5 יחידות לימוד ברמת 5 יחידות לימוד שני שאלונים. במסמך זה מפורטים נושאי הלימוד בכל אחד מהשאלונים, וכן מבנה ההיבחנות. מבנה ההיבחנות
|
|
- Αναστασούλα Καραβίας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 5 יחידות לימוד ברמת 5 יחידות לימוד שני שאלונים. במסמך זה מפורטים נושאי הלימוד בכל אחד מהשאלונים, וכן מבנה ההיבחנות. מבנה ההיבחנות משך השאלון: שעתיים שאלון שני )65853( - 05% משך השאלון: שלוש שעות שאלון ראשון )65853( - 35% וחצי פרק א' : בחירה של שאלות מתוך 3 שאלות וקטורים טריגונומטריה במרחב גיאומטריה אנליטית מספרים מרוכבים פרק ב': בחירה של שאלה אחת מתוך שאלות בעיות גדילה ודעיכה פרק א': בחירה של שאלות מתוך 3 שאלות מילוליות סדרות הסתברות פרק ב': בחירה של שאלה 1 מתוך גאומטריה במישור טריגונומטריה במישור חדו"א של פונקציות חזקה )עם מעריך רציונלי(, פונקציות מעריכיות, פונקציות לוגריתמיות )כולל שילוב עם פונקציות פולינום, פונקציות רציונליות ופונקציות טריגונומטריות( וטריגונומטריות פרק ג': בחירה של שאלות מתוך 3 חדו"א של: פולינומים, שורש ריבועי, פונקציות רציונאליות בשני השאלונים ו ייבחנו התלמידים במבחן חיצוני. 1
2 שאלון נושא מבוא לגיאומטריה אנליטית קטעים ישרים תת נושאים תכנים מרחק בין נקודות )אורך קטע(, אמצע קטע. משוואת ישר על פי שתי נקודות ועל פי שיפוע ונקודה, הקבלה, חיתוך וניצבות. שעות 5 מעגל משוואת מעגל שמרכזו בראשית הצירים )לצורך הוראת המעגל הטריגונומטרי( טכניקה אלגברית פירוק לגורמים פתרון משוואות אי שוויונות פירוק לגורמים על ידי הוצאת גורם משותף, ועל פי נוסחאות הכפל המקוצר. פירוק הטרינום )אפשר על ידי פתרון המשוואה הריבועית המתאימה, או על ידי השלמה לריבוע(. שימושי הפירוק לגורמים לפעולות חשבון בשברים אלגבריים, לפתרון משוואות ואי-שוויונות. משוואות ממעלה ראשונה ושנייה. מערכת משוואות, ממעלה שנייה לכל היותר, עם שני משתנים. משוואות ממעלה ראשונה )כולל פרמטר אחד(. מערכת משוואות ליניאריות עם שני משתנים ופרמטר אחד, הקשר בין ערכי הפרמטר לבין מספר הפתרונות )פתרון יחיד, אינסוף פתרונות, אף פתרון(. המשמעות הגרפית של מספר הפתרונות )ישרים נחתכים, מקבילים או מתלכדים(. משוואות הנפתרות על ידי הצבה )כמו משוואה דו-ריבועית(. משוואות אי- רציונאליות )רק ברמה הנדרשת לצורך חקירת פונקציות(. לא תידרש חקירת משוואה או מערכת משוואות ששתיהן ממעלה שנייה )מספר הפתרונות וכד'(, למעט שימוש בגיאומטריה אנליטית. אי-שוויונות ממעלה ראשונה ואי שוויונות ממעלה שנייה בלי פרמטר. אי שוויונות ריבועיים עם פרמטר רק לצורך שימוש בחדו"א ובשאלות מילוליות. אי-שוויונות רציונאליים ללא פרמטרים אי שוויונות שמהם ניתן להגיע לאי- כאשר f(x) או g(x) הם פולינומים ממעלה שנייה, f (x) שוויונות מהצורה 0 g(x) לכל היותר, ורק בהקשרים של חקירת פונקציות.
3 x 5 שוויונות עם ערך מוחלט אחד, כגון 3 או. x 5x 6 x 3 אי שוויונות עם ערך מוחלט ללא פרמטרים )כחלק מבעיה כוללת, ולא כשאלה או סעיף נפרדים(: אי שוויונות ליניאריים בערך מוחלט עם ביטוי ליניארי ומספר, x 5 או במרוכבים. ממשי המביעים את מושג המרחק, לדוגמה: 3 חזקות חוקי החזקות. חזקה עם מעריך שלם שאלות מילוליות סדרות שורשים חילוק פולינומים סדרה חשבונית סדרה הנדסית מכפלת שורשים ומנתם, הכנסת גורם מתחת לשורש, הוצאת גורם מתוך השורש, ביטול שורש במכנה. חילוק פולינומים בפולינום ליניארי )רק כטכניקה נדרשת, בחשבון דיפרנציאלי ואינטגרלי(. שאלות תנועה, ושאלות הספק. בכל הנושאים עשויות להיות שאלות עם אחוזים. סדרה חשבונית )כולל הגדרה לפי נוסחת נסיגה( איבר כללי, סכום, מעבר מכלל לפי מקום לכלל נסיגה ולהיפך. סדרה הנדסית סופית ואינסופית )כולל הגדרה לפי נוסחת נסיגה( איבר כללי, סכום, מעבר מכלל לפי מקום לכלל נסיגה ולהיפך הסתברות קלאסית גיאומטרית המישור סדרות כלליות מצולעים סדרות כלליות לפי מקום ולפי נוסחת נסיגה, מבלי שיידרש המעבר מכלל לפי מקום לכלל נסיגה או להיפך. אקראיות, מרחב הסתברות סופי, חוקי ההסתברות, מאורעות בלתי תלויים, מאורעות תלויים, הסתברות מותנית, נוסחת בייס, מרחב דו-שלבי ותלת-שלבי )טבלאות ועצים(. התפלגות בינומית )נוסחת ברנולי(. הערה: יש ללמד קומבינטוריקה רק לצורכי ההתפלגות הבינומית. חישוב של שטחים והיקפים של מצולעים. חפיפת משולשים על סמך ארבעת משפטי החפיפה. משולשים ומרובעים: תכונותיהם, משפטים, הוכחותיהם ויישומם. תיכונים, חוצי זוויות וגבהים. משפט פיתגורס. משפט תאלס, המשפט ההפוך לו והמשפטים הנובעים מהם. דמיון משולשים ומצולעים. 3
