Aspects of the BMS/CFT correspondence
|
|
- Εφθαλία Δεσποτόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 DAMTP, Cambridge. February 17, 2010 Aspects of the BMS/CFT correspondence Glenn Barnich Physique théorique et mathématique Université Libre de Bruxelles & International Solvay Institutes
2 Overview Classical gravitational aspects of AdS3/CFT2 correspondence 4d flat case, null infinity: asymptotic symmetries 3d flat case, null infinity: BMS3/CFT1 correspondence 4d flat case, null infinity: solution space work done in collaboration with C. Troessaert
3 AdS3/CFT2 Asymptotic symmetries Fefferman-Graham ansatz g µν = l 2 r g AB g AB = r 2 γ AB (x C )+O(1) r t, φ 2d metric γ AB conformal to flat metric on the cylinder γ AB = e 2ϕ η AB η AB dx A dx B = dτ 2 + dφ 2, τ = t l, ϕ = ϕ(xa ) asymptotic symmetries L ξ g rr =0=L ξ g ra, L ξ g AB = O(1), general solution determined by conformal Killing vector ξ r = 1 2 ψr, ξ A = Y A + I A, I A = l2 2 Bψ r dr r Y A of η AB g AB = l2 4r 2 γ AB B ψ + O(r 4 ). ψ = D A Y A
4 AdS3/CFT2 Asymptotic symmetries metric dependence ξ µ = ξ µ (x, g) δ g ξ 1 g µν = L ξ1 g µν modified bracket [ξ 1, ξ 2 ] µ M =[ξ 1, ξ 2 ] µ δ g ξ 1 ξ µ 2 + δg ξ 2 ξ µ 1 faithful representation of conformal algebra [ξ 1, ξ 2 ] r M = 1 2 ψr, [ξ 1, ξ 2 ] A M = Y A + I A, Y A =[Y 1,Y 2 ] A, ψ = DA Y A light-cone coordinates x ± = τ ± φ, 2 ± = τ ± φ, γ ABdx A dx B = e 2ϕ dx + dx Y ± (x ± ) ± = n Z c n ±l ± n, l ± n ± = (x ± ) n+1 ±, [l ± m,l ± n ]=(m n)l ± m, [l ± m,l n ]=0 include Weyl rescalings of boundary metric L ξ g rr =0=L ξ g ra, L ξ g AB =2ωg AB + O(1) direct sum with abelian algebra of Weyl rescalings ( Y,ω) = [(Y 1, ω 1 ), (Y 2, ω 2 )] Y A = Y B 1 B Y A 2 Y B 2 B Y A 1, ω =0
5 AdS3/CFT2 Solution space existence of general solution integration constants Ξ ++ = Ξ ++ (x + ), Ξ = Ξ (x ) when ϕ =0 g AB dx A dx B = (r 2 + l4 r 2 Ξ ++Ξ )dx + dx + l 2 Ξ ++ (dx + ) 2 + l 2 Ξ (dx ) 2, BTZ black hole Ξ ±± =2G(M ± J l ) ADS3 general solution g AB dx A dx B = e 2ϕ r 2 +2γ + r 2 e 2ϕ (γ γ ++ γ ) dx + dx + +γ ++ (1 r 2 e 2ϕ γ + )(dx + ) 2 + γ (1 r 2 e 2ϕ γ + )(dx ) 2, γ ±± = l 2 Ξ ±± (x ± )+ 2 ±ϕ ( ± ϕ) 2 γ + = l 2 + ϕ
6 AdS3/CFT2 Conformal properties asymptotic symmetries transform solutions into solutions g AB = g AB (x, Ξ,ϕ) g AB (x, δξ, δϕ) =L ξ g AB conformal transformation properties δ Y +,Y,ωΞ ±± = Y ± ± Ξ ±± +2 ± Y ± Ξ ±± ±Y ± δ Y +,Y,ωϕ = ω
7 AdS3/CFT2 Charge algebra Hamiltonian approach Q ξ surface charge generators, Dirac algebra centrally extended charge representation of conformal algebra covariant version Q ξ [g ḡ, ḡ] = 1 8πG 2π 0 dφ (Y + Ξ ++ + Y Ξ ) Q ξ1 [L ξ2 g, ḡ] Q [ξ1,ξ 2 ] M [g ḡ, ḡ]+k ξ1,ξ 2, K ξ1,ξ 2 = Q ξ1 [L ξ2 ḡ, ḡ] = 1 8πG 2π 0 dφ ( φ Y τ 1 2 φy φ 2 φy τ 2 2 φy φ 1 ) modes Strominger: combine with Cardy formula to argue for a microscopic derivation of the Bekenstein-Hawking entropy of BTZ black hole
