מתמטיקה )שאלון שני לנבחנים בתכנית ניסוי, 5 יחידות לימוד( 1 מספרים מרוכבים 3#2 3 3
|
|
- Κύριλλος Χατζηιωάννου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 סוג הבחינה: בגרות לבתי ספר על יסודיים מדינת ישראל מועד הבחינה: חורף תשע"ב, 202 משרד החינוך מספר השאלון: דפי נוסחאות ל 5 יחידות לימוד נספח: א. משך הבחינה: שעתיים. מתמטיקה 5 יחידות לימוד שאלון שני תכנית ניסוי )שאלון שני לנבחנים בתכנית ניסוי, 5 יחידות לימוד( הוראות לנבחן ב. מבנה השאלון ומפתח ההערכה: בשאלון זה שני פרקים. פרק ראשון גאומטריה אנליטית, וקטורים, טריגונומטריה במרחב, מספרים מרוכבים 3#2 3 3 פרק שני גדילה ודעיכה, פונקציות מעריכיות ולוגריתמיות 3# נקודות נקודות סה"כ 00 נקודות ג. חומר עזר מותר בשימוש: )( מחשבון לא גרפי. אין להשתמש באפשרויות התכנות במחשבון הניתן לתכנות. שימוש במחשבון גרפי או באפשרויות התכנות במחשבון עלול לגרום לפסילת הבחינה. )2( דפי נוסחאות )מצורפים(. ד. הוראות מיוחדות: )( אל תעתיק את השאלה; סמן את מספרה בלבד. )2( התחל כל שאלה בעמוד חדש. רשום במחברת את שלבי הפתרון, גם כאשר החישובים מתבצעים בעזרת מחשבון. הסבר את כל פעולותיך, כולל חישובים, בפירוט ובצורה ברורה ומסודרת. חוסר פירוט עלול לגרום לפגיעה בציון או לפסילת הבחינה. )3( לטיוטה יש להשתמש במחברת הבחינה או בדפים שקיבלת מהמשגיחים. שימוש בטיוטה אחרת עלול לגרום לפסילת הבחינה. ההנחיות בשאלון זה מנוסחות בלשון זכר ומכוונות לנבחנות ולנבחנים כאחד. בהצלחה! /המשך מעבר לדף/
2 - 2 - השאלות שים לב! הסבר את כל פעולותיך, כולל חישובים, בפירוט ובצורה ברורה. חוסר פירוט עלול לגרום לפגיעה בציון או לפסילת הבחינה. מתמטיקה, חורף תשע"ב, מס' פרק ראשון גאומטריה אנליטית, וקטורים, טריגונומטריה במרחב, 66 3 נקודות( מספרים מרוכבים ( נקודות(. ענה על שתיים מבין השאלות 3- )לכל שאלה שים לב! אם תענה על יותר משתי שאלות, ייבדקו רק שתי התשובות הראשונות שבמחברתך. A' y B B' x2 y 2 חותכת את ציר ה x a2 + b2. האליפסה = בנקודות A ו 'A, ואת ציר ה y היא חותכת בנקודות B ו 'B, כמתואר בציור. א. נתון כי הישר -=y 4 5 x מאונך לישר, A'B והמרחק בין הנקודה B לאחד המוקדים של האליפסה הוא. 5 מצא את משוואת האליפסה. A x F 2 הם המוקדים של האליפסה. E היא נקודה על האליפסה. F ו ב.. EF F2 מצא את ההיקף של המשולש ג. מקרבים את מוקדי האליפסה זה לזה לאורך ציר ה. x נוצרת אליפסה קנונית חדשה העוברת גם היא דרך הנקודות A ו 'A,. F 2 F ו ' ומוקדיה הם '. y מקביל לציר ה E'E היא נקודה על האליפסה החדשה כך ש 'E ) ( k 2 מהגובה k גדול פי E'F'F 2 F'F במשולש ' הגובה לצלע '2. EF F 2 FF 2 במשולש לצלע )( הבע באמצעות k את משוואת האליפסה החדשה. )2( עבור איזה ערך של k המוקדים ' F ו F יתלכדו לנקודה אחת 2 ' בראשית הצירים? נמק. /המשך בעמוד 3/
3 נתונה פירמידה ABCDT שבסיסה ABCD הוא מקבילית. מתמטיקה, חורף תשע"ב, מס' משוואת מישור הבסיס ABCD היא: = 0 4 z-. 2x + 2y- הצגה פרמטרית של הישר TB היא: ) t(, 3 2,. x = (, 2, - 7) + א. מצא את השיעורים של הקדקוד. B ב. אלכסוני המקבילית ABCD נפגשים בנקודה. M אחת מהנקודות M ו D נמצאת על ציר ה, x ואחת מהן נמצאת על ציר ה. z קבע איזו מהנקודות נמצאת על ציר ה. x נמק. ג. דרך נקודה על הישר TB העבירו אנך למישור המקבילית. ABCD האנך חותך את המישור בנקודה. E )( מצא הצגה פרמטרית של הישר BE )ההיטל של הישר TB על מישור המקבילית(. )2( מצא את המצב ההדדי בין הישר BE לאלכסון. BD /המשך בעמוד 4/