4 53-55 טריגונומטריה במישור מעגל מקומות גיאומטריים מפגש התיכונים במשולש, חלוקת קטע ביחס נתון, חלוקה פנימית וחלוקה חיצונית. משפט חוצה זווית פנימית במשולש. שלושת משפטי הדמיון של משולשים )לא תידרשנה הוכחות המשפטים(. היחס במשולשים דומים בין היקפים, תיכונים, חוצי זווית, גבהים ורדיוסי מעגלים חוסמים ומעגלים חסומים. היחס בין שטחי משולשים דומים. היחס בין היקפים והיחס בין שטחים במצולעים דומים )לא תידרש הוכחה(. קטעים פרופורציוניים במשולש ישר זווית. משפטים: הגובה ליתר מחלק את המשולש לשני משולשים הדומים לו. הגובה ליתר הוא ממוצע גיאומטרי של היטלי הניצבים על היתר. הניצב הוא ממוצע גיאומטרי של היתר והיטל הניצב על היתר. קשתות, מיתרים, מרחקים ממרכז המעגל. זוויות: היקפיות, מרכזיות ותכונותיהן. משיקים למעגל. שני מעגלים נחתכים, משיקים מבפנים, משיקים מבחוץ. מרובע חוסם מעגל )הגדרה ותכונות(, מרובע חסום במעגל )הגדרה ותכונות(. דמיון משולשים במעגל. קטעים פרופורציוניים במעגל. מיתרים נחתכים במעגל. חותך ומשיק מנקודה חיצונית למעגל, שני חותכים היוצאים מנקודה חיצונית למעגל. האנך האמצעי וחוצה זווית כמקומות גיאומטריים, מפגש אנכים אמצעיים במשולש כמרכז מעגל חוסם, מפגש חוצי זוויות במשולש כמרכז מעגל חסום. מחזוריות, היקף המעגל ושטחו, אורך קשת ושטח גזרה, שיטות שונות למדידת זוויות מרכזיות במעגל )מעלות, רדיאנים או אורך קשת על מעגל יחידה(. הפונקציות סינוס, קוסינוס וטנגנס, במעגל היחידה, ותיאורן הגרפי. הקשר של פונקציית הטנגנס לשיפוע של ישר. הכרת הקשרים בין הפונקציות הטריגונומטריות של זוויות, של זוויות משלימות לזווית ישרה ושל זוויות המשלימות לזווית שטוחה, בעזרת שימוש במעגל היחידה. מחזוריות הפונקציות. חישוב ערכי הפונקציות לזוויות מיוחדות. הזוגיות או אי-הזוגיות של הפונקציות הטריגונומטריות. תיאור גרפי ופירושו )מחזור, נקודות חיתוך עם הצירים, נקודות מקסימום ומינימום, תחומי חיוביות ושליליות, עלייה וירידה(, ושל הזזות ומתיחות של פונקציות טריגונומטריות. פתרון משוואות, תוך הדגשת משמעות הפתרון במעגל היחידה, מהצורה, a sin x b cos x 0, tan(ax b) c, cos(ax b) c, sin(ax b) c 4
5 , tan tan פתרון כללי ופתרון בתחום נתון., cos cos, sin sin שימוש בטכניקה אלגברית )כגון פירוק לגורמים ופתרון משוואה ריבועית( לפתרון משוואות טריגונומטריות. sin x, sinα, cos(α β),sin(α β), sin x cos x 1 זהויות:, tan x cos x 03. sinα sinβ, cosα cosβ, cosα שימוש בזהויות יידרש רק לצורך פתרון בעיות במישור ולפתרון משוואות טריגונומטריות )פתרון כללי ופתרון בתחום נתון( בבעיות גיאומטריות, ובמסגרת חשבון דיפרנציאלי ואינטגרלי. פתרון בעיות במישור: פתרון מצולעים המתפרקים למשולשים ישרי זווית. משפט הסינוסים ומשפט הקוסינוסים ושימוש בהם להתרת משולש כללי. 1. S נוסחת שטח המשולש a b sinγ בפתרון בעיות גיאומטריות במישור )כולל בעיות טריגונומטריות בחשבון דיפרנציאלי ואינטגרלי( יידרש שימוש בתכונות הגיאומטריות של הצורות השונות, במשפטים מגיאומטריה אוקלידית, בזהויות ובפונקציות הטריגונומטריות. מושגי יסוד: משיק בנקודה, שיפוע של גרף בנקודה, הפונקציה הנגזרת. מושג אינטואיטיבי של גבול. הנגזרת בנקודה כתהליך גבולי. נקודות חיתוך עם הצירים, עלייה וירידה, זוגיות ואי זוגיות. המשמעות האלגברית והגרפית של נקודות חיתוך של פונקציות, של g(x) f(x),f(x) > g(x) וכד'. הנגזרת של )k x k טבעי או 3(, נגזרת של פולינום )כולל (cf(x))' ((f(x) g(x))',. תידרש שליטה בחשבון דיפרנציאלי של הפונקציות הבאות: פונקציות פולינום, פונקציות רציונאליות )מנה של פולינומים(, פונקציות טריגונומטריות, פונקציית שורש ריבועי. נגזרת של סכום, הפרש, מכפלה, מנה, פונקציה מורכבת של כל הפונקציות. חשבון דיפרנציאלי ואינטגרלי חשבון דיפרנציאלי פונקציית הערך המוחלט, אי גזירות הפונקציה x פונקציה נתונה )מבין הפונקציות הכלולות בתוכנית(. באפס, וערך מוחלט של 5
6 נגזרת שנייה. קעירות כלפי מעלה וקעירות כלפי מטה ( x קעורה כלפי מעלה, x קעורה כלפי מטה(. נקודות פיתול. שימושי הנגזרת: לפתרון בעיות שבהן יש צורך במציאת שיפוע משיק, או מציאת משוואת משיק לגרף בנקודה שעל גרף הפונקציה, או מנקודה שמחוץ לגרף הפונקציה. לפתרון בעיות קיצון בתחום פתוח ובתחום סגור )מכל סוגי הפונקציות - כולל בעיות נפח, שטח פנים ומעטפת של גופים פשוטים: קובייה, תיבה, מנסרה ישרה שבסיסה מצולע כלשהו, גליל ישר וחרוט ישר, וכולל קיצון בקצה קטע סגור(. לחקירת פונקציה ושרטוט סקיצה של גרף הפונקציה. החקירה תכלול: תחום הגדרה, נקודות חיתוך עם הצירים, תחומי עלייה וירידה, נקודות קיצון )מקומי ומוחלט(, נקודות פיתול, תחומי קעירות כלפי מעלה ומטה, התנהגות בסביבת נקודת אי-הגדרה, אסימפטוטות מקבילות לצירים )בכל סוגי הפונקציות(.. f (x) ו- f (x), f(x) הקשר בין הפונקציות אינטגרלים של פונקציות פולינום, פונקציות טריגונומטריות )כולל שימוש c f (x) c f (x) בזהויות(, פונקציות מנה שניתן להביא אותן לצורה, או )n n (f(x)) f(x).) n שלם, 1 עבור פונקציות אלו יידרש אינטגרל לא מסוים, פונקציה קדומה, קבוע האינטגרציה, אינטגרלים מידיים, אינטגרל של סכום פונקציות ושל כפל פונקציה בקבוע, אינטגרל של פונקציה מורכבת כאשר הפונקציה הפנימית היא ליניארית. מציאת פונקציה על פי הנגזרת ונקודה על הפונקציה. מציאת אינטגרל של פונקציה רציונאלית עם מכנה ליניארי על ידי חילוק פולינומים. מציאת אינטגרל f'(u) )u היא פונקציה של x(, באמצעות זיהוי הנגזרת u' מהצורה: dx החיצונית של פונקציה מורכבת ונגזרתה הפנימית, לדוגמה: x 3. dx x C 3 x 3 האינטגרל המסוים. חישוב שטח בין גרף הפונקציה לציר x )הפונקציה יכולה להיות חיובית, שלילית או לשנות סימן(, חישוב שטח בין גרפים של שתי חשבון אינטגרלי 6
