MAHALAKSHMI ENGINEERING COLLEGE,TRICHY.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "MAHALAKSHMI ENGINEERING COLLEGE,TRICHY."

Transcript

1 MAHALAKSHMI ENGINEERING COLLEGE,TRICHY. PARTIAL IFFERENTIAL EQUATIONS-MA PART-A. Form the p.d.e from (x-a) + (y-b) + z r (AU May 03) Given that (x-a) +(y-b) +z r () d.p.w.r to x, (x-a) + z 0 [ z is a fun of x and y] (x-a) + zp () d.p.w.r. to y, p (y-b) + z 0 q (y-b) + zq (3) Eliminating a and b from, and 3 x a -zp 3 y b -zq () (-zp) +(-zq) +z r z p + z q + z r z (p +q +)r which is the required p.d.e. Find the p.d.e of all spheres having their centres on the z-axis (AU ec 0) Let the Centre of the sphere be (0, 0, c) point on the Z axis and r it s radius. (x-0) +(y-0) +(z-c) r [Since centre lies on Z axis] ie, x +y +(z-c) r d () p.w.r. to x, [c&r arbitrary constants] x + (z-c) 0 x + p (z c) ()

2 d () p.w.r. to y, y + (z-c) 0 y + q (z c) (3) From( ) and (3) () z c - x/p (3) z c -y/q -x/p - y/q qx py, which is the required p.d.e 3. Form the p.d.e by eliminating the constants a and b from z (x +a ) (y +b ) AU ec 00 G.T. z(x +a ) (y +b ) () d () p w.r to x p x (y +b ) y + b () d () p w.r to y, q y (x +a ) x + a (3) Substitute () & (3) in () z pq 4xyz 4. Eliminate the arbitrary function f from z f(y/x) and form a p.d.e (AU ec 0) Given that z f(y/x) () d p.w. r to x, p f (y/x) (-y/x ) () d p.w.r to y, q f (y/x) (/x) (3) Now, ( ) ( ) px -qy is, px + qy 0 is the required p.d.e.

3 5. Form the p.d.e by eliminating the arbitrary function from z -xy f(x/z) (AU June 0) G.T z xy f(x/z) () d () p.w.r. to x z -y f (x/z) z p-y f (x/z) () d ( ) p.w.r. to y z -x f (x/z) z q-x f (x/z) (3) (-xq) (zp-y) (zq-x)(z-xp) -xzpq + xyq z q xzpq xz + x p xyq z q xz + x p x p + z q xyq xz x p (xy z )q xz is the required p.d.e 6. Form the p.d.e of all planes cutting equal intercepts from the x and y axes (AU ec 009) The equation of such plane is x/a + y/a + z/b (x and y have equal intercepts) p.d.w.r. to x p.d.w.r. to y, p

4 q (3) From () and (3) p q p q 0 is the required p.d.e. 7. Find the complete integral of p + q pq (AU May 03) Given p + q pq () It is of the form F (p,q) () Hence the trial saln is z ax + by + c (3) To get the complete integral of solution 3 we have to eliminate any one of the arbitrary constants. Now (3) > > b - ab - a > b(-a) -a > b -a / -a Hence the complete soln is z 8. Solve : pq x (AU May 00) It is of the form f (x,p) f (y,q) Let p/x /q k > p/x k > p kx z

5 zk 9. Solve : (- ) 3 z o (AU ec 0) The A.E. is (m-) 3 0 m,, The C.F f (y+x) + x f (y+x) + x f 3 (y+x) 0. Solve: ( 3 - ) Z 0 (AU ec 009) The A.E. is m 3 m 0 >m (m-) 0 >m 0, 0, z f (y+0x) + xf (y+0x) + f 3 (y+x) f (y) + xf (y) + f 3 (y+x). Solve :( ) Z 0 (AU June 0) A.E is m -7m > (m-6) (m-) 0 > m 6, C.F. f (y+x) + f (y+6x). Find the P.I. of ( - + ) Z e x y (AU ec 00) a, b - P.I. ex-y.

