Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων"

Transcript

1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ασκηση 1. (i Υποθέτοντας ότι επιτρέπονται επαναλήψεις : (α Ο πρώτος ϕοιτητής µπορεί να τοποθετηθεί σε οποιαδήποτε από τις n οµάδες. Ο δεύτερος µπορεί επίσης να τοποθετηθεί σε οποιαδήποτε από τις n οµάδες, και ο k-στος ϕοιτητής σε οποιαδήποτε από n οµάδες. Άρα υπάρχουν n k τρόποι για να τοποθετήσουµε n ϕοιτητές σε k οµάδες. (ϐ Τα τρία διαγωνίσµατα µπορούν να προγραµµατιστούν σε µια περίοδο 5 ηµερών µε = 5 3 = 125 τρόπους. (γ Για τη πρώτη ϑέση υπάρχουν 24 επιλογές γραµµάτων. Αφού επιτρέπεται να χρησιµοποιήσουµε το ίδιο γράµµα και για τη δεύτερη ϑέση υπάρχουν 24 επιλογές γραµµάτων. Το ίδιο ισχύει και για τη τρίτη και τέταρτη ϑέση. Άρα ο συνολικός αριθµός των διαφορετικών συµβολοσειρών µε τέσσερα γράµµατα είναι = 24 4 = (ii Υποθέτοντας ότι δεν επιτρέπονται επαναλήψεις : (α Ο πρώτος ϕοιτητής µπορεί να καθίσει σε οποιαδήποτε από τις 7 ϑέσεις, ο δεύτερος σε οποιαδήποτε από τις υπόλοιπες 6 ϑέσεις, ο τρίτος ϕοιτητής σε οποιαδήποτε από τις υπόλοιπες 5 ϑέσεις και ο τέταρτος ϕοιτητής σε οποιαδήποτε από τις υπόλοιπες 4 ϑέσεις. Συνεπώς ο συνολικός τρόπος µε το οποίο µπορούν να καθίσουν k ϕοιτητές σε n ϑέσεις είναι : P (7, 4 = = 840. (ϐ Τα τρία διαγωνίσµατα µπορούν να προγραµµατιστούν σε µια περίοδο 5 ηµερών µε P (5, 3 = = 60 τρόπους. (γ Το πρόβληµα αποτελεί ένα πρόβληµα διάταξης 4 από 24 αντικείµενα. Για τη πρώτη ϑέση υπάρχουν 24 επιλογές γραµµάτων, για τη δεύτερη ϑέση υπάρχουν 23 επιλογές γραµµάτων (από τα υπόλοιπα 23 γράµµατα, για τη τρίτη ϑέση υπάρχουν 22 επιλογές γραµµάτων (από τα υπόλοιπα 22 γράµµατα, και για τη τέταρτη ϑέση υπάρχουν 21 επιλογές (από τα υπόλοιπα 21 γράµµατα. Άρα ο συνολικός αριθµός των διαφορετικών συµβολοσειρών µε τέσσερα διαφορετικά γράµµατα είναι P (24, 4 = = (δ Η συγκεκριµένη περίπτωση αποτελεί πρόβληµα διάταξης 4 από 6 αντικείµενα. Άρα η λύση είναι : P (6, 4 = = 360

2 ΗΥ-217- Θεωρία Πιθανοτήτων - Χειµερινό Εξάµηνο /Λύσεις Τρίτης Σειράς Ασκήσεων 2 Ασκηση 2. (α Αυτό είναι ένα πρόβληµα επιλογής 10 από 100 αντικείµενα. Συνεπώς η λύση είναι C(100, 10 = 100! (10!90! = (ϐ Πρέπει να επιλέξουµε 5 αγόρια από τα 40 και 5 κορίτσια από τα 60. Υπάρχουν C(40, 5 τρόποι να επιλέξουµε τα αγόρια και C(60, 5 τρόποι να επιλέξουµε τα κορίτσια. Εφόσον ϑα πραγµατοποιήσουµε και τα δύο πειράµατα, εφαρµόζουµε τον κανόνα του γινοµένου. Άρα ο συνολικός αριθµός των τρόπων για να σχηµατίσουµε την επιτροπή είναι : C(40, 5 C(60, 5 = 40! 5!35! 60! = = !55! (γ Ας ονοµάσουµε ως πρώτο πείραµα το σχηµατισµό της επιτροπής από 6 αγόρια και 4 κορίτσια. Πρέπει να επιλέξουµε 6 αγόρια από τα 40 και 4 κορίτσια από τα 60. Άρα ο συνολικός αριθµός των τρόπων για να σχηµατίσουµε την επιτροπή είναι : C(40, 6 C(60, 4 = 40! 6!34! 60! = = !56! Ας ονοµάσουµε ως δεύτερο πείραµα το σχηµατισµό της επιτροπής από 4 αγόρια και 6 κορίτσια. Πρέπει να επιλέξουµε 4 αγόρια από τα 40 και 6 κορίτσια από τα 60. Άρα ο συνολικός αριθµός των τρόπων για να σχηµατίσουµε την επιτροπή είναι : C(40, 4 C(60, 6 = 40! 4!36! 60! = = !54! Είναι προφανές ότι δεν µπορούµε να πραγµατοποιήσουµε ταυτόχρονα και τα δύο πειράµατα. Η επιτροπή µπορεί να σχηµατιστεί ή µόνο µε τον ένα, ή µόνο µε τον άλλο τρόπο. Συνεπώς ϑα εφαρµόσουµε το κανόνα του αθροίσµατος. Άρα ο συνολικός αριθµός των τρόπων είναι : = Ασκηση 3. Επειδή τελικά δεν έχει σηµασία η σειρά κλήρωσης του κάθε αριθµού, ( οι δυνατές περιπτώσεις του 49 πειράµατος είναι τόσες όσοι και οι συνδυασµοί των 49 ανά 6, δηλαδή 6 ( 6 Για να ϐρούµε το πλήθος των ευνοϊκών περιπτώσεων σκεφτόµαστε ως εξής : Υπάρχουν 4 ( τρόποι ( 49 6 για να επιλέξουµε 4 σωστά νούµερα από τα 6 που κληρώθηκαν. Στη συνέχεια µένουν 6 4 = 43 2 τρόποι ( για ( να επιλέξουµε τα 2 λάθος νούµερα. Εποµένως, το πλήθος των ευνοϊκών περιπτώσεων 6 είναι Άρα η πιθανότητα του ενδεχοµένου Α : να πετύχουµε 4 ακριβώς σωστά νούµερα είναι, ( 6 ( P (A = ( 49 =