7 פונקציות, חישוב שטחים מורכבים. נפח גופי סיבוב סביב ציר x בלבד. בעיות ערך קיצון שבהן יש אינטגרל )מכל הסוגים(. הערה: בנושאים של חשבון דיפרנציאלי ואינטגרלי, ייתכן שימוש בחילוק פולינומים. 7
8 שאלון נושא וקטורים תת נושאים תכנים וקטורים כחיצים במישור ובמרחב. חיבור וקטורים ותכונותיו, חיסור וקטורים. כפל בסקלר ותכונותיו. קומבינציה ליניארית של וקטורים. חלוקת קטע ביחס נתון. שימושים לחישובים ולהוכחות במישור ובמרחב. המכפלה הסקלרית ותכונותיה. ניצבות בין ישרים ובין ישר למישור. חישובי אורך וחישובי זווית. יש ללמד הוכחות של תכונות גיאומטריות במישור ובמרחב באמצעות וקטורים, אך לא תידרש בבחינה הוכחה של משפט גיאומטרי באמצעות וקטורים. מערכת צירים במרחב. הצגה אלגברית של וקטורים ופעולות אלגבריות בוקטורים )חיבור, חיסור, כפל בסקלר ומכפלה סקלרית(. הצגה פרמטרית של ישר במרחב. מצב הדדי של ישרים. הצגה פרמטרית של מישור במרחב, ומשוואה של מישור במרחב. מצב הדדי בין מישורים, ובין ישר ומישור. חישובי מרחקים: בין שתי נקודות, בין נקודה לישר, בין נקודה למישור, בין ישרים מקבילים ובין ישרים מצטלבים, בין ישר למישור, ובין שני מישורים. חישוב זוויות: בין שני ישרים, בין שני מישורים, ובין ישר למישור. שעות 53 להלן המשפטים הנדרשים בנושא הוקטורים ללא הוכחה )לשימושים בחישובים(. ישר ניצב למישור אם ורק אם הוא מאונך לשני ישרים לא מקבילים במישור. א. ישר במישור ניצב למשופע למישור אם ורק אם הוא מאונך להיטל המשופע על המישור. ב. ישר ניצב למישור ABC אם ורק אם ג l OA = l OB = l OC כאשר l וקטור על הישר ו- O ראשית הצירים. ד. כל וקטור במישור ניתן להצגה יחידה כקומבינציה ליניארית של שני וקטורים בלתי תלויים במישור, וכל קומבינציה כזו נמצאת במישור. ה. כל שלושה וקטורים בלתי תלויים במרחב הם בסיס למרחב. הגדרה, שוויון, ארבע הפעולות. ערך מוחלט, מספרים צמודים, שורש שני. הצגת המספרים המרוכבים במישור גאוס. משפט דה-מואבר, שורשי יחידה, שורשים. המשמעויות הגיאומטריות של ארבע הפעולות, של הערך המוחלט ושל השורשים. הערה: בפתרון בעיות במספרים מרוכבים עשוי להידרש ידע בסדרות, ושימוש בזהויות טריגונומטריות. מרחק בין שתי נקודות, חלוקת קטע ביחס נתון. מספרים מרוכבים גיאומטריה אנליטית קטעים ישרים שיפוע ישר על פי שתי נקודות, משוואת ישר )על פי שיפוע ונקודה, ועל פי שתי נקודות(, נקודת חיתוך של שני ישרים, ישרים מקבילים וישרים מאונכים זה לזה, מרחק של נקודה מישר. 5
9 Ax By Cx Dy E 0 מעגל מעגל )כללי(, התנאי שהמשוואה היא משוואה של מעגל. משיק למעגל בנקודה עליו. פרבולה הגדרתה כמקום גיאומטרי, המשוואה הקנונית, מוקד, מדריך ומשוואת המשיק בנקודה על הפרבולה טריגונומטריה במרחב אלגברה חשבון דיפרנציאלי ואינטגרלי אליפסה מקומות גיאומטריים חזקות ומעריכים לוגריתמים בעיות גדילה ודעיכה חשבון דיפרנציאלי הגדרתה כמקום גיאומטרי, המשוואה הקנונית שלה, ציריה ומוקדיה, המצב ההדדי בין ישר לאליפסה כפי שבאה לידי ביטוי בסימן של הדיסקרימיננטה המתאימה. פתרון בעיות המשלבות צורות שונות מבין הצורות שתוארו לעיל. מקומות גיאומטריים יישומים במרחב הדורשים שימוש במשפטים בגיאומטריה ובזהויות טריגונומטריות בסיסיות. חישובים במרחב של: זוויות, אורכי קטעים, שטחים )כמו מעטפת או שטח פנים(, ונפחים בגופים הישרים: תיבה )כולל קובייה(, מנסרה משולשת, פירמידה שבסיסה מלבן או משולש ישר-זווית או משולש חד-זוויות. בפתרון בעיות יידרש שימוש בתכונות הגיאומטריות של הצורות והגופים השונים, בזהויות ובפונקציות הטריגונומטריות. בבעיות במרחב יידרש שימוש גם במושגים והמשפטים הבאים: ישר ניצב למישור, ישר משופע למישור, זיהוי היטל של משופע על מישור, זווית בין ישרים, זווית בין ישר למישור, זווית בין מישורים, משפט שלושת האנכים. לצורך פתרון הבעיות ייתכן שימוש של הזהויות שנלמדו בטריגונומטריה למציאת זוויות. 1, S משפט הסינוסים ומשפט פתרון מצולעים המתפרקים למשולשים ישרי זווית, נוסחת שטח המשולש a b sinγ הקוסינוסים והשימוש בהם להתרת משולש כללי. חוקי החזקות. חזקה עם מעריך רציונאלי. שורשים: הכנסת גורם מתחת לשורש, הוצאת גורם מתוך השורש, ביטול שורש במכנה. פונקציות מעריכיות תכונותיהן ותיאורן הגרפי. משוואות מעריכיות ואי שוויונות מעריכיים, על פי הנדרש ביישומים של חדו"א או בבעיות גדילה ודעיכה. לוגריתם בבסיס כלשהו, לוגריתם של מכפלה, מנה, חזקה ושורש. מעבר לוגריתם מבסיס לבסיס. הפונקציות הלוגריתמיות תכונותיהן ותיאורן הגרפי. משוואות לוגריתמיות ואי-שוויונות לוגריתמיות, על פי הנדרש ביישומים של חדו"א או בבעיות גדילה ודעיכה. גדילה מעריכית ודעיכה מעריכית, זמן מחצית חיים מושגי יסוד: משיק בנקודה, שיפוע של גרף בנקודה, הפונקציה הנגזרת. מושג אינטואיטיבי של גבול. הנגזרת בנקודה כתהליך גבולי. פונקציית הערך המוחלט, אי גזירות הפונקציה בתוכנית(. x באפס, וערך מוחלט של פונקציה נתונה )מבין הפונקציות הכלולות 9
