η απόσυρση του κλειδώµατος ή της προειδοποίησης/πρόθεσης U 12
13 ιαχείριση Συναλλαγών TP#2 Παράδειγµα 1 T1: R1(), W1(G),W1(H) T2: R2(), W2(I), W2(J) Ένα χρονοπρόγραµµα: IX1(), IX1(), IX1(), S1(), IX2(), IX2(), IX2(), X2(), G H I J K L R2(), R1(), IX1(G), X1(G), W1(G), W2(I), W2(J), U2(I), U2(J), U2(), U2(), U2(), IX1(H), X1(H), W1(H), U1(H), U1(G), U1(), U1(), U1(). 13
14 ιαχείριση Συναλλαγών TP#2 Παράδειγµα 1 IX1(), IX1(), IX1(), S1(), IX2(), IX2(), IX2(), X2(), R2(), R1(), IX1(G), X1(G), W1(G), W2(I), W2(J), U2(I), U2(J), U2(), U2(), U2(), IX1(H), X1(H), W1(H), U1(H), U1(G), U1(), U1(), U1(). T1 IX1(), IX1(), IX1(), S1() T2 IX2(), IX2(), IX2(), X2(), R2() G H I J K L R1(), IX1(G), X1(G), W1(G), W2(I), W2(J), U2(I), U2(J), U2(), U2(), U2() IX1(H), X1(H), W1(H), U1(H), U1(G), U1(), U1(), U1() 14
15 ιαχείριση Συναλλαγών TP#2 Παράδειγµα 2 T1: R1(Β), R1(), R1(G), R1(H), R1(), R1(J), T2: R2(), W2(G), W2(H) Ένα χρονοπρόγραµµα είναι: IS1(), IS1(), S1(), R1(), IX2(), IX2(), IX2(), X2(), G H I J K L R2() W2(G), W2(H), R1(), R1(G) R1(H), U1(G), U1(H), U1(), R1(), R1(J), U1(J), U1(I), U1(), U1(G), U1(H), U1(), U1(), U1(), U2(G), U2(H), U2(), U2(), U2() 15
16 ιαχείριση Συναλλαγών TP#2 Παράδειγµα 2 IS1(), IS1(), S1(), R1(), IX2(), IX2(), IX2(), X2(), R2() W2(G), W2(H), R1(), R1(G) R1(H), U1(G), U1(H), U1(), R1(), R1(J), U1(J), U1(I), U1(), U1(G), U1(H), U1(), U1(), U1(), U2(G), U2(H), U2(), U2(), U2() G H I J K L T1 IS1(), IS1(), S1(), R1() R1(), R1(G) R1(H) U1(G), U1(H), U1() R1(), R1(J) U1(J), U1(I), U1(), U1(G), U1(H), U1(), U1(), U1() T2 IX2(), IX2(), IX2(), X2(), NO X2(), R2() W2(G), W2(H), U2(G), U2(H), U2(), U2(), U2() 16
ΗΥ360 Αρχεία και Βάσεις εδοµένων
1 ΗΥ360 Αρχεία και Βάσεις εδοµένων ιαχείριση Συναλλαγών II - Tree Protocols Αυγουστάκη Αργυρώ 2 Διαχείριση Συναλλαγών - Επανάληψη Συναλλαγή (Τ) είναι ένα σύνολο από ενέργειες σε κάποιο αντικείμενο της
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης Συναλλαγές ιαχείριση Συναλλαγών Τζικούλης Βασίλειος Credits:Γιάννης Μακρυδάκης Συναλλαγές Η ταυτόχρονες συναλλαγές (δοσοληψίες, transactions) µε µια
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΙI
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΙI Β. Μεγαλοοικονόµου Έλεγχος συνδροµικότητας (παρουσίαση βασισµένη εν µέρη σε σηµειώσεις των Silberchatz, Korth και Sudarshan και του C. Faloutsos) Γενική Επισκόπηση
Έλεγχος Ταυτοχρονισμού
Έλεγχος Ταυτοχρονισμού Κεφάλαιο 17 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke Ελληνική Μετάφραση: Γεώργιος Ευαγγελίδης 1 Συγκρουσιακώς Σειριοποιήσιμα Χρονοπρογράμματα Δυο χρονοπρογράμματα
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων: ημήτρης Πλεξουσάκης
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων: ημήτρης Πλεξουσάκης Συναλλαγές ιαχείριση Συναλλαγών Αυγουστάκη Αργυρώ Συναλλαγές Κράτησε για τον κ. Χ την θέση 13Α για LA! Κράτησε για τον κ. Y την θέση 13Α για
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων: ημήτρης Πλεξουσάκης
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων: ημήτρης Πλεξουσάκης Συναλλαγές ιαχείριση Συναλλαγών Αυγουστάκη Αργυρώ Συναλλαγές Κράτησε για τον κ. Χ την θέση 13Α για LA! Κράτησε για τον κ. Y την θέση 13Α για