3 ΗΥ-217- Θεωρία Πιθανοτήτων - Χειµερινό Εξάµηνο /Λύσεις Τρίτης Σειράς Ασκήσεων 3 Ασκηση 4. ( 19 Υπάρχουν 3 τρόποι να επιλέξουµε 3 σφαίρες από τις συνολικά 19 σφαίρες στην περίπτωση της δειγµατοληψίας χωρίς επανάθεση, εποµένως έχουµε : (α P ( Ολες οι σφαίρες είναι του ίδιου χρώµατος = (5 3+( 6 3+( 8 3, αν κάθε σφαίρα που εξάγεται ( 19 3 δεν µπαίνει ξανά στην κάλπη (δειγµατοληψία χωρίς επανάθεση (ϐ P ( Ολες οι σφαίρες είναι διαφορετικών χρωµάτων = (5 1( 6 1( 8 1 ( 19, αν κάθε σφαίρα που εξάγεται 3 δεν µπαίνει ξανά στην κάλπη (δειγµατοληψία χωρίς επανάθεση Υπάρχουν 19 3 τρόποι να επιλέξουµε 3 σφαίρες από τις συνολικά 19 σφαίρες στην περίπτωση της δειγµατοληψίας µε επανάθεση, εποµένως έχουµε : (γ P ( Ολες οι σφαίρες είναι του ίδιου χρώµατος = , αν κάθε σφαίρα που εξάγεται ξαναµπαίνει στην κάλπη πριν επιλεγεί η επόµενη (δειγµατοληψία µε επανάθεση (δ P ( Ολες οι σφαίρες είναι διαφορετικών χρωµάτων = 3! , αν κάθε σφαίρα που εξάγεται ξαναµπαίνει στην κάλπη πριν επιλεγεί η επόµενη (δειγµατοληψία µε επανάθεση Ασκηση 5. Ο τύπος για τους ανασυνδυασµούς n αντικειµένων εκ των οποίων υπάρχουν k 1 αντικείµενα τύπου 1, k 2 αντικείµενα τύπου 2,..., k m αντικείµενα τύπου m είναι : n! k 1! k 2! k 3! k m!. Με ϐάση αυτόν τον τύπο η λύση του προβλήµατος είναι απλή : (α µε την λέξη ΚΡΙΜΑ µπορούµε να κάνουµε 5! αναγραµµατισµούς. (ϐ µε την λέξη ΚΑΛΗΜΕΡΑ µπορούµε να κάνουµε (γ µε την λέξη ΠΑΠΑΚΙ µπορούµε να κάνουµε (γ µε την λέξη ΑΓΓΑΡΕΙΑ µπορούµε να κάνουµε 8! 1! 2! 1! 1! 1! 1! 1! αναγραµµατισµούς. 6! 2! 2! 1! 1! αναγραµµατισµούς. 8! 3! 2! 1! 1! 1! αναγραµµατισµούς.

4 ΗΥ-217- Θεωρία Πιθανοτήτων - Χειµερινό Εξάµηνο /Λύσεις Τρίτης Σειράς Ασκήσεων 4 Ασκηση 6. Υπάρχουν n διαδοχικές ϱίψεις του νοµίσµατος. (α (ϐ εδοµένου ότι ήρθε κεφαλή ακριβώς µια ϕορά, αυτή η κεφαλή µπορεί να ήρθε σε οποιοδήποτε από τις n ϱίψεις. Εποµένως, η πιθανότητα ότι στην πρώτη ϱίψη του νοµίσµατος ήρθε κεφαλή είναι 1 n εδοµένου ότι ήρθαν ακριβώς δύο κεφαλές και ότι στην πρώτη ϱίψη είχαµε σίγουρα κεφαλή, τότε υπάρχουν n 1 ϱίψεις στις οποίες µπορεί να ήρθε ( η δεύτερη κεφαλή. Ο συνολικός n αριθµός των τρόπων για να πάρουµε δύο κεφαλές είναι 2. Συνεπώς, η Ϲητούµενη πιθανότητα ισούται µε n 1 ( n 2 (γ εδοµένου ότι ήρθαν ακριβώς 7 κεφαλές, η πιθανότητα να πάρουµε τρεις κεφαλές στις τέσσερις πρώτες ϱίψεις αποτελείται από τρία µέρη. 1. Ο αριθµός των τρόπων να πάρουµε 3 κεφαλές στις 4 ( 4 πρώτες ϱίψεις είναι 3 2. Ο αριθµός των τρόπων να πάρουµε 4 κεφαλές στις εναποµείναντες n 4 ϱίψεις είναι ( n Ο αριθµός των τρόπων να πάρουµε 7 κεφαλές στις n ϱίψεις είναι ( n 7 Συνεπώς, η Ϲητούµενη πιθανότητα ισούται µε ( 4 n 4 3( ( 4 n 7 Ασκηση 7. (α Υπάρχουν συνολικά (25(24(23(22(21 = 25! τρόποι να επιλέξουµε 5 πέτρες από 25 πέτρες, αφού υπάρχουν 25 τρόποι να επιλέξουµε την 1η πέτρα, 24 τρόποι να επιλέξουµε την 2η πέτρα κ.ο.κ. Εάν ϑέλουµε να επιλέξουµε 5 πέτρες ώστε να είναι σε διαφορετική σειρά, ο αριθµός των τρόπων που µπορούµε να το κάνουµε είναι 25 χρησιµοποιώντας αρχή κατεµέτρησης. Αφού η 2η πέτρα δεν µπορεί να ϐρίσκεται στην ίδια σειρά, ο αριθµός των τρόπων επιλογής της είναι 25-5 = 20. Με την ίδια λογική ο αριθµός των τρόπων για να επιλέξουµε την 3η πέτρα είναι 20-5 = 15, επειδή δεν µπορεί να ϐρίσκεται στις προηγούµενες δύο σειρές. Για να επιλέξουµε την 4η πέτρα έχουµε 10 τρόπους, και για την 5η έχουµε 5 τρόπους. Εποµένως η πιθανότητα να επιλέξουµε 5 πέτρες και να ϐρίσκονται σε διαφορετική σειρά η καθεµία είναι (25(20(15(10(5 25!.