4 - 4 - מתמטיקה, חורף תשע"ב, מס' א. z הוא מספר מרוכב הנמצא ברביע הרביעי, והערך המוחלט שלו הוא. נתון: = 3 +. z O היא ראשית הצירים. מצא במשולש : Ozz )( את זוויות המשולש. )2( את אורכי הצלעות של המשולש. S ב. נתונה פירמידה ישרה SABCD שבסיסה ABCD הוא ריבוע. D M C SC היא נקודה על המקצוע M כך ש B DMB היא הזווית שבין שתי פאות סמוכות )ראה ציור(. נתון:, BDMB= 2α A B זווית הבסיס בפאה צדדית היא. β. sinα$ )( מצא את הערך של המכפלה sin β? נמק. )2( האם ייתכן ש α = 45 o הערה: אין קשר בין סעיף א לסעיף ב. /המשך בעמוד 5/
5 מתמטיקה, חורף תשע"ב, מס' פרק שני גדילה ודעיכה, פונקציות מעריכיות ולוגריתמיות 33 3 נקודות( ( ענה על אחת מהשאלות 5-4. שים לב! אם תענה על יותר משאלה אחת, תיבדק רק התשובה הראשונה שבמחברתך. 4. נתון כי הפונקציות f(x) ו g(x), המוגדרות לכל, x מקיימות: g' () x = efx ()( x ) f() ' x = - 2x 3 ישר המשיק לגרף הפונקציה (x) f בנקודת הקיצון שלה, חותך את ציר ה y. y =- 4 בנקודה שבה ()' g עם הצירים. א. )( מצא את נקודות החיתוך של הגרף של פונקציית הנגזרת x. g '() )2( מצא את תחומי העלייה והירידה )אם יש כאלה( של פונקציית הנגזרת x x. g''' עבור 5 )3( נתון גם: () x 0 x 2. g''' עבור 5 () x 20 g'. נמק. סרטט סקיצה של גרף פונקציית הנגזרת () x ב. לישר -e 4 + y = ולפונקציה g(x) יש נקודה משותפת אחת בלבד. 2 מצא את הפונקציה g(x). נמק. /המשך בעמוד 6/
6 מתמטיקה, חורף תשע"ב, מס' משקל העץ בשני יערות, יער I ויער, II גדל עם הזמן לפי פונקציות מעריכיות fx () = N $ a ו gx () = M $ b בהתאמה. o x o x העצים בשני היערות ניטעו באותו תאריך. ביום הנטיעה היו ביער 0,000 I טון עץ, וכעבור שנה היו בו 5,000 טון עץ. ביום הנטיעה היו ביער 40,000 II טון עץ, וכעבור שנה היו בו 45,000 טון עץ. מצא את הפונקציה f(x) ואת הפונקציה g(x). א. מצא כעבור כמה זמן מיום הנטיעה יהיה משקל העץ ביער I גדול ממשקל העץ ביער. II ב. ) סקיצה של גרף הפונקציה f(x), ובקו מרוסק ( _ ) סרטט בקו מלא ( ג. סקיצה של גרף הפונקציה g(x), החל מיום הנטיעה. ציין מספרים על הצירים. כעבור כמה זמן מיום הנטיעה ההפרש בין משקל העץ ביער II למשקל העץ ביער I ד. יהיה הגדול ביותר? בתשובותיך דייק עד שתי ספרות אחרי הנקודה העשרונית. בהצלחה! זכות היוצרים שמורה למדינת ישראל אין להעתיק או לפרסם אלא ברשות משרד החינוך
ב ה צ ל ח ה! /המשך מעבר לדף/
בגרות לבתי ספר על יסודיים סוג הבחינה: מדינת ישראל קיץ תשע"א, מועד ב מועד הבחינה: משרד החינוך 035804 מספר השאלון: דפי נוסחאות ל 4 יחידות לימוד נספח: מתמטיקה 4 יחידות לימוד שאלון ראשון תכנית ניסוי )שאלון
מתמטיקה שאלון ו' נקודות. חשבון דיפרנציאלי ואינטגרלי, טריגונומטריה שימוש במחשבון גרפי או באפשרויות התכנות עלול לגרום לפסילת הבחינה.
בגרות לבתי ספר על-יסודיים מועד הבחינה: תשס"ח, מספר השאלון: 05006 נספח:דפי נוסחאות ל- 4 ול- 5 יחידות לימוד מתמטיקה שאלון ו' הוראות לנבחן משך הבחינה: שעה ושלושה רבעים. מבנה השאלון ומפתח ההערכה: בשאלון זה
תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME
הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר
שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 ס"מ = CD.