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΦΘΙΝΟΠΩΡΟ 2005 Λύση ΑΣΚΗΣΗΣ #1 Τ. Σελλής
Επαναληπτικές ασκήσεις
Επαναληπτικές ασκήσεις Ασκ 1: Θεωρείστε τα παρακάτω χρονοδιαγράμματα σύγχρονης εκτέλεσης : S 1 = r 1 (A); w 4 (B); w 1 (C); w 3 (D); r 2 (C); w 3 (A); w 1 (A); r 3 (B); w 3 (B); r 2 (D); w 2 (A) S 2 =
έντρα ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη
έντρα 2-3-4 ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη Σημερινό Μάθημα 2-3-4 έντρα Ισοζυγισμένα δέντρα αναζήτησης έντρα αναζήτησης πολλαπλών
ΗΥ360 Αρχεία και Βάσεις εδοµένων
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης Tutorial B-Trees, B+Trees Μπαριτάκης Παύλος 2018-2019 Ιδιότητες B-trees Χρήση για μείωση των προσπελάσεων στον δίσκο Επέκταση των Binary Search Trees
Βάσεις Δεδομένων 2. Φροντιστήριο Δοσοληψίες Τεχνικές ελέγχου συνδρομικότητας. Ημερ: 05/5/2009 Ακ.Έτος 2008-09
Βάσεις Δεδομένων 2 Φροντιστήριο Δοσοληψίες Τεχνικές ελέγχου συνδρομικότητας Ημερ: 05/5/2009 Ακ.Έτος 2008-09 Θεωρία-Επανάληψη Δοσοληψία-ορισμός Το πρόβλημα της απώλειας των ενημερώσεων Το πρόβλημα της προσωρινής
Ισοζυγισμένα υαδικά έντρα Αναζήτησης
Ισοζυγισμένα υαδικά έντρα Αναζήτησης ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη Ισοζυγισμένα υαδικά έντρα Αναζήτησης Ισοζυγισμένα Α είναι
Επεξεργασία οσοληψιών (συνέχεια)
Επανάληψη: οσοληψίες Επεξεργασία οσοληψιών (συνέχεια) Πρόβληµα «Σωστή» εκτέλεση προγραµµάτων όταν επιτρέπουµε ταυτοχρονισµό και ακόµα και αν υπάρχουν αποτυχίες 1 2 οσοληψία (transaction) Επανάληψη: οσοληψίες
Βάσεις Δεδομένων ΙΙ Ενότητα 2
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Δεδομένων ΙΙ Ενότητα 2: Ελέγχου Συνδρομικότητας Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
HY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6
HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο 2015-2016 Φροντιστήριο 6 Α) ΘΕΩΡΙΑ Μέθοδος Επίλυσης (Resolution) Στη μέθοδο της επίλυσης αποδεικνύουμε την ικανοποιησιμότητα ενός συνόλου προτάσεων,
ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης
Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Ονοµατεπώνυµο: Αριθµός Μητρώου: Επαναληπτική Εξέταση (3 ώρες) Ηµεροµηνία:
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 20: Δυαδικό Δέντρο Αναζήτησης Δυαδικό δέντρο Κάθε κόμβος «γονέας» περιέχει δύο δείκτες που δείχνουν σε δύο κόμβους «παιδιά» του ιδίου τύπου. Αν οι δείκτες προς αυτούς
Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών. Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου / 18
Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου 2017 1 / 18 Βέλτιστα (στατικά) δυαδικά δένδρα αναζήτησης Παράδειγµα: Σχεδιασµός προγράµµατος
Βάσεις Δεδομένων ΙΙ. Διάλεξη 2 η Tεχνικές Ελέγχου Συνδρομικότητας
Βάσεις Δεδομένων ΙΙ Διάλεξη 2 η Tεχνικές Ελέγχου Συνδρομικότητας Δ. Χριστοδουλάκης - Α. Φωκά Τμήμα Μηχανικών Η/Υ & Πληροφορικής - Εαρινό Εξάμηνο 2007 Τεχνικές Ελέγχου Συνδρομικότητας Ο χρήστης δεν ασχολείται
Επεξεργασία οσοληψιών
Επανάληψη: οσοληψίες Επεξεργασία οσοληψιών Ανακεφαλαίωση Πρόβληµα «Σωστή» εκτέλεση προγραµµάτων όταν επιτρέπουµε ταυτοχρονισµό και ακόµα και αν υπάρχουν αποτυχίες Βάσεις εδοµένων II 2003-2004 Ευαγγελία
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος
Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης.