8 BMS4/CFT2 Asymptotically flat spacetimes BMS ansatz g µν = Minkowski u = t r η µν = e2β V r + g CDU C U D e 2β g BC U C e 2β 0 0 g AC U C 0 g AB u r r 2 sin 2 θ g AB dx A dx B = r 2 γ AB dx A dx B + O(r) r x A = θ, φ ζ, ζ Sachs: unit sphere γ AB = e 2ϕ 0γ AB 0 γ AB dx A dx B = dθ 2 + sin 2 θdφ 2 Riemann sphere ζ = e iφ cot θ 2, γ ABdx A dx B = e 2 eϕ dζd ζ dθ 2 +sin 2 θdφ 2 = P 2 dζd ζ, P(ζ, ζ) = 1 2 (1 + ζ ζ), ϕ = ϕ ln P determinant condition fall-off conditions det g AB = r4 4 e4 eϕ β = O(r 2 ), U A = O(r 2 ), V/r = 1 2 R + O(r 1 )
9 BMS4/CFT2 Asymptotic symmetries asymptotic symmetries general solution L ξ g rr =0, L ξ g ra =0, L ξ g AB g AB =0, L ξ g ur = O(r 2 ), L ξ g ua = O(1), L ξ g AB = O(r), L ξ g uu = O(r 1 ) ξ u = f, f = f ϕ + 1 ξ A = Y A + I A, I A = f,b dr (e 2β 2 ψ f = eϕ T + 1 g AB 2 ), r ξ r = 1 2 r( D A ξ A f,b U B +2f u ϕ), ψ = D A Y A u 0 du e ϕ ψ, Y A = Y A (x B ) T = T (x B ) conformal Killing vectors of the sphere generators for supertranslations spacetime vectors with modified bracket form faithful representation of bms 4 algebra [(Y 1,T 1 ), (Y 2,T 2 )] = ( Y, T ) Y A = Y1 B B Y2 A Y1 B B Y2 A Sachs 1962, T = Y1 A A T 2 Y2 A A T (T 1 A Y2 A T 2 A Y1 A ) standard GR choice: restrict to globally well-defined transformations SL(2, C)/Z 2 SO(3, 1) Y A generators of Lorentz algebra
10 BMS4/CFT2 New proposal CFT choice : allow for meromorphic functions on the Riemann sphere solution to conformal Killing equation Y ζ = Y ζ (ζ), Y ζ = Y ζ( ζ) generators l n = ζ n+1 ζ, ln = ζ n+1 ζ, n Z T m,n = ζ m ζn, m, n Z commutation relations [l m,l n ]=(m n)l m+n, [ l m, l n ]=(m n) l m+n, [l m, l n ]=0, [l l,t m,n ]=( l +1 2 m)t m+l,n, [ l l,t m,n ]=( l +1 2 n)t m,n+l. Poincaré subalgebra l 1,l 0,l 1, l 1, l 0, l 1, T 0,0,T 1,0,T 0,1,T 1,1,
11 BMS3/CFT1 ansatz for asymptotically flat metrics g µν = Asymptotic symmetries e 2β Vr 1 + r 2 e 2ϕ U 2 e 2β r 2 e 2ϕ U e 2β 0 0 r 2 e 2ϕ U 0 r 2 e 2ϕ Minkowski spacetime ds 2 = du 2 2dudr + r 2 dφ 2 u = t r fall-off conditions β = O(r 1 ), U = O(r 2 ) V = 2r 2 u ϕ + O(r) asymptotic symmetries L ξ g rr =0=L ξ g rφ, L ξ g φφ =0, L ξ g ur = O(r 1 ), L ξ g uφ = O(1), L ξ g uu = O(1) ξ u = f, ξ φ = Y + I, I = e 2ϕ φ f dr r 2 e 2β = 1 r r e 2ϕ φ f + O(r 2 ), ξ r = r φ ξ φ φ fu + ξ φ φ ϕ + f u ϕ, u f = f u ϕ + Y φ ϕ + φ Y f = e ϕ T + u 0 du e ϕ ( φ Y + Y φ ϕ) solution involves 2 arbitrary functions on the circle spacetime vector form faithful representation of Y = Y (φ), T = T (φ) bms 3 algebra [(Y 1,T 1 ), (Y 2,T 2 )] = ( Y, T ) Y = Y 1 φ Y 2 (1 2), T = Y1 φ T 2 + T 1 φ Y 2 (1 2)