5 ΗΥ-217- Θεωρία Πιθανοτήτων - Χειµερινό Εξάµηνο /Λύσεις Τρίτης Σειράς Ασκήσεων 5 Σχήµα 1: Βρίσκονται σε διαφορετική σειρά (ϐ Κοιτώντας τον 5 5 πίνακα που σχηµατίζεται από τις πέτρες παρατηρούµε ότι υπάρχουν 5 ϑέσεις ώστε να ϐάλουµε την 1η πέτρα στην 1η γραµµή. Μόλις τοποθετήσουµε την 1η πέτρα υπάρχουν 4 ϑέσεις για να ϐάλουµε την 2η πέτρα στην 2η γραµµή, αφού η στήλη που χρησιµοποιήθηκε από την 1η πέτρα δεν µπορεί να χρησιµοποιηθεί από τη 2η πέτρα. Εποµένως έχουν µείνει 3 ϑέσεις ώστε να τοποθετήσουµε την 3η πέτρα στην 3η γραµµή. 2 για την 4η και 1 για την 5η. Εποµένως ο συνολικός αριθµός πιθανών τοποθετήσεων για µια συγκεκριµένη σειρά είναι : (5(4(3(2(1. Εποµένως ο συνολικός αριθµός των τρόπων που µπορούµε να επιλέξουµε 5 πέτρες ώστε να είναι σε διαφορετικές γραµµές και διαφορετικές στήλες είναι (5!(5!. Ο αριθµός των τρόπων που µπορούµε να επιλέξουµε 5 πέτρες από 25 πέτρες είναι 25!. Εποµένως η πιθανότητα είναι 5!5! 25!. Σχήµα 2: Επιλογή από διαφορετική σειρά και στήλη

6 ΗΥ-217- Θεωρία Πιθανοτήτων - Χειµερινό Εξάµηνο /Λύσεις Τρίτης Σειράς Ασκήσεων 6 Εναλλακτικός τρόπος σκέψης για το πρόβληµα είναι ο ακόλουθος. Υπαρχουν 25 ϑέσεις ώστε να επιλέξουµε την 1η πέτρα. Αν απορρίψουµε όλες τις υπόλοιπες ϑέσεις της γραµµής και της στήλης της 1ης πέτρας µένουν 16 πιθανές ϑέσεις ώστε να τοποθετήσουµε την 2η πέτρα. Μόλις την τοποθετήσουµε αποκλείουµε την γραµµή και την στήλη στις οποίες ανήκει. Αποµένουν 9 ϑέσεις για την 3η πέτρα, 4 ϑέσεις για την 4η πέτρα και 1 ϑέση για την 5η πέτρα. Ο συνολικός αριθµός των τρόπων επιλογής για τις 5 πέτρες που ϐρίσκονται σε διαφορετικές γραµµές και στήλες είναι (25(16(9(4(1. Η πιθανότητα είναι (25(16(9(4(1 25!.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-1: Πιθανότητες - Χειµερινό Εξάµηνο 01 ιδάσκων : Π Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /10/01 Ηµεροµηνία Παράδοσης : /11/01

Διαβάστε περισσότερα

(1) 98! 25! = 4 100! 23! = 4

(1) 98! 25! = 4 100! 23! = 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 Συνδυαστική Ανάλυση ΙΙ και Εισαγωγή στις ιακριτές Τυχαίες Μεταβλητές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-: Πιθανότητες - Χειµερινό Εξάµηνο 0 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο - Συνδυαστική Ανάλυση Επιµέλεια : Σοφία Σαββάκη Θεωρία. Η ϐασική αρχή της απαρίθµησης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ασκηση 1. Σε κάθε περίπτωση πρέπει να χρησιµοποιήσουµε

Διαβάστε περισσότερα

P( n, k) P(5,5) 5! 5! 10 q! q!... q! = 3! 2! = 0! 3! 2! = 3! 2!

P( n, k) P(5,5) 5! 5! 10 q! q!... q! = 3! 2! = 0! 3! 2! = 3! 2! HY118- ιακριτά Μαθηµατικά Φροντιστήριο στη Συνδυαστική (#8) Άσκηση 1 Με πόσους τρόπους µπορούµε να δηµιουργήσουµε συµβολοσειρές που αποτελούνται από τρεις παύλες και δύο τελείες; Άσκηση 1, 1 η προσέγγιση

Διαβάστε περισσότερα

(1) 98! 25! = 4 100! 23! = 4

(1) 98! 25! = 4 100! 23! = 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες - Χειµερινό Εξάµηνο 015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 Συνδυαστική Ανάλυση και Εισαγωγή στις ιακριτές Τυχαίες Μεταβλητές Επιµέλεια

Διαβάστε περισσότερα

(365)(364)(363)...(365 n + 1) (365) k

(365)(364)(363)...(365 n + 1) (365) k ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 21//2016 Ηµεροµηνία Παράδοσης :

Διαβάστε περισσότερα

P (A) = 1/2, P (B) = 1/2, P (C) = 1/9

P (A) = 1/2, P (B) = 1/2, P (C) = 1/9 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-1: Πιθανότητες - Χειµερινό Εξάµηνο 011 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /11/011 Ηµεροµηνία Παράδοσης : 1/11/011

Διαβάστε περισσότερα

P = 0 1/2 1/ /2 1/

P = 0 1/2 1/ /2 1/ Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-37: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 206 ιδάσκων : Π. Τσακαλίδης 7ο Φροντιστήριο Επιµέλεια : Κωνσταντίνα Φωτιάδου Ασκηση. Μια Μαρκοβιανή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες-Χειµερινό Εξάµηνο 08-09 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 4 Ασκηση Το πείραµά µας συνίσταται στη ϱίψη 3 τίµιων κερµάτων. Συµβολίζουµε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2017 ιδάσκων : Π. Τσακαλίδης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2017 ιδάσκων : Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο 07 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 4 ιακριτές Τυχαίες Μεταβλητές ( Ι ) Επιµέλεια : Στιβακτάκης Ραδάµανθυς Ασκηση.