Μονοπάτια και Κυκλώµατα Eulr Σε γράφηµα G(V, E): Στοιχεία Θεωρίας Γραφηµάτων (3,4) Ορέστης Τελέλης tllis@unipi.r Κύκλωµα Eulr: Απλό κύκλωµα που διασχίζει κάθε ακµή του G. Μονοπάτι Eulr: Απλό µονοπάτι που
Θεµατολόγιο. Πώς ελέγχουµε σειριοποιησιµότητα στην πράξη;
Θεµατολόγιο Κλειδώµατα 2 Phase Locking Πώς γίνεται στην πράξη; Αδιέξοδα 1 Πώς ελέγχουµε σειριοποιησιµότητα στην πράξη; Η σειριοποιησιµότητα όψεων είναι πολύ ακριβή για να ελεγχθεί, ούτως ή άλλως... Οι
Επεξεργασία οσοληψιών (συνέχεια)
Επανάληψη: οσοληψίες Επεξεργασία οσοληψιών (συνέχεια) Πρόβληµα «Σωστή» εκτέλεση προγραµµάτων όταν επιτρέπουµε ταυτοχρονισµό και ακόµα και αν υπάρχουν αποτυχίες 1 2 οσοληψία (transaction) Επανάληψη: οσοληψίες
Συναλλαγές. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών. Συναλλαγές. Βάσεις Δεδομένων ΙΙ
Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Εαρινό Εξάμηνο 2011-2012 Table of contents 1 Table of contents 1 2 Table of contents 1 2 3 1 2 3 T read(a) A -= 30 write(a) read(b)
Βασικές δοµές δεδοµένων. Ορολογία λιστών. 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Υλοποίηση δοµών δεδοµένων 8.3 Μια σύντοµη υπόθεση εργασίας
ΚΕΦΑΛΑΙΟ 8: Αφηρηµένοι τύποι δεδοµένων 8.1 οµές δεδοµένων (data structures) 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Υλοποίηση δοµών δεδοµένων 8.3 Μια σύντοµη υπόθεση εργασίας Αδόµητα δεδοµένα οδός Ζέας
Γέφυρες σε Δίκτυα. Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος. Γέφυρα του (με αφετηρία τον ) :
Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος και Γέφυρα του (με αφετηρία τον ) : Ακμή που περιέχεται σε κάθε μονοπάτι από το στο s a b c d e f g h i j k l Μας δίνεται ένα δίκτυο (κατευθυνόμενο
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 4η Σειρά Ασκήσεων
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - 4η Σειρά Ασκήσεων Ασκηση.. Χρησιµοποιούµε το κριτήριο ολοκλήρωσης : dx x( x +
ΑΝΑΛΥΤΙΚΟΣ ΤΙΜΟΚΑΤΑΛΟΓΟΣ BMW / MINI (Ισχύει από 15/01/2018) ΚΙΒΩΤΙΟ ΤΑΧΥΤΗΤΩΝ ΚΥΒΙΣΜΟΣ ΙΣΧΥΣ (HP)
Υ F21 LCI - Σειρά 1 3θυρη 1W11 120i ΧΚ 1.998 184 131 21.941,48 33.000 1W31 125i ΑΚ 1.998 224 130 26.407,03 42.040 1W91 M140i ΧΚ 2.998 340 179 31.878,02 52.790 1P91 M140i xdrive ΑΚ 2.998 340 169 35.428,74
Κεφάλαιο 2. Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.1, 12/05/2010
Κεφάλαιο 2 Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση., 2/05/200 Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Σωρός και Ταξινόµηση
Θεµατολόγιο. Α) Πρακτικά Θέµατα στον Έλεγχο Ταυτοχρονισµού
Θεµατολόγιο Α) Πρακτικά Θέµατα στον Έλεγχο Ταυτοχρονισµού Φαντάσµατα Κλείδωµα δέντρων Κλείδωµα σε διαφορετικά επίπεδα διακριτότητας Πώς τα βάζω όλα µαζί Β) Εναλλακτικές Τεχνικές Αισιόδοξος έλεγχος ταυτοχρονισµού
Δώστε έναν επαγωγικό ορισμό για το παραπάνω σύνολο παραστάσεων.