טריגונומטריה במישור 5 יח"ל טריגונומטריה במישור 5 יח"ל 010 שאלונים 006 ו- 806 10 השאלות 1- מתאימות למיקוד קיץ = β ( = ) שאלה 1 במשולש שווה-שוקיים הוכח את הזהות נתון: sin β = sinβ cosβ r r שאלה נתון מעגל
ושל (השטח המקווקו בציור) . g(x) = 4 2x. ו- t x = g(x) f(x) dx
פרק 9: חשבון דיפרנציאלי ואינטגרלי O 9 ושל בציור שלפניך מתוארים גרפים של הפרבולה f() = נמצאת על הנקודה המלבן CD מקיים: הישר = 6 C ו- D נמצאות הפרבולה, הנקודה נמצאת על הישר, הנקודות ( t > ) OD = t נתון:
3-9 - a < x < a, a < x < a
1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.
תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי
מתמטיקה שאלון 804 מבחני בגרות ובחינות חזרה.
מתמטיקה שאלון 804 מבחני בגרות ובחינות חזרה הקדמה כללית: ספרי התרגילים של גול הינם פרי של שנות ניסיון רבות בהוראת חומרי הלימוד ובהגשה לבחינות הבגרות במתמטיקה הן בבתי הספר התיכוניים, הן בבתי הספר הפרטיים
מערכות חשמל ג' שתי יחידות לימוד )השלמה לחמש יחידות לימוד( )כיתה י"א(
מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך מועד הבחינה: קיץ תשע"ה, 2015 סמל השאלון: 845201 א. משך הבחינה: שלוש שעות. נספח: נוסחאון במערכות חשמל מערכות חשמל ג' שתי יחידות לימוד )השלמה
33 = 16 2 נקודות. נקודות. נקודות. נקודות נקודות.
1 מבחן מתכונת מס ' משך הבחינה: שלוש שעות וחצי. מבנה ה ומפתח הערכה: ב זה שלושה פרקים. פרק א': אלגברה והסתברות: נקודות. נקודות. נקודות. נקודות. 1 33 = 16 3 3 פרק ב': גיאומטריה וטריגונומטריה במישור: 1 33
מחשוב ובקרה ט' למתמחים במחשוב ובקרה במגמת הנדסת חשמל אלקטרוניקה (כיתה י"ג) הוראות לנבחן
גמר לבתי ספר לטכנאים ולהנדסאים סוג הבחינה: מדינת ישראל אביב תשס"ו, 6 מועד הבחינה: משרד החינוך, התרבות והספורט 754 סמל השאלון: נספחים: א. נספח לשאלה ההנחיות בשאלון זה מנוסחות בלשון זכר, אך מכוונות לנבחנות
I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx
דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה
מערכות אלקטרוניות א' יחידת לימוד אחת )כיתה י"ב(
מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך מועד הבחינה: קיץ תשע"ב, 01 סמל השאלון: 841101 א. משך הבחינה: שעתיים. מערכות אלקטרוניות א' יחידת לימוד אחת )כיתה י"ב( הוראות לנבחן ההנחיות בשאלון
(ספר לימוד שאלון )
- 40700 - פתרון מבחן מס' 7 (ספר לימוד שאלון 035804) 09-05-2017 _ ' i d _ i ' d 20 _ i _ i /: ' רדיוס המעגל הגדול: רדיוס המעגל הקטן:, לכן שטח העיגול הגדול: / d, לכן שטח העיגול הקטן: ' d 20 4 D 80 Dd 4 /:
"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי
הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת
תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע"א, מיום 23/5/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע"א, מיום 3/5/011 שאלון: 635860 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. שאלה מספר 1 נתון: 1. ממקום A יצאה מכונית א' וכעבור מכונית ב'. 1 שעה
b2n-1 ב. נשתמש בנוסחת סכום סדרה הנדסית אינסופית יורדת כדי לרשום את הנתון: 1-q = 0.8 b 1-q 1=0.8(1+q) q= 1 4 פתרון לשאלה 2
פתרון מבחן מס' פתרון לשאלה א. להוכיח כי סדרה c היא סדרה הנדסית משמע להוכיח כי היחס בין איברים סמוכים בסדרה הוא מספר n c n +n c מכיוון ש- q הוא מספר קבוע, סדרה = b n+ = bq n =q cn bn- bq n- :b n קבוע. אם
מערכות אלקטרוניות א' יחידת לימוד אחת )כיתה י"ב(
מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך מועד הבחינה: קיץ תש"ע, 010 סמל השאלון: 841101 א. משך הבחינה: שעתיים. מערכות אלקטרוניות א' יחידת לימוד אחת )כיתה י"ב( הוראות לנבחן נספח: נוסחאון
(להנדסאי מכונות) הוראות לנבחן פרק שני: בקרת תהליכים ומכשור לבקרה ולאלקטרוניקה תעשייתית 80 נקודות
גמר לבתי ספר לטכנאים ולהנדסאים סוג הבחינה: מדינת ישראל אביב תשס"ח, 2008 מועד הבחינה: משרד החינוך 710923 סמל השאלון: מערכות מכטרוניות ה' (להנדסאי מכונות) הוראות לנבחן א. משך הבחינה: ארבע שעות. ב. מבנה השאלון
חורף תש''ע פתרון בחינה סופית מועד א'
מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר
תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תש"ע מועד ב', מיום 14/7/2010 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תש"ע מועד ב', מיום 14/7/2010 שאלון: 316, 035806 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 E נתון: 1 רוכב אופניים רכב מעיר A לעיר B
s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=
את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -
סדרות - תרגילים הכנה לבגרות 5 יח"ל
סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b
כאן מבנה הבחינה שתיערך השנה תשע"ד. הבחינות של מועד תשע"ג מותאמות לבחינה שתיערך השנה. כמו כן ישנן שאלות שלא רלוונטיות לתוכנית ההיבחנות החדשה.