10 , e,log נקודות חיתוך עם הצירים, עלייה וירידה, זוגיות ואי זוגיות. המשמעות האלגברית והגרפית של נקודות חיתוך של פונקציות, של g(x) f(x) g(x),f(x) > וכד'. נגזרות של פונקציות מעריכיות, פונקציות חזקה )עם מעריך רציונאלי(, ופונקציות לוגריתמיות, כולל שילוב שלהן עם פונקציות פולינום, פונקציות רציונאליות, ופונקציות טריגונומטריות. נגזרת של סכום, הפרש, מכפלה, מנה, פונקציה מורכבת של כל הפונקציות. נגזרת שנייה. קעירות כלפי מעלה וקעירות כלפי מטה ( x קעורה כלפי מעלה, x קעורה כלפי מטה(. נקודות פיתול. שימושי הנגזרת: לפתרון בעיות שבהן יש צורך במציאת שיפוע משיק, או למציאת משוואת משיק לגרף, בנקודה שעל גרף הפונקציה, או מחוץ לגרף הפונקציה. לפתרון בעיות קיצון בתחום פתוח ובתחום סגור בהקשר של אינטגרלים או של גרפים של פונקציות הכלולות בתוכנית )כולל קיצון בקצה קטע סגור(. לחקירת פונקציה ושרטוט סקיצה של גרף הפונקציה. החקירה תכלול: תחום הגדרה, נקודות חיתוך עם הצירים, תחומי עלייה וירידה, נקודות קיצון )מקומי ומוחלט(, נקודות פיתול, תחומי קעירות כלפי מעלה ומטה, התנהגות בסביבת נקודת אי-הגדרה, אסימפטוטות מקבילות לצירים )בכל סוגי הפונקציות( בהתאם לפירוט הבא: אסימפטוטות מקבילות לצירים בפונקציות הכוללות אלמנטים מעריכיים ולוגריתמיים ידרשו עבור, a ושילובים פשוטים שלהם. x x a x, ln x חשבון אינטגרלי f(x) f(x) a, e,loga יידרשו אסימפטוטות רק כאשר מציאתן פשוטה. עבור lnf(x) f(x), לא יידרשו אסימפטוטות עבור מכפלות או מנות של פונקציית חזקה עם אחת הפונקציות הללו.. f (x) ו- f (x), f(x) הקשר בין הפונקציות חשבון אינטגרלי של פונקציות חזקה )עם מעריך רציונאלי(, פונקציות מעריכיות ושל פונקציות אשר הקדומה שלהן היא 1 1 ושילובן f (x) לוגריתמית: האינטגרל של, a x,e x, x r, וכן, a f(x),e f(x), [f(x)] r כאשר f(x) לינארית, f (x) f(x) x בפונקציות רציונאליות וטריגונומטריות. אינטגרלים מידיים. אינטגרל של סכום פונקציות ושל כפל פונקציה בקבוע. אינטגרל של פונקציה שקדומתה מורכבת. אינטגרל לא מסוים, פונקציה קדומה, קבוע האינטגרציה, מציאת פונקציה על פי הנגזרת ונקודה על הפונקציה. האינטגרל המסוים. חישוב שטח בין גרף הפונקציה לציר x )הפונקציה יכולה להיות חיובית, שלילית או לשנות סימן(, חישוב שטח בין גרפים של שתי פונקציות, חישוב שטחים מורכבים. נפח גופי סיבוב סביב ציר x בלבד. בעיות ערך קיצון שבהן יש אינטגרל )מכל הסוגים(. 13
תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME
הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי
שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 ס"מ = CD.
טריגונומטריה במישור 5 יח"ל טריגונומטריה במישור 5 יח"ל 010 שאלונים 006 ו- 806 10 השאלות 1- מתאימות למיקוד קיץ = β ( = ) שאלה 1 במשולש שווה-שוקיים הוכח את הזהות נתון: sin β = sinβ cosβ r r שאלה נתון מעגל
המשפטים שאותם ניתן לרשום על ידי ציון שמם הם:
צ, ציטוטמחוזרמפמ''ר : (שיניתירקאתצורתהכתיב) בשאלות (שאלון 5) יש לנמק כל שלב בפתרון על ידי כתיבת המשפט הגיאומטרי המתאים. משפטים ידועים ניתנים לציטוט על ידי ציון שמם. את כל יתר המשפטים יש לנסח במדויק. המשפטים
(ספר לימוד שאלון )
- 40700 - פתרון מבחן מס' 7 (ספר לימוד שאלון 035804) 09-05-2017 _ ' i d _ i ' d 20 _ i _ i /: ' רדיוס המעגל הגדול: רדיוס המעגל הקטן:, לכן שטח העיגול הגדול: / d, לכן שטח העיגול הקטן: ' d 20 4 D 80 Dd 4 /:
I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx
דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר
ל הזכויות שמורות לדפנה וסטרייך
מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות
סיכום- בעיות מינימוםמקסימום - שאלון 806
סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,
ושל (השטח המקווקו בציור) . g(x) = 4 2x. ו- t x = g(x) f(x) dx
פרק 9: חשבון דיפרנציאלי ואינטגרלי O 9 ושל בציור שלפניך מתוארים גרפים של הפרבולה f() = נמצאת על הנקודה המלבן CD מקיים: הישר = 6 C ו- D נמצאות הפרבולה, הנקודה נמצאת על הישר, הנקודות ( t > ) OD = t נתון:
"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי
הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת
טריגונומטריה הגדרות הפונקציות הטריגונומטריות הבסיסיות
טריגונומטריה הגדרות הפונקציות הטריגונומטריות הבסיסיות את הפונקציות הטריגונומטריות ניתן להגדיר באמצעות הקשרים בין הניצבים לבין היתר ובין הניצבים עצמם במשולש ישר זווית בלבד: לדוגמה: סינוס זווית BAC (אלפא)
תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי
3-9 - a < x < a, a < x < a
1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.
תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תש"ע מועד ב', מיום 14/7/2010 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תש"ע מועד ב', מיום 14/7/2010 שאלון: 316, 035806 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 E נתון: 1 רוכב אופניים רכב מעיר A לעיר B
מתמטיקה טריגונומטריה
אלכס זיו מתמטיקה המדריך המלא לפתרון תרגילים טריגונומטריה 5 לתלמידי 4 ו- יחידות לימוד כ- 50 תרגילים עם פתרונות מלאים הקדמה ספר זה הוא חלק מסדרת ספרים "המדריך המלא לפתרון תרגילים" הסדרה מיועדת לשימוש כהשלמה
מתמטיקה )שאלון שני לנבחנים בתכנית ניסוי, 5 יחידות לימוד( 1 מספרים מרוכבים 3#2 3 3
סוג הבחינה: בגרות לבתי ספר על יסודיים מדינת ישראל מועד הבחינה: חורף תשע"ב, 202 משרד החינוך מספר השאלון: 035807 דפי נוסחאות ל 5 יחידות לימוד נספח: א. משך הבחינה: שעתיים. מתמטיקה 5 יחידות לימוד שאלון שני
רשימת משפטים והגדרות
רשימת משפטים והגדרות חשבון אינפיניטיסימאלי ב' מרצה : למברג דן 1 פונקציה קדומה ואינטגרל לא מסויים הגדרה 1.1. (פונקציה קדומה) יהי f :,] [b R פונקציה. פונקציה F נקראת פונקציה קדומה של f אם.[, b] גזירה ב F
ב ה צ ל ח ה! /המשך מעבר לדף/
בגרות לבתי ספר על יסודיים סוג הבחינה: מדינת ישראל קיץ תשע"א, מועד ב מועד הבחינה: משרד החינוך 035804 מספר השאלון: דפי נוסחאות ל 4 יחידות לימוד נספח: מתמטיקה 4 יחידות לימוד שאלון ראשון תכנית ניסוי )שאלון
גבול ורציפות של פונקציה סקלרית שאלות נוספות
08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך
33 = 16 2 נקודות. נקודות. נקודות. נקודות נקודות.
1 מבחן מתכונת מס ' משך הבחינה: שלוש שעות וחצי. מבנה ה ומפתח הערכה: ב זה שלושה פרקים. פרק א': אלגברה והסתברות: נקודות. נקודות. נקודות. נקודות. 1 33 = 16 3 3 פרק ב': גיאומטריה וטריגונומטריה במישור: 1 33
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim
תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע"א, מיום 23/5/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע"א, מיום 3/5/011 שאלון: 635860 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. שאלה מספר 1 נתון: 1. ממקום A יצאה מכונית א' וכעבור מכונית ב'. 1 שעה
חורף תש''ע פתרון בחינה סופית מועד א'
מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b
חשבון דיפרנציאלי ואינטגרלי
0 חשבון דיפרנציאלי ואינטגרלי I גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת חשבון דיפרנציאלי ואינטגרלי באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד. שאלות
יחידתלימודבנושא " שלמשולשישרזווית" http://www.hebrewkhan.org/lesson/533 מעט היסטוריה הפרושהמילולישלהמילה "" הוא "מדידתמשולשים". משולש "טריגונו" מיוונית - "מטריה"- מיוונית - מדידה, ענףשלהמתמטיקההעוסק, ביןהיתר,
תרגיל 7 פונקציות טריגונומטריות הערות
תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =
פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur
פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת
מתמטיקה שאלון ו' נקודות. חשבון דיפרנציאלי ואינטגרלי, טריגונומטריה שימוש במחשבון גרפי או באפשרויות התכנות עלול לגרום לפסילת הבחינה.
בגרות לבתי ספר על-יסודיים מועד הבחינה: תשס"ח, מספר השאלון: 05006 נספח:דפי נוסחאות ל- 4 ול- 5 יחידות לימוד מתמטיקה שאלון ו' הוראות לנבחן משך הבחינה: שעה ושלושה רבעים. מבנה השאלון ומפתח ההערכה: בשאלון זה
אלגברה לינארית גיא סלומון. α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π. σ ς τ υ ω ξ ψ ζ. לפתרון מלא בסרטון פלאש היכנסו ל- כתב ופתר גיא סלומון
0 אלגברה לינארית α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π ϖ θ ϑ ρ σ ς τ υ ω ξ ψ ζ גיא סלומון לפתרון מלא בסרטון פלאש היכנסו ל- wwwgoolcoil סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת
אלגברה לינארית מטריצות מטריצות הפיכות
מטריצות + [( αij+ β ij ] m λ [ λα ij ] m λ [ αijλ ] m + + ( + +C + ( + C i C m q m q ( + C C + C C( + C + C λ( ( λ λ( ( λ (C (C ( ( λ ( + + ( λi ( ( ( k k i חיבור מכפלה בסקלר מכפלה בסקלר קומוטטיב אסוציאטיב
ÈËÓ Ó ÌÈ ÂÓ ÔÂÏÈÓ. Â Ó Â Â ÌÈËÙ Ó Â ÁÒÂapple ÌÈ Â È Â Â. ÈÂÒÈapple  Ó
ÈËÓ Ó ÌÈ ÂÓ ÔÂÏÈÓ ÂȈ appleâù Â Ó Â Â ÌÈËÙ Ó Â ÁÒÂapple ÌÈ Â È Â Â ÈÂÒÈapple Â Ó תוכן העניינים 7 9 6 0 8 6 9 55 59 6 מושגים בסיסיים... אינטרוולים וסביבות... מאפיינים של פונקציות... סוגי הפונקציות ותכנותיהם...
פולינומים אורתוגונליים
פולינומים אורתוגונליים מרצה: פרופ' זינובי גרינשפון סיכום: אלון צ'רני הקורס ניתן בסמסטר אביב 03, בר אילן פולינומים אורתוגונאליים תוכן עניינים תאריך 3.3.3 הרצאה מרחב מכפלה פנימית (הגדרה, תכונות, דוגמאות)
b2n-1 ב. נשתמש בנוסחת סכום סדרה הנדסית אינסופית יורדת כדי לרשום את הנתון: 1-q = 0.8 b 1-q 1=0.8(1+q) q= 1 4 פתרון לשאלה 2
פתרון מבחן מס' פתרון לשאלה א. להוכיח כי סדרה c היא סדרה הנדסית משמע להוכיח כי היחס בין איברים סמוכים בסדרה הוא מספר n c n +n c מכיוון ש- q הוא מספר קבוע, סדרה = b n+ = bq n =q cn bn- bq n- :b n קבוע. אם
gcd 24,15 = 3 3 =
מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =
מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. לדוגמה:בסרטוט שלפappleיכם EC אלכסוןבמצולע.