Εισαγωγή στη Λογική Α Τάξης Σ. Κοσμαδάκης Συντακτικό τύπων Α τάξης Α Θεωρούμε δεδομένο ένα λεξιλόγιο Λ, αποτελούμενο από (1) ένα σύνολο συμβόλων για σχέσεις, { R, S,... } (2) ένα σύνολο συμβόλων για συναρτήσεις,
(G) = 4 1 (G) = 3 (G) = 6 6 W G G C = {K 2,i i = 1, 2,...} (C[, 2]) (C[, 2]) {u 1, u 2, u 3 } {u 2, u 3, u 4 } {u 3, u 4, u 5 } {u 3, u 4, u 6 } G u v G (G) = 2 O 1 O 2, O 3, O 4, O 5, O 6, O 7 O 8, O
Προχωρημένα Θέματα Βάσεων Δεδομένων
Προχωρημένα Θέματα Βάσεων Δεδομένων 1ο Σετ Ασκήσεων ΕΡΩΤΗΜΑ 1 Ατομικότητα : Η ατομικότητα πρακτικά εξασφαλίζει ότι είτε όλες οι πράξεις μιας δοσοληψίας θα εκτελεστούν ή καμμιά από αυτές δεν θα εκτελεστεί.
Ουρές προτεραιότητας
Ουρές προτεραιότητας Πελάτες... στο ταµείο µιας τράπεζας Κάθε πελάτης µε ένα νούµερο/αριθµός προτεραιότητας! Όσοοαριθµός είναι µεγάλος, τόσο οι πελάτες είναι πιο ενδιαφέροντες(!) ένα µόνο ταµείο ανοικτό
Δυναμική Ηλεκτρικών Μηχανών
Δυναμική Ηλεκτρικών Μηχανών Ενότητα : Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Εκτενείς Δομές Δεδομένων
Εκτενείς Δομές Δεδομένων Εισαγωγή Δομές που βασίζονται σε συγκρίσεις : Ισοζυγισμένα δέντρα εύρεσης ( δέντρα τα φύλλα των οποίων απέχουν της ίδιας τάξεως μεγέθους, απόσταση απο τη ρίζα) Υψοζυγισμένα δέντρα
Εγχειρίδιο Sticky Notes i. Εγχειρίδιο Sticky Notes
i Εγχειρίδιο Sticky Notes ii Copyright 2005 Davyd Madeley Copyright 2004 Shaun McCance Copyright 2004 Angela Boyle Copyright 2003, 2004 Sun Microsystems Copyright 2003 Loban A Rahman Σας παρέχεται άδεια
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και
Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα
Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς έντρα 1 / 27 έντρα έντρο είναι απλό συνδεδεµένο µη
1.2.1 Το μοντέλο αναφοράς για τη Διασύνδεση Ανοικτών Συστημάτων (OSI) 1 / 19
1.2.1 Το μοντέλο αναφοράς για τη Διασύνδεση Ανοικτών Συστημάτων (OSI) 1 / 19 2 / 19 Το Φυσικό Επίπεδο Το Φυσικό Επίπεδο ή στρώμα (Physical layer) ασχολείται με τη μετάδοση των bit (1 0) που απαρτίζουν
Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)
Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 5) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Βραχύτερα Μονοπάτια για όλα τα Ζεύγη Λύση υναµικού Προγραµµατισµού Ο αλγόριθµος των Floyd-Warshal ΕΠΛ 3
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Εκτενείς Δομές Δεδομένων
Εκτενείς Δομές Δεδομένων Ειδικά Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Το αριστερό υποδένδρο κάθε κόμβου έχει τιμές μικρότερες από την τιμή του κόμβου. Το δεξιό υποδένδρο κάθε κόμβου έχει τιμές μεγαλύτερες
Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο
Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το μερίδιο εργοδοτουμένων με μερική ή/και προσωρινή απασχόληση
ΚΕΦΑΛΑΙΟ 1 ΣΥΝΑΛΛΑΓΕΣ ΚΑΙ ΕΛΕΓΧΟΣ ΤΑΥΤΟΧΡΟΝΙΣΜΟΥ
ΚΕΦΑΛΑΙΟ 1 ΣΥΝΑΛΛΑΓΕΣ ΚΑΙ ΕΛΕΓΧΟΣ ΤΑΥΤΟΧΡΟΝΙΣΜΟΥ Σε αυτό το κεφάλαιο θα ασχοληθούµε µε βασικές έννοιες που αφορούν τη διαχείριση των συναλλαγών και ειδικότερα τον έλεγχο ταυτοχρονισµού. Ασχολούµαστε πρωταρχικά
Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών. ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης
Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Ονοµατεπώνυµο: Αριθµός Μητρώου: Τελική Εξέταση (3 ώρες) Ηµεροµηνία: 7
Κεφάλαιο 2. Η δομή δεδομένων Σωρός και η Ταξινόμηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.3, 14/11/2014
Κεφάλαιο 2 Η δομή δεδομένων Σωρός και η Ταξινόμηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.3, 14/11/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Σωρός και Ταξινόμηση
ΚΑΤΑΝΕΜΗΜΕΝΕΣ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ
ΚΑΤΑΝΕΜΗΜΕΝΕΣ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ 1 ΓΕΝΙΚΑ Μια κατανεµηµένη βάση δεδοµένων (distributed database) µπορεί να οριστεί σαν µια οµάδα από λογικά συνδεόµενες βάσεις δεδοµένων που είναι διεσπαρµένες σε ένα δίκτυο
Υπερπροσαρμογή (Overfitting) (1)
Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης
ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ
ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ Μάθηµα 1 Ο ρόλος του ΛΣ Υλικό Υπολογιστικό σύστηµα Λειτουργικό σύστηµα Λογισµικό Προγράµµατα εφαρµογής Στόχοι του ΛΣ Χρήστες ιευκόλυνση των χρηστών ιευκόλυνση
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ασκηση 1. (i Υποθέτοντας ότι επιτρέπονται επαναλήψεις
Μπαλτάς Αλέξανδρος 21 Απριλίου 2015
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ B- Trees Δομές Δεδομένων Μπαλτάς Αλέξανδρος 21 Απριλίου 2015 ampaltas@ceid.upatras.gr Περιεχόμενα 1. Εισαγωγή 2. Ορισμός B- tree 3. Αναζήτηση σε B- tree 4. Ένθεση σε
Βάσεις Δεδομένων ΙΙ Ενότητα 2
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Δεδομένων ΙΙ Ενότητα 2: Ελέγχου Συνδρομικότητας Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Προγραµµατιστική Εργασία 1 ο Μέρος
Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών 4 Νοεµβρίου 2011 ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος 2011-12 ιδάσκουσα: Παναγιώτα Φατούρου Προγραµµατιστική Εργασία 1 ο Μέρος Ηµεροµηνία
PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΠΡΩΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης
FUHR FUHR MULTISAFE. Αυτόμ ατη προστασία για αίσθηση ασφάλειας. Ο αυτόματος μηχανισμός κλειδώματος, που δεν αντιγράφεται
Αυτόμ ατη προστασία για αίσθηση ασφάλειας Ο αυτόματος μηχανισμός κλειδώματος, που δεν αντιγράφεται FUHR Αυξημένη ασφάλεια και ευκολία για μονόφυλλες και δίφυλλες πόρτες από προφίλ αλουμινίου, ξύλου και
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 2
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 2 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων
ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δοµών δεδοµένων 8.4 Μια σύντοµη µελέτη περίπτωσης 8.5 Προσαρµοσµένοι τύποι δεδοµένων 1 Βασικές δοµές
Τεχνικές Ελέγχου Συνδροµικότητας