לתלמידי כיתה י' אנו שמחים להציג בפניכם את חוברת מבחני המחצית של כיתה י' שנערכו בשנים האחרונות שימו לב כי לא כל הבחינות המופיעות בחוברת זו, הן במבנה של הבחינה שתיערך לכם השנה, לכן מובא לכם כאן מבנה הבחינה
סיכום- בעיות מינימוםמקסימום - שאלון 806
סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,
שאלה 1 V AB פתרון AB 30 R3 20 R
תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A
אוסף שאלות מס. 3 פתרונות
אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,
גבול ורציפות של פונקציה סקלרית שאלות נוספות
08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך
אלגברה לינארית גיא סלומון. α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π. σ ς τ υ ω ξ ψ ζ. לפתרון מלא בסרטון פלאש היכנסו ל- כתב ופתר גיא סלומון
0 אלגברה לינארית α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π ϖ θ ϑ ρ σ ς τ υ ω ξ ψ ζ גיא סלומון לפתרון מלא בסרטון פלאש היכנסו ל- wwwgoolcoil סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת
פיזיקה שאלון חקר הוראות לנבחן
מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך, התרבות והספורט מועד הבחינה: קיץ תשס"ו, 2006 סמל השאלון: 98 917555, נספח: נתונים ונוסחאות בפיזיקה ל 5 יח"ל מקום למדבקת נבחן פיזיקה שאלון חקר
פיזיקה 3 יחידות לימוד הוראות לנבחן
בגרות לבתי ספר על יסודיים א. סוג הבחינה: מדינת ישראל בגרות לנבחנים אקסטרניים ב. משרד החינוך קיץ תשע"ג, 2013 מועד הבחינה: 84 036001, מספר השאלון: נתונים ונוסחאות בפיזיקה ל 3 יח"ל נספח: א. משך הבחינה: שלוש
אוסף שאלות מס. 5. שאלה 1 בדוגמאות הבאות, נגדיר פונקציה על ידי הרכבה: y(t)).g(t) = f(x(t), בשתי דרכים:
אוסף שאלות מס. 5 שאלה 1 בדוגמאות הבאות, נגדיר פונקציה על ידי הרכבה: y(t)).g(t) = f(x(t), חשבו את הנגזרת (t) g בשתי דרכים: באופן ישיר: על ידי חישוב ביטוי לפונקציה g(t) וגזירה שלו, בעזרת כלל השרשרת. בידקו
ל הזכויות שמורות לדפנה וסטרייך
מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות
חשמל לתלמידי 5 יחידות לימוד הוראות לנבחן = נקודות
בגרות לבתי ספר על יסודיים א. סוג הבחינה: מדינת ישראל בגרות לנבחנים אקסטרניים ב. משרד החינוך קיץ תשס"ז, 2007 מועד הבחינה: 652 917521, מספר השאלון: נתונים ונוסחאות בפיזיקה ל 5 יח"ל נספח: פ י ז י ק ה חשמל
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim
פיזיקה 3 יחידות לימוד הוראות לנבחן
בגרות לבתי ספר על יסודיים א. סוג הבחינה: מדינת ישראל בגרות לנבחנים אקסטרניים ב. משרד החינוך קיץ תשע"ב, 2012 מועד הבחינה: 84 036001, מספר השאלון: נתונים ונוסחאות בפיזיקה ל 3 יח"ל נספח: א. משך הבחינה: שלוש
18 במאי 2008 פיזיקה / י"ב נקודות; 3 33 = 100 נקודות. m 2 בהצלחה! שאלה 1
שם התלמיד/ה : בית הספר: המורה בחמד"ע : 8 במאי 008 פיזיקה / י"ב מבחן בפיזיקה במתכונת מבחן בגרות חשמל הוראות לנבחן ההנחיות בשאלון זה מנוסחות בלשון זכר ומכוונות לנבחנות ולנבחנים כאחד א ב ג ד משך הבחינה: 05
שם התלמיד/ה הכיתה שם בית הספר. Page 1 of 18
שם התלמיד/ה הכיתה שם בית הספר ה Page of 8 0x = 3x + שאלה פ תרו את המשוואה שלפניכם. x = תשובה: שאלה בבחירות למועצת תלמידים קיבל רן 300 קולות ונעמה קיבלה 500 קולות. מה היחס בין מספר הקולות שקיבל רן למספר
= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(
א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π
פיזיקה מבחן מתכונת בחשמל ומגנטיות לתלמידי 5 יחידות לימוד הוראות לנבחן