12 BMS3/CFT1 Solution space and conformal properties general solution parametrized by Θ = Θ(φ), Ξ = Ξ(φ) s uφ = e ϕ Ξ + u 0 ds 2 = s uu du 2 2dudr +2s uφ dudφ + r 2 e 2ϕ dφ 2, s uu = e 2ϕ Θ ( φ ϕ) φϕ 2r u ϕ, du e ϕ 1 2 φθ φ ϕ[θ ( φ ϕ) φϕ]+ 3 φϕ. bms 3 transformation properties δ Y,T Θ = Y φ Θ +2 φ Y Θ 2 3 φy, δ Y,T Ξ = Y φ Ξ +2 φ Y Ξ T φθ + φ T Θ 3 φt, covariant charges Q ξ [g ḡ, ḡ] 1 16πG K ξ1,ξ 2 = 1 8πG 2π 0 dφ 2π 0 dφ (ΘT +2ΞY ) φ Y 1 (T 2 + φt 2 2 ) φ Y 2 (T 1 + φt 2 1 )
13 BMS3/CFT1 Charge algebra modes Y (θ) 1 copy of Wit algebra acting on i 1 iso(2, 1) charge algebra: relation to AdS 3 similar to contraction between so(2, 2) iso(2, 1) L ± m = 1 2 ( lp ±m ± J ±m ) l collaboration with G. Compère
14 BMS4/CFT2 solution space ansatz g AB = r 2 γ AB + rc AB + D AB γ ABC C DC D C + o(r ) determinant condition C A A =0=D A A Sachs: power series and D AB =0 guarantees absence of log terms equations of motion imply β = β(g AB ) U A = 1 2 r 2 DB C BA 2 3 r 3 (ln r ) D B D BA 1 2 CA B D C C CB + N A + o(r 3 ε ), angular momentum aspect N A (u, x A ) u dependence fixed log terms also absent when D ζζ = d(ζ), D ζ ζ = d( ζ), D ζ ζ =0.
15 BMS4/CFT2 Solution space V r = 1 2 R + r 1 2M + o(r 1 ) mass aspect M(u, x A ) u dependence fixed news tensor u C AB (u, x A ) only arbitray function of u general solution: 4 arbitrary functions of 3 variables & 3 arbitrary functions of 2 variables g AB (u 0,r,x A ) u C AB (u, x A ) M(u 0,x A ) N A (u 0,x A ) for simplicity ϕ =0 γ AB dx A dx B = dζd ζ C ζζ = c, C ζ ζ = c, C ζ ζ =0 redefinitions M = M 2 c 2 c Ñ ζ = 1 12 [2N ζ +7 c c +3c c] evolution equations u M = ċ c 3 u Ñ ζ = M 2 3 c ( c +3 c )ċ
16 BMS4/CFT2 Conformal properties bms4 transformations δc = fċ + Y A A c +( 3 2 Y 1 2 Ȳ )c 2 2 f δd = Y A A d +2 Y d f = T uψ δċ = f c + Y A A ċ +2 Y ċ 3 Y δ M = fċ c + Y A A M ψ M + c 3 Y + c 3 Ȳ T δñ ζ = Y A A Ñ ζ +( Y +2 Ȳ )Ñ ζ + 1 (ψ d) 3 f( M +2 2 c + cċ) f M c +( c +3 c )ċ
17 BMS4/CFT2 Conclusions and perspectives 4d gravity is dual to some conformal field theory classifiy (non)-central extensions; study representation theory of bms4 to be done: surface charge algebra non extremal Kerr/CFT correspondence? angular momentum problem in GR: Lorentz = bms4(old)/supertranslations versus bms4(new)/supertranslations = Virasoro
18 References Asymptotically flat spacetimes & symmetries
19 References Gravitational AdS3/CFT2 & Kerr/CFT
20 References
21 References Holography at null infinity in 3 & 4 dimensions
22 References This work based on
Aspects of the BMS/CFT correspondence
International Conference on Strings, M-Theory and Quantum Gravity Centro Stefano Franscini, Monte Verita, Ascona, 27 July 2010 Aspects of the BMS/CFT correspondence Glenn Barnich Physique théorique et
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.