Τεχνικές Ελέγχου Συνδροµικότητας Τεχνικές Ελέγχου Συνδροµικότητας Ο χρήστης δεν ασχολείται µε τη συνδροµικότητα Το Σ Β εξασφαλίζει «σωστή συνδροµικότητα», γενικά δροµολογεί τις πράξεις των δοσοληψιών ώστε
Βάσεις εδοµένων Ευαγγελία Πιτουρά 2
Ευρετήρια Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 1 Ευρετήρια Ένα ευρετήριο (index) είναι µια βοηθητική δοµή αρχείου που κάνει πιο αποδοτική την αναζήτηση µιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται
The Industrial Sector in Greece: the next day
The Industrial Sector in Greece: the next day Νίκος Βέττας Γενικός Διευθυντής Ίδρυμα Οικονομικών και Βιομηχανικών Ερευνών (IOBE) Καθηγητής Οικονομικών Οικονομικό Πανεπιστήμιο Αθηνών nvettas@aueb.gr American
Ευρετήρια. Το ευρετήριο αρχείου είναι ένα διατεταγµένο αρχείο µε σταθερού µήκους εγγραφές
Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 Ευρετήρια Ένα ευρετήριο (index) είναι µια βοηθητική δοµή αρχείου που κάνει πιο αποδοτική την αναζήτηση µιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται
Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δεντρικά Ευρετήρια Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Δέντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόμβος του περιέχει το πολύ p - 1 τιμές
SONATA D 295X245. caza
SONATA D 295X245 caza 01 Γωνιακός καναπές προσαρμόζεται σε όλα τα μέτρα σε όλους τους χώρους με μηχανισμούς ανάκλησης στα κεφαλάρια για περισσότερή αναπαυτικότητα στην χρήση του-βγαίνει με κρεβάτι η χωρίς
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
Δένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών :
Δένδρα Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών : Ανάλυση αλγορίθμων (π.χ. δένδρα αναδρομής) Δομές δεδομένων (π.χ. δένδρα αναζήτησης) ακμή Κατηγορίες (αύξουσα
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα
Η Περιοχή Εργασίας του Flash
Η Περιοχή Εργασίας του Flash Η Λωρίδα Χρόνου και τα Επίπεδα Το Flash είναι εφαρμογή με την οποία φτιάχνουμε ταινίες όπως διαφημιστικά banners και διαδραστικές εφαρμογές οι οποίες περιέχουν κίνηση. Για
Προγραµµατιστική Εργασία 2 ο Μέρος
Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών 20 Νοεµβρίου 2012 ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος 2011-12 ιδάσκουσα: Παναγιώτα Φατούρου Προγραµµατιστική Εργασία 2 ο Μέρος Ηµεροµηνία
Νέα συσκευή One Time Password. Εγχειρίδιο χρήσης OTP
Νέα συσκευή One Time Password Εγχειρίδιο χρήσης OTP Περιεχόµενα 1. Έναρξη Λειτουργίας της Συσκευής σελ 2-3 - Άνοιγµα συσκευής - Τρόπος καταχώρισης PIN - Αλλαγή PIN 2. Τρόποι Χρήσης της Συσκευής σελ 4-8
Κατανεμημένα Συστήματα με Java. Ενότητα # 7: Ατομικές συναλλαγές Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Κατανεμημένα Συστήματα με Java Ενότητα # 7: Ατομικές συναλλαγές Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
ΕΥΧΑΡΙΣΤΙΕΣ. της εφαρµογής που υλοποιήσαµε, αλλά και προτάσεις για µελλοντικές εφαρµογές µε βάση την τεχνογνωσία που αποκτήσαµε.