Διαβάστε περισσότερα

8 Άρα η Ϲητούµενη πιθανότητα είναι

8 Άρα η Ϲητούµενη πιθανότητα είναι ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες - Χειµερινό Εξάµηνο 014 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 4/10/014 Ηµεροµηνία Παράδοσης : 5/11/014

Διαβάστε περισσότερα

P (Ηρ) = 0.4 P (Αρ) = 0.32 P (Απ) = 0.2

P (Ηρ) = 0.4 P (Αρ) = 0.32 P (Απ) = 0.2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2014 ιδάσκων : Π. Τσακαλίδης Λύσεις Πρώτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 25/09/2014 Ηµεροµηνία Παράδοσης

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης. Λύσεις Πρώτης Σειράς Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης. Λύσεις Πρώτης Σειράς Ασκήσεων Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Πρώτης Σειράς Ασκήσεων Ασκηση 1. (αʹ) Αν συµβολίσουµε µε Λ τη λάθος απάντηση

Διαβάστε περισσότερα

Συνδυαστική. Που το πάµε. Πείραµα Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Πέµπτη, 21/4/2016

Συνδυαστική. Που το πάµε. Πείραµα Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Πέµπτη, 21/4/2016 HY118- ιακριτά Μαθηµατικά Πέµπτη, 21/4/2016 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραµα Πείραµα: Οποιαδήποτε διαδικασία που µπορεί να οδηγήσει σε ένα αριθµό παρατηρήσιµων

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ Τµ. Επιστήµης των Υλικών Βασικές Αρχές Αρχή της Απαρίθµησης Εστω ότι ϑέλουµε να εκτελέσουµε ένα έργο Τ και το έργο εκτελείται σε κάποιες ϐαθµίδες, οι οποίες ϐαθµίδες εκτελούνται σε υποέργα, T j, j = 1,

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 19/04/2016 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραµα Πείραµα: Οποιαδήποτε διαδικασία που µπορεί να οδηγήσει σε ένα αριθµό παρατηρήσιµων

Διαβάστε περισσότερα

P (A B) = P (A) + P (B) P (A B)

P (A B) = P (A) + P (B) P (A B) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 1 Επιµέλεια : Σοφία Σαββάκη Ασκηση 1. Ο εκφωνητής του δελτίου καιρού δίνει

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-27: Πιθανότητες-Χειµερινό Εξάµηνο 205- ιδάσκων : Π. Τσακαλίδης Λύσεις Τέταρτης Σειράς Ασκήσεων Ασκηση. (αʹ) Σύµφωνα µε το αξίωµα της κανονικοποίησης,

Διαβάστε περισσότερα

c(2x + y)dxdy = 1 c 10x )dx = 1 210c = 1 c = x + y 1 (2xy + y2 2x + y dx == yx = 1 (32 + 4y) (2x + y)dxdy = 23 28

c(2x + y)dxdy = 1 c 10x )dx = 1 210c = 1 c = x + y 1 (2xy + y2 2x + y dx == yx = 1 (32 + 4y) (2x + y)dxdy = 23 28 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων : Π. Τσακαλίδης Λύσεις 6ης Σειρά Ασκήσεων Ασκηση. (α) Εχουµε ότι : 6 5 x= y= 6 x= 6 x= c(x + y)dxdy = ) c

Διαβάστε περισσότερα

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 Ορισµός Πιθανότητας Στοιχεία Συνδυαστικής Κλασικός Ορισµός της Πιθανότητας Εστω Ω ο δειγµατοχώρος ενός πειράµατος

Διαβάστε περισσότερα

P (D) = P ((H 1 H 2 H 3 ) c ) = 1 P (H 1 H 2 H 3 ) = 1 P (H 1 )P (H 2 )P (H 3 )

P (D) = P ((H 1 H 2 H 3 ) c ) = 1 P (H 1 H 2 H 3 ) = 1 P (H 1 )P (H 2 )P (H 3 ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 205 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 2 Επιµέλεια : Κατερίνα Καραγιαννάκη Ασκηση. Μία κότα ϑέλει να διασχίσει το

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2014 ιδάσκων : Π. Τσακαλίδης. Λύσεις εύτερης Σειράς Ασκήσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2014 ιδάσκων : Π. Τσακαλίδης. Λύσεις εύτερης Σειράς Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 204 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /0/206 Ηµεροµηνία Παράδοσης : 20/0/206

Διαβάστε περισσότερα

0, x < 0 1+x 8, 0 x < 1 1 2, 1 x < x 8, 2 x < 4

0, x < 0 1+x 8, 0 x < 1 1 2, 1 x < x 8, 2 x < 4 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 7 Συνεχείς Τυχαίες Μεταβλητές Επιµέλεια : Κωνσταντίνα Φωτιάδου Ασκηση. Εστω

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 21/4/2016 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραµα Πείραµα:Οποιαδήποτε διαδικασίαπου µπορεί να οδηγήσει σε ένα αριθµό παρατηρήσιµων

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Κεφάλαιο : ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση Συνδυασµοί Ασκήσεις Εισαγωγή Μέχρι το τέλος αυτού του κεφαλαίου ϑα ϑεωρούµε πειράµατα

Διαβάστε περισσότερα

P(Ο Χρήστος κερδίζει) = 1 P(Ο Χρήστος χάνει) = 1 P(X > Y ) = 1 2. P(Ο Χρήστος νικά σε 7 από τους 10 αγώνες) = 7

P(Ο Χρήστος κερδίζει) = 1 P(Ο Χρήστος χάνει) = 1 P(X > Y ) = 1 2. P(Ο Χρήστος νικά σε 7 από τους 10 αγώνες) = 7 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 28 ιδάσκων: Π. Τσακαλίδης Λύσεις Εβδοµης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης: 3/2/28 Ηµεροµηνία Παράδοσης: 7/2/28