MATHEMATICAL TRIPOS Part III Monday 6 June, 2005 9 to 12 PAPER 60 GENERAL RELATIVITY Attempt THREE questions. There are FOUR questions in total. The questions carry equal weight. The signature is ( + ),
Higher spin gauge theories and their CFT duals
Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)
Symmetric Stress-Energy Tensor
Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor
Cosmological Space-Times
Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Tutorial problem set 6,
GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
Parallel transport and geodesics
Parallel transport and geodesics February 4, 3 Parallel transport Before defining a general notion of curvature for an arbitrary space, we need to know how to compare vectors at different positions on
Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2
Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent
Relativistic particle dynamics and deformed symmetry
Relativistic particle dynamics and deformed Poincare symmetry Department for Theoretical Physics, Ivan Franko Lviv National University XXXIII Max Born Symposium, Wroclaw Outline Lorentz-covariant deformed
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
A Short Introduction to Tensors
May 2, 2007 Tensors: Scalars and Vectors Any physical quantity, e.g. the velocity of a particle, is determined by a set of numerical values - its components - which depend on the coordinate system. Studying
Geometry of the 2-sphere
Geometry of the 2-sphere October 28, 2 The metric The easiest way to find the metric of the 2-sphere (or the sphere in any dimension is to picture it as embedded in one higher dimension of Euclidean space,
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
3.5 - Boundary Conditions for Potential Flow
13.021 Marine Hydrodynamics, Fall 2004 Lecture 10 Copyright c 2004 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hydrodynamics Lecture 10 3.5 - Boundary Conditions for Potential
Dual null formulation (and its Quasi-Spherical version)
filename= dualnull.tex 2003-0403 Hisaaki Shinkai hshinkai@postman.riken.go.jp Dual null formulation (and its Quasi-Spherical version This note is for actual coding of the double null formulation by Hayward
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics
Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics Dmitry Bagrets Nucl. Phys. B 9, 9 (06) arxiv: 607.00694 Alexander Altland Univ. zu Köln Alex Kamenev Univ. of Minnesota PCS IBS Workshop, Daejeon,
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Symmetry. March 31, 2013
Symmetry March 3, 203 The Lie Derivative With or without the covariant derivative, which requires a connection on all of spacetime, there is another sort of derivation called the Lie derivative, which
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
[Note] Geodesic equation for scalar, vector and tensor perturbations
[Note] Geodesic equation for scalar, vector and tensor perturbations Toshiya Namikawa 212 1 Curl mode induced by vector and tensor perturbation 1.1 Metric Perturbation and Affine Connection The line element
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
A Short Introduction to Tensor Analysis
June 20, 2008 Scalars and Vectors An n-dim manifold is a space M on every point of which we can assign n numbers (x 1,x 2,...,x n ) the coordinates, in such a way that there will be a one to one correspondence
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Orbital angular momentum and the spherical harmonics
Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined
Dark matter from Dark Energy-Baryonic Matter Couplings
Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010
Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability
Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability A. Cisterna 1 M. Cruz 2 T. Delsate 3 J. Saavedra 4 1 Universidad Austral de Chile 2 Facultad de
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
A Short Introduction to Tensor Analysis 2
A Short Introduction to Tensor Analysis 2 Kostas Kokkotas November 12, 2013 2 This chapter based strongly on Lectures of General Relativity by A. Papapetrou, D. Reidel publishing company, (1974) Kostas
The Spiral of Theodorus, Numerical Analysis, and Special Functions
Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6
3+1 Splitting of the Generalized Harmonic Equations
3+1 Splitting of the Generalized Harmonic Equations David Brown North Carolina State University EGM June 2011 Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Non-Abelian Gauge Fields
Chapter 5 Non-Abelian Gauge Fields The simplest example starts with two Fermions Dirac particles) ψ 1, ψ 2, degenerate in mass, and hence satisfying in the absence of interactions γ 1 i + m)ψ 1 = 0, γ