ΠΡΟΛΟΓΟΣ Η εργασία αυτή, παρουσιάζει και αναλύει τις δυνατότητες µοντελοποίησης και προσοµοίωσης που είναι διαθέσιµες στο λογισµικό Extend και πιο συγκεκριµένα περιγράφει τη λειτουργία, µοντελοποίηση και
Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata
Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα (2) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αυτόµατα Στοίβας Pushdown utomata Ισοδυναµία µε τις Γλώσσες χωρίς Συµφραζόµενα:
ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ενότητα 9: Διαχείριση Εφοδιαστικής Αλυσίδας: Προβλήματα Μεταφοράς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative
ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! "c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I " CD β U3
I co f - bu. EH T ft Wj. ta -p -Ρ - a &.So f I P ω s Q. ( *! C5 κ u > u.., TJ C φ Γί~ eg «62 gs ftffg «5.s LS ό b a. L κ5 =5 5 W.2 '! "c? io -Ρ ( Β Φ Ι < ϊ bcp «δ ι pq ΛΛ g Ό & > I " CD β U (Ν φ ra., r
ΚΕΦΑΛΑΙΟ 4 ΛΟΓΙΣΜΙΚΟ ΣΥΣΤΗΜΑΤΟΣ. ΔΗΜΗΤΡΗΣ ΜΑΝΩΛΗΣ ΦΥΣΙΚΟΣ-MSc
ΚΕΦΑΛΑΙΟ 4 ΛΟΓΙΣΜΙΚΟ ΣΥΣΤΗΜΑΤΟΣ ΔΗΜΗΤΡΗΣ ΜΑΝΩΛΗΣ ΦΥΣΙΚΟΣ-MSc 1 BΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ Λ/Σ ΔΗΜΗΤΡΗΣ ΜΑΝΩΛΗΣ ΦΥΣΙΚΟΣ-MSc 2 ΣΤΑΘΜΟΙ ΣΤΗΝ ΕΞΕΛΙΞΗ ΤΩΝ Λ/Σ Εχουμε την πρώτη μέχρι την τέταρτη γενιά Λ/Σ,τα σημαντικά
Επεξεργασία οσοληψιών
οσοληψίες Επεξεργασία οσοληψιών Ηταυτόχρονη εκτέλεση προγραµµάτων χρηστών είναι απαραίτητη για την καλή απόδοση ενός Σ Β Επειδή οι προσπελάσεις στο δίσκο είναι συχνές και σχετικά αργές, είναι σηµαντικό
Στο παράρτηµα θα παρουσιαστούν συνοπτικά οι δυνατότητες δύο προγραµµάτων Το ένα είναι το Professional Portfolio Manager (-P.P.M-) µε το οποίο µπορεί
ΠΑΡΑΡΤΗΜΑ Στο παράρτηµα θα παρουσιαστούν συνοπτικά οι δυνατότητες δύο προγραµµάτων Το ένα είναι το Professional Portfolio Manager (-P.P.M-) µε το οποίο µπορεί ο χρήστης να πραγµατοποιήσει τις µεθόδους
Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Ευρετήρια Ευαγγελία Πιτουρά 1 τιμή γνωρίσματος Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται
Κεφάλαιο 2: Τυπικές γλώσσες
Κεφάλαιο 2: Τυπικές γλώσσες (μέρος 2ο) Νίκος Παπασπύρου, Κωστής Σαγώνας Μεταγλωττιστές Μάρτιος 2017 47 / 216 Γλώσσες χωρίς συμφραζόμενα (i) Γραμματικές χωρίς συμφραζόμενα: Σε κάθε παραγωγή ένα μη τερματικό
Επεξεργασία Ερωτήσεων
Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων
Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en)
Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en) 7057/17 ADD 1 TRANS 97 ΔΙΑΒΙΒΑΣΤΙΚΟ ΣΗΜΕΙΩΜΑ Αποστολέας: Ημερομηνία Παραλαβής: Αποδέκτης: Για τον Γενικό Γραμματέα της Ευρωπαϊκής Επιτροπής,
Επεξεργασία Ερωτήσεων
Εισαγωγή Επεξεργασία Ερωτήσεων Σ Β Βάση εδομένων Η ομή ενός ΣΒ Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 1 Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 2 Εισαγωγή Εισαγωγή ΜΕΡΟΣ 1 (Χρήση Σ Β ) Γενική