מאי 2011 קרית חינוך אורט קרית ביאליק פיזיקה מבחן מתכונת בחשמל ומגנטיות לתלמידי 5 יחידות לימוד הוראות לנבחן א. משך הבחינה: שעה ושלושה רבעים (105 דקות) ב. מבנה השאלון ומפתח ההערכה: בשאלון זה חמש שאלות, ומהן
חשבון דיפרנציאלי ואינטגרלי
0 חשבון דיפרנציאלי ואינטגרלי I גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת חשבון דיפרנציאלי ואינטגרלי באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד. שאלות
פרק ראשון - אלגברה והסתברות ) ענה על שתיים מהשאלות 1-3 (לכל שאלה
שאלון - 806 מבחן פרק ראשון - אלגברה והסתברות ) ענה על שתיים מהשאלות - (לכל שאלה נק') 6 נק') A n יואב ודניאל עובדים בהעמסת ארגזים למשאיות במפעל. יואב מסוגל להעמיס לבדו 0 ארגזים בשעה. דניאל מסוגל להעמיס
בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד
בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד סמסטר: א' מועד: א' תאריך: יום ה' 0100004 שעה: 04:00 משך הבחינה: שלוש שעות חומר עזר: אין בבחינה שני פרקים בפרק הראשון 8 שאלות אמריקאיות ולכל אחת מהן מוצעות
מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. לדוגמה:בסרטוט שלפappleיכם EC אלכסוןבמצולע.
גיאומטריה מצולעים מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. אלכסון במצולע הוא הקו המחבר בין שappleי קדקודים שאיappleם סמוכים זה לזה. לדוגמה:בסרטוט שלפappleיכם
טריגונומטריה הגדרות הפונקציות הטריגונומטריות הבסיסיות
טריגונומטריה הגדרות הפונקציות הטריגונומטריות הבסיסיות את הפונקציות הטריגונומטריות ניתן להגדיר באמצעות הקשרים בין הניצבים לבין היתר ובין הניצבים עצמם במשולש ישר זווית בלבד: לדוגמה: סינוס זווית BAC (אלפא)
המשפטים שאותם ניתן לרשום על ידי ציון שמם הם:
צ, ציטוטמחוזרמפמ''ר : (שיניתירקאתצורתהכתיב) בשאלות (שאלון 5) יש לנמק כל שלב בפתרון על ידי כתיבת המשפט הגיאומטרי המתאים. משפטים ידועים ניתנים לציטוט על ידי ציון שמם. את כל יתר המשפטים יש לנסח במדויק. המשפטים
מתמטיקה טריגונומטריה
אלכס זיו מתמטיקה המדריך המלא לפתרון תרגילים טריגונומטריה 5 לתלמידי 4 ו- יחידות לימוד כ- 50 תרגילים עם פתרונות מלאים הקדמה ספר זה הוא חלק מסדרת ספרים "המדריך המלא לפתרון תרגילים" הסדרה מיועדת לשימוש כהשלמה
תרגיל 7 פונקציות טריגונומטריות הערות
תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =
חשמל לתלמידי 5 יחידות לימוד הוראות לנבחן = נקודות
בגרות לבתי ספר על יסודיים א. סוג הבחינה: מדינת ישראל בגרות לנבחנים אקסטרניים ב. משרד החינוך קיץ תשע"ו, 2016 מועד הבחינה: 655 036002, מספר השאלון: נוסחאות ונתונים בפיזיקה ל 5 יח"ל נספח: פיזיקה חשמל לתלמידי
מערכות חשמל ג' שתי יחידות לימוד )השלמה לחמש יחידות לימוד( )כיתה י"א( הוראות לנבחן
מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך מועד הבחינה: קיץ תשס"ח, 2008 סמל השאלון: 845201 א. משך הבחינה: שלוש שעות. נספח: נוסחאון במערכות חשמל מערכות חשמל ג' שתי יחידות לימוד )השלמה
שיעור 1. זוויות צמודות
יחידה 11: זוגות של זוויות שיעור 1. זוויות צמודות נתבונן בתמרורים ובזוויות המופיעות בהם. V IV III II I הדסה מיינה את התמרורים כך: בקבוצה אחת שלושת התמרורים שמימין, ובקבוצה השנייה שני התמרורים שמשמאל. ש
שוקו שיעור 1. הגדרת המקבילית שילובים במתמטיקה 349 במקביליות שלפניכם משתמשים בסביבה ובחיי היום-יום. בפסי-רכבת: בדגלים: בתמרורים וסימני תנועה:
יחידה 19: מקבילית שיעור 1. הגדרת המקבילית במקביליות שלפניכם משתמשים בסביבה ובחיי היום-יום. בפסי-רכבת: בדגלים: של איזו מדינה דגל זה? של איזו מדינה דגל זה? בתמרורים וסימני תנועה: איזה תמרור זה? איזה תמרור