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
NonEquilibrium Thermodynamics of Flowing Systems: 2
*Following the development in Beris and Edwards, 1994, Section 9.2 NonEquilibrium Thermodynamics of Flowing Systems: 2 Antony N. Beris Schedule: Multiscale Modeling and Simulation of Complex Fluids Center
The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points
Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Dan Censor Ben Gurion University of the Negev Department of Electrical and Computer Engineering Beer Sheva,
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
On the Einstein-Euler Equations
On the Einstein-Euler Equations Tetu Makino (Yamaguchi U, Japan) November 10, 2015 / Int l Workshop on the Multi-Phase Flow at Waseda U 1 1 Introduction. Einstein-Euler equations: (A. Einstein, Nov. 25,
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
Cosmology with non-minimal derivative coupling
Kazan Federal University, Kazan, Russia 8th Spontaneous Workshop on Cosmology Institut d Etude Scientifique de Cargèse, Corsica May 13, 2014 Plan Plan Scalar fields: minimal and nonminimal coupling to
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Constitutive Relations in Chiral Media
Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization
CURVILINEAR COORDINATES
CURVILINEAR COORDINATES Cartesian Co-ordinate System A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the
Markov chains model reduction
Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, 216 1 /
Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR
Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR Dieter Van den Bleeken arxiv.org/submit/1828684 Supported by Bog azic i University Research Fund Grant nr 17B03P1 SCGP 10th March 2017
Dirac Matrices and Lorentz Spinors
Dirac Matrices and Lorentz Spinors Background: In 3D, the spinor j = 1 representation of the Spin3) rotation group is constructed from the Pauli matrices σ x, σ y, and σ k, which obey both commutation
Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 018.. 49.. 4.. 907Ä917 Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ.. ³μ, ˆ. ˆ. Ë μ μ,.. ³ ʲ μ ± Ë ²Ó Ò Ö Ò Í É Å μ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö μ ² Ìμ μé Ê Ö ±
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
1 Lorentz transformation of the Maxwell equations
1 Lorentz transformation of the Maxwell equations 1.1 The transformations of the fields Now that we have written the Maxwell equations in covariant form, we know exactly how they transform under Lorentz
Axisymmetric Stationary Spacetimes of Constant Scalar Curvature in Four Dimensions
Axisymmetric Stationary Spacetimes of Constant Scalar Curvature in Four Dimensions Rosikhuna F. Assafari,a,Bobby E. Gunara,,b 1,Hasanuddin,c, and Abednego Wiliardy,d arxiv:1606.02805v1 [gr-qc] 9 Jun 2016
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell
Jackson 2.25 Hoework Proble Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: Two conducting planes at zero potential eet along the z axis, aking an angle β between the, as
1 Conformal transformations in 2d
Conformal transformations in d A. Conformal transformations of the coordinates leave the metric tensor invariant up to a scale: g µνx ) Λx)g µν x) In two dimensions: Concerning the change of metric tensor
Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B
Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert
Physics 554: HW#1 Solutions
Physics 554: HW#1 Solutions Katrin Schenk 7 Feb 2001 Problem 1.Properties of linearized Riemann tensor: Part a: We want to show that the expression for the linearized Riemann tensor, given by R αβγδ =
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Math 5440 Problem Set 4 Solutions
Math 544 Math 544 Problem Set 4 Solutions Aaron Fogelson Fall, 5 : (Logan,.8 # 4) Find all radial solutions of the two-dimensional Laplace s equation. That is, find all solutions of the form u(r) where
CORDIC Background (4A)
CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Sixth lecture September 21, 2006
Sixth lecture September, 006 Web Page: http://www.colorado.edu/physics/phys7840 NOTE: Next lectures Tuesday, Sept. 6; noon Thursday, Sept. 8; noon Tuesday, Oct. 3; noon Thursday, Oct. 5; noon more????
AdS black disk model for small-x DIS
AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Ακτινοβολία Hawking. Πιέρρος Ντελής. Εθνικό Μετσόβιο Πολυτεχνείο Σ.Ε.Μ.Φ.Ε. July 3, / 29. Πιέρρος Ντελής Ακτινοβολία Hawking 1/29
Ακτινοβολία Hawking Πιέρρος Ντελής Εθνικό Μετσόβιο Πολυτεχνείο ΣΕΜΦΕ July 3, 2013 1 / 29 Πιέρρος Ντελής Ακτινοβολία Hawking 1/29 Outline Σχετικότητα Ειδική & Γενική Θεωρία Κβαντική Θεωρία Πεδίου Πεδία