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ Χαράλαµπος Α. Χαραλαµπίδης 12 Οκτωβρίου 2009 ΠΡΑΞΕΙΣ ΣΤΑ ΕΝ ΕΧΟΜΕΝΑ Ενωση ενδεχοµένων Η ένωση δύο ενδεχοµένων A και B (ως προς ένα δειγµατικό χώρο Ω), συµβολιζόµενη

Διαβάστε περισσότερα

Συνδυαστική. Σύνθετο Πείραµα. Πείραµα. 19 -Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Τρίτη, 19/04/2016

Συνδυαστική. Σύνθετο Πείραµα. Πείραµα. 19 -Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Τρίτη, 19/04/2016 HY118- ιακριτά Μαθηµατικά Τρίτη, 19/04/2016 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραµα Σύνθετο Πείραµα Πείραµα:Οποιαδήποτε διαδικασίαπου µπορεί να οδηγήσει σε ένα

Διαβάστε περισσότερα

ΙΙΙ εσµευµένη Πιθανότητα

ΙΙΙ εσµευµένη Πιθανότητα ΙΙΙ εσµευµένη Πιθανότητα 1 Λυµένες Ασκήσεις Ασκηση 1 Στρίβουµε ένα νόµισµα δύο ϕορές. Υποθέτοντας ότι και τα τέσσερα στοιχεία του δειγµατοχώρου Ω {(K, K, (K, Γ, (Γ, K, (Γ, Γ} είναι ισοπίθανα, ποια είναι

Διαβάστε περισσότερα

xp X (x) = k 3 10 = k 3 10 = 8 3

xp X (x) = k 3 10 = k 3 10 = 8 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο 07 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 ιακριτές Τυχαίες Μεταβλητές ( ΙΙ ) Ασκηση. Ρίχνουµε ένα αµερόληπτο εξάεδρο

Διαβάστε περισσότερα

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 206-207 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Από κοινού συναρτήσεις Τυχαίων Μεταβλητών Επιµέλεια : Κατερίνα Καραγιαννάκη

Διαβάστε περισσότερα

P (B) = P (B/A) P (A) + P (B/Γ) P (Γ) =

P (B) = P (B/A) P (A) + P (B/Γ) P (Γ) = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ασκηση 1. Θεωρούµε τα παρακάτω : A: Το ένδεχοµενο να

Διαβάστε περισσότερα

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων: Π. Τσακαλίδης Λύσεις 6ης Σειρά Ασκήσεων Ασκηση. α) Η περιθωριακή σ.π.π. της f X,Y για την τ.µ X γίνεται:

Διαβάστε περισσότερα

ΣΥΝ ΥΑΣΤΙΚΗ ΑΝΑΛΥΣΗ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

ΣΥΝ ΥΑΣΤΙΚΗ ΑΝΑΛΥΣΗ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών Τµ. Επιστήµης των Υλικών Χώρος Πιθανότητας Συµµετρικός Χώρος Πιθανότητας 1 Θεωρούµε ότι ο δειγµατοχώρος Ω είναι πεπερασµένος, Ω= {ω 1,ω 2,...,ω n }. 2 Κάθε δειγµατοσηµείο έχει τις ίδιες ευκαιρίες εµφάνισης

Διαβάστε περισσότερα

Οδηγίες χρήσης του λογισµικού "Πολλαπλασιασµός"

Οδηγίες χρήσης του λογισµικού Πολλαπλασιασµός Εκπαιδευτικό λογισµικό Μαθηµατικών Στ τάξης ηµοτικού 1 Κεφάλαιο 6 ο Πολλαπλασιασµός φυσικών και δεκαδικών αριθµών : «Φυσικοί αριθµοί Οριζόντιος Πολλαπλασιασµός» Οδηγίες χρήσης του λογισµικού "Πολλαπλασιασµός"

Διαβάστε περισσότερα

3.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ. 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα.

3.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ. 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 1 3.1 ΕΙΓΜΤΙΚΟΣ ΧΡΟΣ - ΕΝ ΕΧΟΜΕΝ ΘΕΡΙ 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 2. ειγµατικός χώρος : Το σύνολο των δυνατών αποτελεσµάτων του πειράµατος

Διαβάστε περισσότερα

5.2 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝ ΕΧΟΜΕΝΑ

5.2 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝ ΕΧΟΜΕΝΑ 1 5.2 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝ ΕΧΟΜΕΝΑ ΘΕΩΡΙΑ 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 2. ειγµατικός χώρος : Το σύνολο των δυνατών αποτελεσµάτων ενός πειράµατος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

P (A B) = P (A) + P (B) P (A B).

P (A B) = P (A) + P (B) P (A B). ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Εαρινό Εξάµηνο 2007 ιδάσκων : Π. Τσακαλίδης Λύσεις Πρώτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 08/10/2007 Ηµεροµηνία Παράδοσης : 18/10/2007

Διαβάστε περισσότερα

Συνδυαστική Ανάλυση. Υπολογισμός της πιθανότητας σε διακριτούς χώρους με ισοπίθανα αποτελέσματα:

Συνδυαστική Ανάλυση. Υπολογισμός της πιθανότητας σε διακριτούς χώρους με ισοπίθανα αποτελέσματα: Συνδυαστική Ανάλυση Υπολογισμός της πιθανότητας σε διακριτούς χώρους με ισοπίθανα αποτελέσματα: P( A) N( A) N ( ) Ν(Α): πλήθος ευνοϊκών αποτελεσμάτων του Α Ν(Ω): πλήθος συνολικών αποτελεσμάτων του Ω Χρειαζόμαστε

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

P( X < 8) = P( 8 < X < 8) = Φ(0.6) Φ( 1) = Φ(0.6) (1 Φ(1)) = Φ(0.6)+Φ(1) 1

P( X < 8) = P( 8 < X < 8) = Φ(0.6) Φ( 1) = Φ(0.6) (1 Φ(1)) = Φ(0.6)+Φ(1) 1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο ιδάσκων: Π. Τσακαλίδης 9ο Φροντιστήριο Επιµέλεια: Κωνσταντίνα Φωτιάδου Ασκηση. Η τ.µ. X ακολουθεί την κανονική κατανοµή