תרגיל 13 משפטי רול ולגראנז הערות
Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון
שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם
תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא
פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur
פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת
שאלון 006 מיקוד במתמטיקה
שאלון 006 מיקוד במתמטיקה מהדורת חורף תשס"ט 009 כתיבה: זיקרי אלברט, שמש שלמה - shemesh4@walla.co.il צוות עריכה מקצועית: ריטרבנד אוהד, נאות רז, מן מנחם, דוד ניר, ארביב עמוס, שטולבך אירית, שניידר איתן, כהן
משרד החינוך המזכירות הפדגוגית אגף מדעים הפיקוח על הוראת המתמטיקה
משולשים חופפים, תיכון במשולש )41 שעות( ומשולש שווה שוקיים שתי צורות נקראות חופפות אם אפשר להניח אחת מהן על האחרת כך שתכסה אותה בדיוק )לשם כך ניתן להזיז, לסובב ולהפוך את הצורות(. בפרק זה נתמקד במשולשים
שיעור.1 חופפים במשולש שווה שוקיים יחידה - 31 חופפים משולשים 311
יחידה :31חופפים משולשים נחפוף משולשים ונוכיח תכונות של אלכסוני משולשים שווה שוקיים ואלכסוני המלבן. שיעור.1חופפים במשולש שווה שוקיים נחקור ונוכיח תכונות של משולש שווה שוקיים נתון משולש שווה שוקיים שבו.
מבחן מועד ב' בהצלחה! אנא קיראו היטב את ההוראות שלהלן: ודאו כי כל עמודי הבחינה נמצאים בידכם.
7.8.2017 מבחן מועד ב' תאריך הבחינה: שמות המרצים: מר בועז ארד פרופ' עמוס ביימל מר יהונתן כהן דר' עדן כלמטץ' גב' מיכל שמש אנא קיראו היטב את ההוראות שלהלן: שם הקורס: תכנון אלגוריתמים מספר הקורס: 202-1-2041
אלגברה לינארית מטריצות מטריצות הפיכות
מטריצות + [( αij+ β ij ] m λ [ λα ij ] m λ [ αijλ ] m + + ( + +C + ( + C i C m q m q ( + C C + C C( + C + C λ( ( λ λ( ( λ (C (C ( ( λ ( + + ( λi ( ( ( k k i חיבור מכפלה בסקלר מכפלה בסקלר קומוטטיב אסוציאטיב
יחידה - 7 זוויות חיצוניות
יחידה 7: זוויות חיצוניות שיעור 1. זווית חיצונית למצולע מה המשותף לכל הזוויות המסומנות ב-? נכיר זווית חיצונית למצולע, ונמצא תכונה של זווית חיצונית למשולש. זווית חיצונית למצולע 1 כל 1. הזוויות המסומנות במשימת
TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים
TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה
יחידתלימודבנושא " שלמשולשישרזווית" http://www.hebrewkhan.org/lesson/533 מעט היסטוריה הפרושהמילולישלהמילה "" הוא "מדידתמשולשים". משולש "טריגונו" מיוונית - "מטריה"- מיוונית - מדידה, ענףשלהמתמטיקההעוסק, ביןהיתר,
brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק
יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה
המחלקה להוראת המדעים כל הזכויות שמורות הוא מציב בכל צד מוט אופקי לתמיכה במסגרת כמו בתמונה. 1. א. באיזה משולש הקטע המקווקו הוא קטע אמצעים?
יחידה 33: קטע אמצעים שיעור 1. קטע אמצעים במשולש מוטי בונה נדנדת גן. הוא מציב בכל צד מוט אופקי לתמיכה במסגרת כמו בתמונה. המוטות, הצבועים באדום, מחברים את אמצעי העמודים. כיצד יחשב מוטי את אורך המוט האדום?
בגרות לבתי ספר על יסודיים א. סוג הבחינה: מדינת ישראל בגרות לנבחנים אקסטרניים ב. משרד החינוך קיץ תשע"ה, 2015 מועד הבחינה: 656 036201, מספר השאלון: נוסחאות ונתונים בפיזיקה ל 5 יח"ל נספח: א. משך הבחינה: שעתיים
לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור
הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין
-107- גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה.