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση
Ε.Ε. Παρ. 1(H) Αρ. 3496, Ν. 33(IIV2001
Ε.Ε. Πρ. 1(H) Αρ. 496, 4.5.2001 1799 Ν. (IIV2001 περί Συμπληρωμτικύ Πρϋπλγισμύ Νόμς (Αρ. ) τυ 2001 εκδίδετι με δημσίευση στην Επίσημη Εφημερίδ της Κυπρικής Δημκρτίς σύμφων με τ Αρθρ 52 τυ Συντάγμτς. Αριθμός
ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΙΙ. Επεξεργασία οσοληψιών. το πώς βλέπει το Σ Β τα προγράµµατα των χρηστών. οσοληψία (transaction)
Ύλη Ύλη Έννοιες Επεξεργασίας οσοληψιών Τεχνικές Ελέγχου Συνδροµικότητας ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΙΙ Τεχνικές Ανάκαµψεις από Σφάλµατα Κατανεµηµένες και Παράλληλες Βάσεις εδοµένων Βάσεις εδοµένων και ιαδίκτυο Βάσεις
Γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο
πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση του αριθμού του οικονομικά ενεργού
Επεκτεταμένο Μοντέλο Οντοτήτων-Συσχετίσεων Αντζουλάτος Γεράσιμος antzoulatos@upatras.gr Τμήμα Εφαρμογών Πληροφορικής στην Διοίκηση και Οικονομία ΤΕΙ Πατρών - Παράρτημα Αμαλιάδας 08 Νοεμβρίου 2012 Περιεχομενα
Ευρετήρια. Πρωτεύον ευρετήριο (primary index): ορισμένο στο κλειδί διάταξης του αρχείου. Ευρετήρια. Ευρετήρια. Ευρετήρια
Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου που καλείται
Ευρετήρια. Πρωτεύον ευρετήριο (primary index): ορισμένο στο κλειδί διάταξης του αρχείου. Ευρετήρια. Ευρετήρια. Ευρετήρια
Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου που καλείται
ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.
ιαβούλευση των ενδιαφεροµένων κατά τη χάραξη πολιτικής για τις µικρές επιχειρήσεις σε εθνικό/περιφερειακό επίπεδο
ιαβούλευση των ενδιαφεροµένων κατά τη χάραξη πολιτικής για τις µικρές επιχειρήσεις σε εθνικό/περιφερειακό επίπεδο 01.06.2004-30.09.2004 Μέρος Ι Στοιχεία Χώρα AT - Αυστρία 1 (1.4) BE - Βέλγιο 4 (5.8) DE
Γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο
απασχολούμενου πληθυσμού - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού υπολογίζεται με τη διαίρεση του αριθμού του ισοδύναμου πλήρως
Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1
Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου
Εισαγωγή & Αφαίρεση κάρτας SΙΜ
Γρήγορο Οδηγό 4G ομή Ε 1 2 3 4 5 6 7 Γ χ σ ε η Γ α Ε 8 9 10 11 12 13 14 15 1 Συρτάρι υποδοχή SIM 2 Πίσω Κάμερα 3 Πίσω Φλα 4 Μπροστά Φλα 5 Ακουστικό 6 Μπροστινή κάμερα 7 Πλήκτρα αυξομείωση ένταση ήχου 8
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
Ειδικά Θέματα Παραμετροποίησης. Ασφάλεια Εφαρμογής Εναρμόνιση με τον κανονισμό GDRP. Data Communication A.E.
Ασφάλεια Εφαρμογής Εναρμόνιση με τον κανονισμό GDRP Γενικός Κανονισμός Προστασίας Προσωπικών Δεδομένων (GDPR) Η συμμόρφωση της εφαρμογής Premium HRM Μισθοδοσία της Data Communication με το GDPR Στις οδηγίες