Διαβάστε περισσότερα

8. Τεχνικές απαϱίϑµησης

8. Τεχνικές απαϱίϑµησης 8. Τεχνικές απαϱίϑµησης Rosen Κεϕ. 8 Ιωάννης Εµίϱης Τµήµα Πληϱοϕοϱικής & Τηλεπικοινωνιών Εγκλεισµός-Αποκλεισµός Εϕαϱµογές του Εγκλεισµού-Αποκλεισµού ιαταϱάξεις Εισαγωγή Πολλά πϱοϐλήµατα απαϱίϑµησης δεν

Διαβάστε περισσότερα

Συνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ

Συνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ Συνδυαστική Απαρίθµηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθµηση Υπολογισµός

Διαβάστε περισσότερα

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 3: Σειρές πραγµατικών αριθµών Α Οµάδα. Εστω ( ) µια ακολουθία πραγµατικών αριθµών. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 6o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2015-16 ιδάσκων : Π Τσακαλίδης Φροντιστήριο 8 Επιµέλεια : Σοφία Σαββάκη Ασκηση 1 Μία Μαρκοβιανή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 205 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 3 Επιµέλεια : Κατερίνα Καραγιαννάκη Ασκηση. Το διάγραµµα πιθανοτήτων µετάβασης

Διαβάστε περισσότερα

c(x 1)dx = 1 xf X (x)dx = (x 2 x)dx = 2 3 x3 x 2 x 2 2 (x 1)dx x 2 f X (x)dx = (x 3 x 2 )dx = 2 4 x4 2 3 x3

c(x 1)dx = 1 xf X (x)dx = (x 2 x)dx = 2 3 x3 x 2 x 2 2 (x 1)dx x 2 f X (x)dx = (x 3 x 2 )dx = 2 4 x4 2 3 x3 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Θεωρία Πιθανοτήτων ιδάσκων : Π. Τσακαλίδης Λύσεις Τελικής Εξέτασης - 9 Ιανουαρίου 05 Θέµα. α Η γραφική παράσταση της σ.π.π. f X x ϕαίνεται στο σχήµα :

Διαβάστε περισσότερα

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 εσµευµένη Πιθανότητα Πολλαπλασιαστικός Νόµος Ανεξάρτητα Γεγονότα Θεώρηµα Ολικής Πιθανότητας Κανόνας Bayes

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. ΗΙΗ ΗΟΑΙΑ ΑΙΗΙΟ ΗΗ ΕφαοαΝαα Πόχεε Σεώε Παόε Κεφάαο 2 οναα,νααναφνααώ,νυπώ ανεπνανχοογανώ Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Εισαγωγή Στα προβλήµατα που έχουµε ασχοληθεί µέχρι τώρα, υποστηρίζουµε ότι έχουµε ένα δείγµα X = (X 1, X 2,...,X n ) F(,θ). π.χ. X 1, X 2,...,X n τ.δ. N(µ,σ 2 ),

Διαβάστε περισσότερα

/ / 38

/ / 38 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-37: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 205-6 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 0 Επιµέλεια : Σοφία Σαββάκη Ασκηση. Ο Κώστας πηγαίνει

Διαβάστε περισσότερα

0 x < (x + 2) 2 x < 1 f X (x) = 1 x < ( x + 2) 1 x < 2 0 x 2

0 x < (x + 2) 2 x < 1 f X (x) = 1 x < ( x + 2) 1 x < 2 0 x 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες-Χειµερινό Εξάµηνο 6-7 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 9 Επιµέλεια : Γιαννόπουλος Μιχάλης Ασκηση Εστω X συνεχής Τ.Μ. µε Συνάρτηση Πυκνότητας

Διαβάστε περισσότερα

Συνδυαστική Απαρίθµηση

Συνδυαστική Απαρίθµηση Συνδυαστική Απαρίθµηση ιδάσκοντες:. Φωτάκης,. Σούλιου, Θ. Λιανέας Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθµηση

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες -Εαρινό Εξάµηνο 2016 ιδάσκων : Π.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες -Εαρινό Εξάµηνο 2016 ιδάσκων : Π. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες -Εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις 3ης Σειράς Ασκήσεων Ασκηση 1. Χρησιµοποιούµε µια αλυσίδα

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 1 50

ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 1 50 ΜΑΘΗΜΑΤΙΚΗ ΣΚΕΨΗ ρ Κορρές Κωνσταντίνος ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 1 50 1. Μία έρευνα από 50 µαθητές έδειξε ότι 30 είχαν γάτες, 25 είχαν σκύλους, 5 είχαν χάµστερ, 16 είχαν σκύλους και γάτες, 4 είχαν σκύλους και χάµστερ,

Διαβάστε περισσότερα

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ Τµ. Επιστήµης των Υλικών εσµευµένες Πιθανότητες Εστω (Ω, A, P) ένας πιθανοθεωρητικός χώρος. Αξιωµατικός Ορισµός της Πιθανότητας (Kolmogorov) Θεωρούµε (Ω, A) έναν µετρήσιµο χώρο. Ενα πιθανοθεωρητικό µέτρο

Διαβάστε περισσότερα

1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-180: Λογική Εαρινό Εξάµηνο 2016 Κ. Βάρσος Πρώτο Φροντιστήριο 1 Συνοπτική ϑεωρία 1.1 Νόµοι του Προτασιακού Λογισµού 1. Νόµος ταυτότητας : 2. Νόµοι αυτοπάθειας

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 10/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/11/2016 1 1 Θεωρία πιθανοτήτων 5/11/2016 2 2 Γιατί πιθανότητες; Στον προτασιακό και κατηγορηµατικό λογισµό µιλήσαµε

Διαβάστε περισσότερα

Σηµειώσεις στη Θεωρία Πιθανοτήτων

Σηµειώσεις στη Θεωρία Πιθανοτήτων Σηµειώσεις στη Θεωρία Πιθανοτήτων Μέρος Α. Τι είναι οι Πιθανότητες. Είναι συνηθισµένο να ορίζουµε λοιπόν µαθηµατικές διαδικασίες, τις οποίες ονοµάζουµε µοντέλα ή πρότυπα, ώστε να περιγράψουν φαινόµενα

Διαβάστε περισσότερα

, x > a F X (x) = x 3 0, αλλιώς.