גיאומטריה מצולעים מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. אלכסון במצולע הוא הקו המחבר בין שappleי קדקודים שאיappleם סמוכים זה לזה. לדוגמה:בסרטוט שלפappleיכם
אוסף שאלות מס. 3 פתרונות
אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,
מתמטיקה שאלון 804 מבחני בגרות ובחינות חזרה.
מתמטיקה שאלון 804 מבחני בגרות ובחינות חזרה הקדמה כללית: ספרי התרגילים של גול הינם פרי של שנות ניסיון רבות בהוראת חומרי הלימוד ובהגשה לבחינות הבגרות במתמטיקה הן בבתי הספר התיכוניים, הן בבתי הספר הפרטיים
שאלה 1 V AB פתרון AB 30 R3 20 R
תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e
תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות
תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si
שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם
תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא
F(z). y y. z 0 z z 0 z z 0 z. ( z) x iy z = = Re( z) Im( z) lim אז: arg. z z r ( ) ( ) ( ) z 0. i α ( ) ( ) אז. קיים אם: lim = lim = lim
כללי מספרים מרוכבים: הקבוצה לא כוללת מספרים אינסופיים הקבוצה כוללת מספרים אינסופיים (מיוצגת ע"י ספירת רימן { } שורש יחידה: כל Z שיקיים נקרא שורש יחידה מדרגה,, ( חוקי מספרים מרוכבים:, e iy y i θ r e r r
1. המעגל מעגל הוא קו סגור במישור, שכל נקודה עליו נמצאת במרחק שווה מנקודה במרכז. נקודה זו נקראת מרכז המעגל. מרחק הנקודות שעל המעגל ממרכזו נקראת רדיוס
1. המעגל מעגל הוא קו סגור במישור, שכל נקודה עליו נמצאת במרחק שווה מנקודה במרכז. נקודה זו נקראת מרכז המעגל. מרחק הנקודות שעל המעגל ממרכזו נקראת רדיוס המעגל. כל קטע המחבר את נקודת המעגל עם מרכזו נקרא אף
אוסף שאלות מס. 5. שאלה 1 בדוגמאות הבאות, נגדיר פונקציה על ידי הרכבה: y(t)).g(t) = f(x(t), בשתי דרכים:
אוסף שאלות מס. 5 שאלה 1 בדוגמאות הבאות, נגדיר פונקציה על ידי הרכבה: y(t)).g(t) = f(x(t), חשבו את הנגזרת (t) g בשתי דרכים: באופן ישיר: על ידי חישוב ביטוי לפונקציה g(t) וגזירה שלו, בעזרת כלל השרשרת. בידקו
פתרון מבחן מתכונת מס' 21. פתרון שאלה 1 נסמן: x מהירות ההליכה של נועם. y מהירות ההליכה של יובל. נועם 2.5x 2.5 x יובל בתנועה יובל במנוחה משוואה I:
פתרון מבחן מתכונת מס' פתרון שאלה נסמן: מהירות ההליכה של נועם. y מהירות ההליכה של יובל. מהירות זמן דרך נועם.5.5.5 +.5 A 5 A y y יובל בתנועה 6 יובל במנוחה A y + 6 משוואה I: נועם ויובל שהו במשך אותו זמן בדרך:.5.5
s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=
את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -
{ } { } { A חוקי דה-מורגן: הגדרה הסתברות מותנית P P P. נוסחת בייס ) :(Bayes P P נוסחת ההסתברות הכוללת:
A A A = = A = = = = { A B} P{ A B} P P{ B} P { } { } { A P A B = P B A } P{ B} P P P B=Ω { A} = { A B} { B} = = 434 מבוא להסתברות ח', דפי נוסחאות, עמוד מתוך 6 חוקי דה-מורגן: הגדרה הסתברות מותנית נוסחת
= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(
א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π
שאלון 006 מיקוד במתמטיקה
שאלון 006 מיקוד במתמטיקה מהדורת חורף תשס"ט 009 כתיבה: זיקרי אלברט, שמש שלמה - shemesh4@walla.co.il צוות עריכה מקצועית: ריטרבנד אוהד, נאות רז, מן מנחם, דוד ניר, ארביב עמוס, שטולבך אירית, שניידר איתן, כהן
סדרות - תרגילים הכנה לבגרות 5 יח"ל
סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר
כאן מבנה הבחינה שתיערך השנה תשע"ד. הבחינות של מועד תשע"ג מותאמות לבחינה שתיערך השנה. כמו כן ישנן שאלות שלא רלוונטיות לתוכנית ההיבחנות החדשה.
לתלמידי כיתה י' אנו שמחים להציג בפניכם את חוברת מבחני המחצית של כיתה י' שנערכו בשנים האחרונות שימו לב כי לא כל הבחינות המופיעות בחוברת זו, הן במבנה של הבחינה שתיערך לכם השנה, לכן מובא לכם כאן מבנה הבחינה
גיאומטריה גיאומטריה מעגלים ניב רווח פסיכומטרי
מושגים בסיסיים: פאי: π היא אות יוונית המביעה את הקשר בין רדיוס וקוטר המעגל לשטחו והיקפו (על הקשר עצמו נרחיב בהמשך). ערכו המספרי של π הוא 3.14 בבחינה הפסיכומטרית לרוב נתייחס ל- π בקירוב (הוא ממשיך אין-סוף
פרק ראשון - אלגברה והסתברות ) ענה על שתיים מהשאלות 1-3 (לכל שאלה
שאלון - 806 מבחן פרק ראשון - אלגברה והסתברות ) ענה על שתיים מהשאלות - (לכל שאלה נק') 6 נק') A n יואב ודניאל עובדים בהעמסת ארגזים למשאיות במפעל. יואב מסוגל להעמיס לבדו 0 ארגזים בשעה. דניאל מסוגל להעמיס
לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור
הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין
תרגיל 13 משפטי רול ולגראנז הערות
Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון
יחידה - 7 זוויות חיצוניות
יחידה 7: זוויות חיצוניות שיעור 1. זווית חיצונית למצולע מה המשותף לכל הזוויות המסומנות ב-? נכיר זווית חיצונית למצולע, ונמצא תכונה של זווית חיצונית למשולש. זווית חיצונית למצולע 1 כל 1. הזוויות המסומנות במשימת
שיעור.1 חופפים במשולש שווה שוקיים יחידה - 31 חופפים משולשים 311
יחידה :31חופפים משולשים נחפוף משולשים ונוכיח תכונות של אלכסוני משולשים שווה שוקיים ואלכסוני המלבן. שיעור.1חופפים במשולש שווה שוקיים נחקור ונוכיח תכונות של משולש שווה שוקיים נתון משולש שווה שוקיים שבו.