-07- בשנים קודמות למדתם את נושא הזוויות. גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה. זווית נוצרת על-ידי שתי קרניים היוצאות מנקודה אחת. הנקודה נקראת קדקוד
משוואות דיפרנציאליות רגילות
משוואות דיפרנציאליות רגילות גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת מתמטיקה באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד. שאלות תלמידים וטעויות נפוצות
ˆÓ ÍÒÂÓÏ Ú Ó 50 Ï Â È Ó Ó 10 ÚÒ Â A ÔÂÂÈÎÏ ÈÓ ÊÁ ÆA Ï Í Æ Ï Ú Â ÚÈÒ Â È ÓÓ Ó 10 Ë Â È Ó
ßÒÓ Ú Û ÂÁ ÈËÓ Ó ÁÙÒ.,,!. Â Â Æ Â Â ± Ï ÏÎÏ ÂÏ Ó ÌÈÈ ÏÚ Ú ÆÍ ÁÓ Â Â Â Â È Â ÈÈ ÂÏ È Ó ÂÈ ÏÚ Ú Ì! ÆÓ  ÌÈ Ú È ÔÈ Á Ó Æ B ÈÚ ÔÂÂÈÎÏ A ÈÚÓ ˆÈ.  ÚÈÒ ÏÈÁ Ó Ú 4  ÚÎ Ï Ô Î ÈÙÎ ÚÂ Â È Ó ÚÒ ÏÁ ÆÂ Î Ï ÈÈ ˆÓ ÍÒÂÓÏ
תורת הרכב והמנוע ט' )לטכנאי "מכונאות רכב"(
גמר לבתי ספר לטכנאים ולהנדסאים סוג הבחינה: מדינת ישראל אביב תש"ע, 2010 מועד הבחינה: משרד החינוך 710951 סמל השאלון: א. משך הבחינה: ארבע שעות. תורת הרכב והמנוע ט' )לטכנאי "מכונאות רכב"( הוראות לנבחן ב. מבנה
א. חוקיות תשובות 1. א( קבוצות ספורט ב( עצים ג( שמות של בנות ד( אותיות שיש להן אות סופית ; ה( מדינות ערביות. 2. א( שמעון פרס חיים הרצוג. ב( לא.
א. חוקיות. א( 1; ב( ; ג( השמיני; ד( ; ה( האיבר a שווה לפי - מיקומו בסדרה ; ו( = ;a ז( 9 = a ;.6 א( דוגמה: = a. +.7 א( =,1 + = 6 ;1 + ג( את המספר האחרון: הוא זה שמשתנה מתרגיל לתרגיל. 8. ב( 1 7 a, המספר
תקציר הקדמה. שנתון "ïðàù" תשס"ח כרך י"ג 255
משה סטופל ושלמה חריר "יפה היא הגאומטריה" חיזוק ההיגד ע"י הצגת דרכי פתרון אחדות לאותה משימה תקציר לשם המחשת יופיה של הגאומטריה הובאו 7 משימות מגוונות: לכל משימה הוצגו מספר דרכי פתרון (4-). הפתרונות התבססו
ÈËÓ Ó ÌÈ ÂÓ ÔÂÏÈÓ. Â Ó Â Â ÌÈËÙ Ó Â ÁÒÂapple ÌÈ Â È Â Â. ÈÂÒÈapple  Ó
ÈËÓ Ó ÌÈ ÂÓ ÔÂÏÈÓ ÂȈ appleâù Â Ó Â Â ÌÈËÙ Ó Â ÁÒÂapple ÌÈ Â È Â Â ÈÂÒÈapple Â Ó תוכן העניינים 7 9 6 0 8 6 9 55 59 6 מושגים בסיסיים... אינטרוולים וסביבות... מאפיינים של פונקציות... סוגי הפונקציות ותכנותיהם...