, x > a F X (x) = x 3 0, αλλιώς. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες - Χειµερινό Εξάµηνο 015 ιδάσκων : Π. Τσακαλίδης 11ο Φροντιστήριο - Θέµατα Εξετάσεων από προηγούµενα έτη Επιµέλεια : Κωνσταντίνα Φωτιάδου

Διαβάστε περισσότερα

P (A) + P (B), [Α,Β: ξένα µεταξύ τους] P (C A B) [P (A) + P (B)] P (C A) P (A) P (B) 3 4 ( ) 1 7 = 3 7 =

P (A) + P (B), [Α,Β: ξένα µεταξύ τους] P (C A B) [P (A) + P (B)] P (C A) P (A) P (B) 3 4 ( ) 1 7 = 3 7 = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217 - Θεωρία Πιθανοτήτων ιδάσκων : Π. Τσακαλίδης Λύσεις Προόδου- 22 Νοεµβρίου 2014 Θέµα 1 - (15 µονάδες) Εχουµε ότι : P (C A B) P (C (A B)) P (CA CB)

Διαβάστε περισσότερα

Κατανοµές. Η κατανοµή (distribution) µιας µεταβλητής (variable) φαίνεται από το σχήµα του ιστογράµµατος (histogram).

Κατανοµές. Η κατανοµή (distribution) µιας µεταβλητής (variable) φαίνεται από το σχήµα του ιστογράµµατος (histogram). Ιωάννης Παραβάντης Επίκουρος Καθηγητής Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών Πανεπιστήµιο Πειραιώς Μάρτιος 2010 Κατανοµές 1. Οµοιόµορφη κατανοµή Η κατανοµή (distribution) µιας µεταβλητής (variable) φαίνεται

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 1η Συνδυαστική-Σχέσεις-Συναρτήσεις Ε ρ ω τ ή µ α τ α

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 1η Συνδυαστική-Σχέσεις-Συναρτήσεις Ε ρ ω τ ή µ α τ α ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ Ε ρ γ α σ ί α η Συνδυαστική-Σχέσεις-Συναρτήσεις Ε ρ ω τ ή µ α τ α Ερώτηµα. Θεωρείστε τις συναρτήσεις f,g,h:z Z (Z το σύνολο των ακέραιων αριθµών που ορίζονται

Διαβάστε περισσότερα

Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσµατικότητας της Ανάκτησης)

Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσµατικότητας της Ανάκτησης) Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών ΗΥ-6 Συστήµατα Ανάκτησης Πληροφοριών 7-8 Εαρινό Εξάµηνο Άσκηση Λύσεις ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσµατικότητας της Ανάκτησης) Θεωρείστε µια

Διαβάστε περισσότερα

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 Εισαγωγικά Βασικοί Ορισµοί Πράξεις Γεγονότων Σχεδιάγραµµα της Υλης Βασικές Εννοιες της Θεωρίας Πιθανοτήτων

Διαβάστε περισσότερα

1.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ

1.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ 1 1.1 ΕΙΓΜΤΙΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝ ΘΕΩΡΙ 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 2. ειγµατικός χώρος : Το σύνολο των δυνατών αποτελεσµάτων ενός πειράµατος

Διαβάστε περισσότερα

u 2 2 = u a 1 (x 2 x 1 ) = (0) 2 = (50) 2 + 2( 10)(x 2 x 1 ) x 2 = x m (1)

u 2 2 = u a 1 (x 2 x 1 ) = (0) 2 = (50) 2 + 2( 10)(x 2 x 1 ) x 2 = x m (1) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-2: Φυσική Ι Χειµερινό Εξάµηνο 207 ιδάσκων : Γ. Καφεντζής Ασκηση. Θα ϐρούµε το x 2 από την εξίσωση της κινηµατικής : Πρώτη Σειρά Ασκήσεων - Λύσεις Σχήµα

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 21 Οκτωβρίου 2009 ΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ Η ανάγκη εισαγωγής της δεσµευµένης πιθανότητας αναφύεται στις περιπτώσεις όπου µία µερική

Διαβάστε περισσότερα

P (A B) = P (A) + P (B) P (A B) = 0.5 + 0.4 0.3 = 0.6.

P (A B) = P (A) + P (B) P (A B) = 0.5 + 0.4 0.3 = 0.6. 1 Λυµένες Ασκήσεις Ασκηση 1 Θεωρούµε δύο ενδεχόµενα A, B. Με πιθανότητα 0.5 ϑα συµβεί το A, µε πιθανότητα 0.4 ϑα συµβεί το B και µε πιθανότητα 0.3 ϑα συµβούν και τα δυο. Ποια είναι η πιθανότητα να µη συµβεί

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΤΡΙΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 2 Νοεµβρίου 2009 1.3. Ας ϑεωρήσουµε ένα σύνολο 11 ατόµων {α 0, α 1,..., α 10 } των οποίων καταγράφουµε τα γενέθλια. Να υπολογισθεί

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις 1 ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ 1 Συνδυαστική ανάλυση Η συνδυαστική ανάλυση είναι οι διάφοροι μέθοδοι και τύποι που χρησιμοποιούνται στη λύση προβλημάτων εκτίμησης του πλήθους των στοιχείων ενός πεπερασμένου συνόλου

Διαβάστε περισσότερα

Μάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων.

Μάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων. Μάθηµα 1 ο Πιθανότητα-Έννοιες και Ορισµοί Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων. http://compus.uom.gr/inf267/index.php 1 Εισαγωγικά Βασικές Έννοιες

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Ο χρόνος αρχίζει να µετράει στις 8 το πρωί, και µονάδα µέτρησης του είναι το δεκάλεπτο. Η µονάδα µέτρησης της απόστασης είναι τα 10 χιλιόµετρα.