רשימת משפטים וטענות נכתב על ידי יהונתן רגב רשימת משפטים וטענות
λ = 0 A. F n n ערך עצמי של A אם ורק אם A לא הפיכה..det(λ I ערך עצמי של λ F.A F n n n A) = 0 אם ורק אם: A v וקטור עצמי של Tהמתאים יהי T: V V אופרטור לינארי. אם λ F ערך עצמי של,T לערך העצמי λ, אזי λ הוא
חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.
חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.
קיום ויחידות פתרונות למשוואות דיפרנציאליות
קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית
-107- גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה.
-07- בשנים קודמות למדתם את נושא הזוויות. גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה. זווית נוצרת על-ידי שתי קרניים היוצאות מנקודה אחת. הנקודה נקראת קדקוד
אלגברה מודרנית פתרון שיעורי בית 6
אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:
עבודת קיץ למואץ העולים לכיתה י' סדרות:
ב( ג( א ) עבודת קיץ למואץ העולים לכיתה י' סדרות: תרגילי חימום.... בסדרה חשבונית האיבר השמיני גדול פי מהאיבר הרביעי. סכום אחד-אשר האיברים הראשונים בסדרה הוא. 0 ( מצאו את האיבר הראשון של הסדרה. ( מצאו את
ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (
תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע
םיאלמ תונורתפ 20,19,18,17,16 םינחבמל 1 להי רחש ןולאש הקיטמתמב סוקופ
פתרונות מלאים למבחנים 0,9,8,7,6 פוקוס במתמטיקה שאלון 3580 שחר יהל העתקה ו/או צילום מספר זה הם מעשה לא חינוכי, המהווה עברה פלילית. פתרון מבחן מתכונת מס' 6 פתרון שאלה א. נקודות A ו- B נמצאות על הפונקציה
שיעור 1. זוויות צמודות
יחידה 11: זוגות של זוויות שיעור 1. זוויות צמודות נתבונן בתמרורים ובזוויות המופיעות בהם. V IV III II I הדסה מיינה את התמרורים כך: בקבוצה אחת שלושת התמרורים שמימין, ובקבוצה השנייה שני התמרורים שמשמאל. ש
אלגברה לינארית 1. המערכת הלא הומוגנית גם כן. יתרה מזאת כל פתרון של (A b) הוא מהצורה c + v כאשר v פתרון כלשהו של המערכת ההומוגנית
אלגברה לינארית 1 Uטענה U: אם c פתרון של המערכת (A b) ו v פתרון של המערכת (0 A) אזי c + v פתרון של המערכת הלא הומוגנית גם כן. יתרה מזאת כל פתרון של (A b) הוא מהצורה c + v כאשר v פתרון כלשהו של המערכת ההומוגנית
תוכן עניינים הוצאת גורם משותף מסוגריים... 1 תרגילים מתוקשבים - עבודה מס. 1
תוכן עניינים 9 אלגברה... פרק ראשון: 9 הוצאת גורם משותף מסוגריים... תרגילים מתוקשבים - עבודה מס. 5 משוואות ומערכות משוואות ממעלה ראשונה... 5 המשוואה מהמעלה הראשונה.... פ ת רון משוואות ממעלה ראשונה עם נעלם
c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )
הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה
תרגול פעולות מומצאות 3
תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה
שם התלמיד/ה הכיתה שם בית הספר. Page 1 of 18
שם התלמיד/ה הכיתה שם בית הספר ה Page of 8 0x = 3x + שאלה פ תרו את המשוואה שלפניכם. x = תשובה: שאלה בבחירות למועצת תלמידים קיבל רן 300 קולות ונעמה קיבלה 500 קולות. מה היחס בין מספר הקולות שקיבל רן למספר
( k) ( ) = ( ) ( ) ( ) ( ) A Ω P( B) P A B P A P B תכונות: A ו- B ב"ת, אזי: A, B ב "ת. בינומי: (ההסתברות לk הצלחות מתוך n ניסויים) n.
Ω קבוצת התוצאות האפשריות של הניסוי A קבוצת התוצאות המבוקשות של הניסוי A A מספר האיברים של P( A A Ω מבוא להסתברות ח' 434 ( P A B הסתברות מותנית: P( A B P( B > ( P A B P A B P A B P( B PB נוסחאת ההסתברות
ˆÓ ÍÒÂÓÏ Ú Ó 50 Ï Â È Ó Ó 10 ÚÒ Â A ÔÂÂÈÎÏ ÈÓ ÊÁ ÆA Ï Í Æ Ï Ú Â ÚÈÒ Â È ÓÓ Ó 10 Ë Â È Ó
ßÒÓ Ú Û ÂÁ ÈËÓ Ó ÁÙÒ.,,!. Â Â Æ Â Â ± Ï ÏÎÏ ÂÏ Ó ÌÈÈ ÏÚ Ú ÆÍ ÁÓ Â Â Â Â È Â ÈÈ ÂÏ È Ó ÂÈ ÏÚ Ú Ì! ÆÓ  ÌÈ Ú È ÔÈ Á Ó Æ B ÈÚ ÔÂÂÈÎÏ A ÈÚÓ ˆÈ.  ÚÈÒ ÏÈÁ Ó Ú 4  ÚÎ Ï Ô Î ÈÙÎ ÚÂ Â È Ó ÚÒ ÏÁ ÆÂ Î Ï ÈÈ ˆÓ ÍÒÂÓÏ
gra לא שימושי -rad רדיינים. רדיין = רק ברדיינים. נניח שיש לנו משולש ישר זוית. היחס בין שתי הצלעות שמול הזוית הישרה, נקבע ע"י הזוית.
A-PDF MERGER DEMO 56 פונקציות טריגונומטריות במחשבון בד"כ יש אופציות: deg מעלות מניח חלוקת המעגל ל 6 חלקים, כל אחד מעלה למה עשו 6? זה מספר עם הרבה מחלקים וזה גם קרוב ל 65 6 π π 6 π π α α α 6 8 π 6 57 ~
א. חוקיות תשובות 1. א( קבוצות ספורט ב( עצים ג( שמות של בנות ד( אותיות שיש להן אות סופית ; ה( מדינות ערביות. 2. א( שמעון פרס חיים הרצוג. ב( לא.
א. חוקיות. א( 1; ב( ; ג( השמיני; ד( ; ה( האיבר a שווה לפי - מיקומו בסדרה ; ו( = ;a ז( 9 = a ;.6 א( דוגמה: = a. +.7 א( =,1 + = 6 ;1 + ג( את המספר האחרון: הוא זה שמשתנה מתרגיל לתרגיל. 8. ב( 1 7 a, המספר
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה
1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )
הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y
אלגברה ליניארית 1 א' פתרון 2
אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק
שדות הגדרת השדה: חשבון מודולו n: הגדרה: שדה F הוא קבוצה שיש בין אבריה שתי פעולות משפט: יהא F שדה. משפט: יהא F שדה ו- (mod )
שדות הגדרת השדה: הגדרה: שדה F הוא קבוצה שיש בין אבריה שתי פעולות אחת נקראת חיבור ותסומן ב + האחרת נקראת כפל ותסומן ב * כך שתתקיימנה הדרישות הבאות: a, b F a b. סגירות לחיבור: F a F a 0 0 a a a, b, c F a
לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( )
9. חשבון אינטגרלי. עד כה עסקנו בבעיות של מציאת הנגזרת של פונקציה נתונה. נשאלת השאלה בהינתן נגזרת האם נוכל למצוא את הפונקציה המקורית (הפונקציה שנגזרתה נתונה)? זוהי שאלה קשה יותר, חשבון אינטגרלי דן בבעיה
[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m
Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות
Logic and Set Theory for Comp. Sci.