הסתברות וסטטיסטיקה יישומית שתי יחידות לימוד
מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך מועד הבחינה: קיץ תשע"ב, 01 סמל השאלון: 80903 נספחים: א. לוח התפלגות נורמלית ב. נוסחאון במבוא לסטטיסטיקה הסתברות וסטטיסטיקה יישומית שתי יחידות
צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים
מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p
5 יחידות לימוד ברמת 5 יחידות לימוד שני שאלונים. במסמך זה מפורטים נושאי הלימוד בכל אחד מהשאלונים, וכן מבנה ההיבחנות. מבנה ההיבחנות
5 יחידות לימוד ברמת 5 יחידות לימוד שני שאלונים. במסמך זה מפורטים נושאי הלימוד בכל אחד מהשאלונים, וכן מבנה ההיבחנות. מבנה ההיבחנות משך השאלון: שעתיים שאלון שני )65853( - 05% משך השאלון: שלוש שעות שאלון
תרגול פעולות מומצאות 3
תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה
gcd 24,15 = 3 3 =
מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =
תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות
תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si
עבודת קיץ למואץ העולים לכיתה י' סדרות:
ב( ג( א ) עבודת קיץ למואץ העולים לכיתה י' סדרות: תרגילי חימום.... בסדרה חשבונית האיבר השמיני גדול פי מהאיבר הרביעי. סכום אחד-אשר האיברים הראשונים בסדרה הוא. 0 ( מצאו את האיבר הראשון של הסדרה. ( מצאו את
םיאלמ תונורתפ 20,19,18,17,16 םינחבמל 1 להי רחש ןולאש הקיטמתמב סוקופ
פתרונות מלאים למבחנים 0,9,8,7,6 פוקוס במתמטיקה שאלון 3580 שחר יהל העתקה ו/או צילום מספר זה הם מעשה לא חינוכי, המהווה עברה פלילית. פתרון מבחן מתכונת מס' 6 פתרון שאלה א. נקודות A ו- B נמצאות על הפונקציה
:ןורטיונ וא ןוטורפ תסמ
פרק ט' -חוק קולון m m e p = 9. 0 = m n 3 kg =.67 0 7 kg מסת אלקטרון: מסת פרוטון או נויטרון: p = e =.6 0 9 מטען אלקטרון או פרוטון: חוק קולון בין כל שני מטענים חשמליים פועל כח חשמלי. הכח תלוי ביחס ישיר למכפלת
משרד החינוך סמל השאלון:
סוג הבחינה: גמר לבתי ספר לטכנאים ולהנדסאים מדינת ישראל מועד הבחינה: אביב תשע"ב, 01 משרד החינוך סמל השאלון: 733001 א. משך הבחינה: ארבע שעות. נספחים: א. נספח לשאלה 9 ב. נספח לשאלה 10 חשמל ואלקטרוניקה ט'
גיאומטריה גיאומטריה מצולעים ניב רווח פסיכומטרי
מצולע הוא צורה דו ממדית, עשויה קו "שבור" סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. אלכסון במצולע הוא הקו המחבר בין שני קדקודים שאינם סמוכים זה לזה. לדוגמה: בסרטוט שלפניכם EC אלכסון במצולע. ABCDE (
[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m
Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות
Logic and Set Theory for Comp. Sci.
234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =
1. המעגל מעגל הוא קו סגור במישור, שכל נקודה עליו נמצאת במרחק שווה מנקודה במרכז. נקודה זו נקראת מרכז המעגל. מרחק הנקודות שעל המעגל ממרכזו נקראת רדיוס
1. המעגל מעגל הוא קו סגור במישור, שכל נקודה עליו נמצאת במרחק שווה מנקודה במרכז. נקודה זו נקראת מרכז המעגל. מרחק הנקודות שעל המעגל ממרכזו נקראת רדיוס המעגל. כל קטע המחבר את נקודת המעגל עם מרכזו נקרא אף
מתמטיקה בדידה תרגול מס' 13
מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.
עבודת קיץ לקראת כיתה ט' מצויינות מתמטיקה
עבודת קיץ לקראת כיתה ט' מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם יודעים כיצד לפתור אותן. את העבודה יש להגיש במהלך השבוע
{ : Halts on every input}
אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1
מבחן משווה בפיסיקה כיתה ט'
מבחן משווה בפיסיקה כיתה ט' משך המבחן 0 דקות מבנה השאלון : שאלון זה כולל 4 שאלות. עליך לענות על כולן.כתוב את הפתרונות המפורטים בדפים נפרדים וצרף אותם בהגשה לטופס המבחן. חומרי עזר:.מחשבון. נספח הנוסחאות
אלגברה ליניארית 1 א' פתרון 2
אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק
gra לא שימושי -rad רדיינים. רדיין = רק ברדיינים. נניח שיש לנו משולש ישר זוית. היחס בין שתי הצלעות שמול הזוית הישרה, נקבע ע"י הזוית.
A-PDF MERGER DEMO 56 פונקציות טריגונומטריות במחשבון בד"כ יש אופציות: deg מעלות מניח חלוקת המעגל ל 6 חלקים, כל אחד מעלה למה עשו 6? זה מספר עם הרבה מחלקים וזה גם קרוב ל 65 6 π π 6 π π α α α 6 8 π 6 57 ~
פתרון מבחן מתכונת מס' 21. פתרון שאלה 1 נסמן: x מהירות ההליכה של נועם. y מהירות ההליכה של יובל. נועם 2.5x 2.5 x יובל בתנועה יובל במנוחה משוואה I:
פתרון מבחן מתכונת מס' פתרון שאלה נסמן: מהירות ההליכה של נועם. y מהירות ההליכה של יובל. מהירות זמן דרך נועם.5.5.5 +.5 A 5 A y y יובל בתנועה 6 יובל במנוחה A y + 6 משוואה I: נועם ויובל שהו במשך אותו זמן בדרך:.5.5