Ο χρόνος αρχίζει να µετράει στις 8 το πρωί, και µονάδα µέτρησης του είναι το δεκάλεπτο. Η µονάδα µέτρησης της απόστασης είναι τα 10 χιλιόµετρα. ΑΣΚΗΣΕΙΣ Μια µέρα µια παρέα έκανε µια εκδροµή από την πόλη Α προς την πόλη Β. Στην παρακάτω γραφική παράσταση στον οριζόντιο άξονα σηµειώνεται ο χρόνος, και στον κατακόρυφο η απόσταση από την πόλη Α. Ο

Διαβάστε περισσότερα

y = u i t 1 2 gt2 y = m y = 0.2 m

y = u i t 1 2 gt2 y = m y = 0.2 m ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2018 ιδάσκων : Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. (αʹ) Το χαρτονόµισµα ξεκινά από ηρεµία, u i = 0, και

Διαβάστε περισσότερα

5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ 1 5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΘΕΩΡΙΑ 1. Ισοπίθανα απλά ενδεχόµενα Είναι τα απλά ενδεχόµενα για τα οποία κάποιο εξ αυτών δεν έχει πλεονέκτηµα έναντι των άλλων όσον αφορά την επιλογή του. Με άλλα λόγια

Διαβάστε περισσότερα

200, δηλαδή : 1 p Y (y) = 0, αλλού

200, δηλαδή : 1 p Y (y) = 0, αλλού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο 05 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 6 ιακριτές Τυχαίες Μεταβλητές Επιµέλεια : Σοφία Σαββάκη Ασκηση. Η εταιρεία

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο ιδάσκων : Γ. Καφεντζής. Τελική Εξέταση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο ιδάσκων : Γ. Καφεντζής. Τελική Εξέταση ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-2: Φυσική Ι Χειµερινό Εξάµηνο 207-8 ιδάσκων : Γ. Καφεντζής Τελική Εξέταση Αιτιολογήστε πλήρως τις απαντήσεις σας. Επιτρέπεται η χρήση υπολογιστή τσέπης..

Διαβάστε περισσότερα

1 1 c c c c c c = 1 c = 1 28 P (Y < X) = P ((1, 2)) + P ((4, 1)) + P ((4, 3)) = 2 1/ / /28 = 18/28

1 1 c c c c c c = 1 c = 1 28 P (Y < X) = P ((1, 2)) + P ((4, 1)) + P ((4, 3)) = 2 1/ / /28 = 18/28 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες -Χειµερινό Εξάµηνο 01 ιδάσκων : Π. Τσακαλίδης Λύσεις : Πέµπτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 14/11/01 Ηµεροµηνία Παράδοσης : 8/11/01

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2016

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2016 ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 6 η Σειρά Ασκήσεων - Λύσεις Άσκηση 6.1 [1 μονάδα] Πόσοι 3ψήφιοι αριθμοί σχηματίζονται από τα ψηφία 2,3,5,6,7 και 9, τέτοιοι που να διαιρούνται με το 5 και

Διαβάστε περισσότερα

[Rosen, κεϕ. 6] Γιάννης Εµίϱης. Τµήµα Πληϱοϕοϱικής & Τηλεπικοινωνιών, ΕΚΠΑ

[Rosen, κεϕ. 6] Γιάννης Εµίϱης. Τµήµα Πληϱοϕοϱικής & Τηλεπικοινωνιών, ΕΚΠΑ Απαϱίϑµηση [Rosen, κεϕ. 6] Γιάννης Εµίϱης Τµήµα Πληϱοϕοϱικής & Τηλεπικοινωνιών, ΕΚΠΑ Νοέµϐϱιος 2018 Πεϱιεχόµενα Βασικές έννοιες απαϱίϑµησης Η αϱχή του πεϱιστεϱώνα Μεταϑέσεις και Συνδυασµοί ιωνυµικοί Συντελεστές

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέµα 1 ο Α. Να απαντήσετε τις παρακάτω ερωτήσεις τύπου Σωστό Λάθος (Σ Λ) 1. Σκοπός της συγχώνευσης 2 ή περισσοτέρων ταξινοµηµένων πινάκων είναι η δηµιουργία

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ (Δείγμα θεμάτων)

ΣΥΝΔΥΑΣΤΙΚΗ (Δείγμα θεμάτων) ΣΥΝΔΥΑΣΤΙΚΗ (Δείγμα θεμάτων) Μέρος Ι (μέγιστος αριθμός μονάδων=40) Δώστε την κατάλληλη απάντηση (ΣΩΣΤΗ ή ΛΑΘΟΣ ) στις παρακάτω προτάσεις. Κάθε σωστή επιλογή παίρνει 5 μονάδες. Για κάθε λανθασμένη επιλογή

Διαβάστε περισσότερα

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Τρίτη, 17/04/2018 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραμα Πείραμα: Οποιαδήποτε διαδικασία που μπορεί να οδηγήσει σε ένα αριθμό παρατηρήσιμων

Διαβάστε περισσότερα

Επαναληπτικές δοµές. µτ α.τ. Όχι. ! απαγορεύεται µέσα σε µία ΓΙΑ να µεταβάλλουµε τον µετρητή! διότι δεν θα ξέρουµε µετά πόσες επαναλήψεις θα γίνουν

Επαναληπτικές δοµές. µτ α.τ. Όχι. ! απαγορεύεται µέσα σε µία ΓΙΑ να µεταβάλλουµε τον µετρητή! διότι δεν θα ξέρουµε µετά πόσες επαναλήψεις θα γίνουν Επαναληπτικές δοµές Η λογική των επαναληπτικών διαδικασιών εφαρµόζεται όπου µία ακολουθία εντολών εφαρµόζεται σε ένα σύνολο περιπτώσεων που έχουν κάτι κοινό. Όταν ψάχνουµε θέση για να παρκάρουµε κοντά

Διαβάστε περισσότερα

Φύλλο Εργασίας «Προσέγγιση της γραφής Braille µέσω Scratch»

Φύλλο Εργασίας «Προσέγγιση της γραφής Braille µέσω Scratch» Φύλλο Εργασίας «Προσέγγιση της γραφής Braille µέσω Scratch» ραστηριότητα 1α-Εισαγωγή στην γραφή Braille (10 Λεπτά) Στα πλαίσια της κοινωνικής ευαισθητοποίησης των µαθητών του σχολείου µας για τον κοινωνικό

Διαβάστε περισσότερα