234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =
סרוקל רזע תרבוח 1 ילמיסיטיפניא ןובשח
חוברת עזר לקורס חשבון אינפיטיסימלי 495 יולי 4 חוברת עזר לקורס חשבון אינפיטיסימלי 495 עמוד חוברת עזר לקורס חשבון אינפיטיסימלי 495 יולי 4 תוכן העניינים נושא עמוד נושא כללי 3 רציפות זהויות טריגונומטריות 4
שוקו שיעור 1. הגדרת המקבילית שילובים במתמטיקה 349 במקביליות שלפניכם משתמשים בסביבה ובחיי היום-יום. בפסי-רכבת: בדגלים: בתמרורים וסימני תנועה:
יחידה 19: מקבילית שיעור 1. הגדרת המקבילית במקביליות שלפניכם משתמשים בסביבה ובחיי היום-יום. בפסי-רכבת: בדגלים: של איזו מדינה דגל זה? של איזו מדינה דגל זה? בתמרורים וסימני תנועה: איזה תמרור זה? איזה תמרור
תקצרי הרצאות של פרופ. רועי משולם
- 240491 מתמטיקה למדעי החיים 1 תקצרי הרצאות של פרופ רועי משולם הרצאה 2 מושגים בגיאומטרית המישור והמרחב 1 u u ( ) המישור האוקלידי: R} R { נקודת המישור נקראת ) ( נקראות וקטורים אורך הוקטור: ) ( נתון ע"י
צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים
מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה
תורת המספרים 1 פירוק לגורמים ראשוניים סיכום הגדרות טענות ומשפטים אביב הגדרות 1.2 טענות
תורת המספרים סיכום הגדרות טענות ומשפטים אביב 017 1 פירוק לגורמים ראשוניים 1.1 הגדרות חוג A C נקראת חוג אם: היא מכילה את 0 ואת 1 סגורה תחת חיבור, חיסור, וכפל הפיך A חוג. a A נקרא הפיך אם 0,a.a 1 A קבוצת
חזרה על מושגים בסיסיים במתמטיקה
חזרה על מושגים בסיסיים במתמטיקה סימנים לפניכם טבלה של סימנים מקובלים הכתובים בבחינה. הסימן «x x x < x 0 < x, x ± x x : משמעותו הישרים ו- מקבילים זה לזה הישרים ו- מאונכים זה לזה זווית של 90, זווית ישרה
דף סיכום אלגברה לינארית
דף סיכום אלגברה לינארית מרחבי עמודות, שורות, אפס: = = c + c + + c k k כל פתרון של המערכת : A=b נתונה מטריצה :m = מרחב השורות של המטריצה spa = spa מרחב העמודות של המטריצה { r, r, rm { c, c, c מרחב הפתרונות
הטכניון, חיפה / מרץ 1996
4 "מחר 98" - פרוייקט חלוץ באצבע הגליל מודל לקידום החינוך המתמטי בבי"ס העל יסודי הטכניון - מכון טכנולוגי לישראל מוסד הטכניון למחקר ופיתוח המחלקה להוראת הטכנולוגיה והמדעים הנושא: פרויקטים לתלמידים - מבוא
לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר
לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת
2 a 2 x ( ) a3 x 2
. טכניקה אלגברית חד-איבר (חזרה) ביטויים מהסוג: 5a,b (-)bc,-a 7,y המהווים מכפלה של מספרים, אותיות (משתנים) וחזקות, מכונים חד-איבר. גם מספר, משתנה או חזקה בודדים מכונים חד-איבר. לדוגמה, כל אחד מהביטויים
מתמטיקה לכיתה ח גאומטרייה חלק ג מהדורת ניסוי
מתמטיקה לכיתה ח גאומטרייה חלק ג מהדורת ניסוי צוות המתמטיקה במטח: ראש תחום מתמטיקה: ד"ר שרה הרשקוביץ מנהלת צוות פיתוח מתמטיקה לבית הספר העל יסודי: ד"ר בבה שטרנברג צוות הפיתוח: רגינה אובודנקו, ד"ר אלכס אוליצין,
משוואות דיפרנציאליות רגילות
משוואות דיפרנציאליות רגילות גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת מתמטיקה באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד. שאלות תלמידים וטעויות נפוצות
אלגברה לינארית 2 משפטים וטענות
אלגברה לינארית 2 משפטים וטענות סוכם ע"פ הרצאות פרופ' מ.קריבלביץ' 1.2 אידאלים של פולינומים הגדרה 1.13 יהי F שדה. קבוצת פולינומים [x] I F נקראת אידיאל ב [ x ] F אם מתקיים:.0 I.1.2 לכל f 1, f 2 I מתקיים.f
פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.
בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית
משרד החינוך המזכירות הפדגוגית אגף מדעים הפיקוח על הוראת המתמטיקה
משולשים חופפים, תיכון במשולש )41 שעות( ומשולש שווה שוקיים שתי צורות נקראות חופפות אם אפשר להניח אחת מהן על האחרת כך שתכסה אותה בדיוק )לשם כך ניתן להזיז, לסובב ולהפוך את הצורות(. בפרק זה נתמקד במשולשים
חדוו"א 2 סיכום טענות ומשפטים
חדוו"א 2 סיכום טענות ומשפטים 3 ביוני 2 n S(f, T ) := (t k+ t k ) inf k= סכום דרבו תחתון מוגדר על ידי [t k,t k+ ] f אינטגרל רימן חלוקות של קטע חלוקה של קטע [,] הינה אוסף סדור סופי של נקודות מהצורה: טענה.2
דף נוסחאות מבוא לבקרה לביוטכנולוגיה ( ) ( ) ( ) הגבר סטטי: ערך התחלתי וסופי של אות המוצא ע"פ פונקצית תמסורת (נכון עבור שורשים ממשיים בלבד!!!
דף נוסחאות מבוא לבקרה לביוטכנולוגיה פונקצית תמסורת : Y( s) G X ( s) הגדרות בסיסיות : סדר של פונקצית תמסורת סדר הפולינום במכנה (החזקה הכי גבוהה של פולינום המכנה). אפסים- שורשים של פולינום המונה. קטבים שורשים