6 3. Solve :(-) (- +) z 0 (AU ec 0) It is of the form (-m -c ) (-m -c ) z0 Compare with general form the given eqn can be written as (-O -) (- -(-))Z0 Here m 0, m C, C - z e x f (y+ox)+e -x f (y+x) e x f (y)+e -x f (y+x) 4. Form the p.d.e by eliminating the function from zf(x+t) + g(x-t) Solution : (AUN/ 00) d.p.w.r. to x, p f (x+t)+g (x-t) () d.p.w.r to t, q f (x+t)-g (x-t) () f (x+t) +g (x-t) ( 3) f (x+t) +g (x-t) (4) 5. Form a p.d.e by eliminating the arbitrary constants a and b from z (x+a) (y+b) () (AUM/J 008) d() p.w. r to x, z/ x (y+b) > p y+b () d. p.w. r to y z/ y (x+a) > q x+a (3) Sub () and (3) in (), z qp

7 6. Solve:( )z0 (AU A/M 00) m 3-3m+ 0> m, C.F (y+x) + (y+x) 7. Form the p.d.e by eliminating a and b from z (x+a) + (y+b) (AU A/M 008) Given that z(x+a) +(y+b) () d () p.w.r to x z/ x (x+a) p(x+a) P/ x+a () d () p.w.r. to y z/ y (y+b) q (y+b) q/ y+b (3) > z (p/) + (q/) p /4 + q /4 > 4z p +q 8. Form a p.d.e by eliminating the arbitrary Constants a and b from the equation (x +a )(y +b ) z (AU ec 00) z(x +a )(y +b ) () d.p.w.r to x px(y +b ) () d.p.w.r to y, qy(x +a ) (3) () > y +b (4) ( 3) > x +a (5) Sub (4) and (5) in () we have z z 4xyz pq.

8 PART B. Form the p.d.e by eliminating the arbitrary function from x +y +z,ax+by+cz 0 Given (AUC ec 00) x +y +z,ax+by+cz Let u x +y +z v ax+by+cz Eqn () u,v Elimination of from (4) gives u v x x 0 u v y y u v x+zp a+cp x x u v y+zq b+cq y y Now (6) in (5) x+zp a+cp 0 y+zq b+cq x+zp b+cq -a+cp y+zq 0 x+zp b+cq - a+cp y+zq 0 x+zp b+cq - a+cp y+zq 0 x+zp b+cq -a+cp y+zq 0 bx+cqx+zpb+zcpq-ay-azq-cpy-cpzq0

9 p(zb-cy)+q(cx-az)ay-bx. Solve :(mz-ny)p+(nx- x)qy-mx l (AUC Apr/May 00) P +Q R p q Pmz-ny, Qnx-lz, R l y-mx The Lagrange s subsidiary equations are dx dy dz P Q R ie, dx dy dz mz-ny nx-lz y-mx Using lagrangian multipliers as l, m, n each of ratio is equal to ldx+mdy+ndz ldx+mdy+ndz l(mz-ny)+m(nx- lz)+n( ly-mx) 0 l dx+mdy+ndz0 Integrating, l x+my+nzc Choosing another set of multipliers x, y, z xdx+ydy+zdz xdx+ydy+zdz x(mz-ny)+y(nx-lz)+z(y-mx) 0 xdx+ydy+zdz0 Integrati ng, x x +y +z C + y + z The general solution C x +y +z, lx+my+nz 0 ( is arbitrary)

10 3. Solve: x (y-z)p+y z-x qz x-y (AUC ec 00/June 0) Solution : x (y-z)p+y (z-x)q z (x-y) Lagrange s equation is P +Q R p q Here P x y-z,q y z-x,r z x-y dx dy dz P Q R dx dy dz x y-z y (z-x) z x-y The S.E is x y z dx dy dz dx dy d + + y x z x y z y-z z-x x-y y-z+z-x+x-y dx dy + dz + 0 x y z Choosing,, as multipliers each ratio is equal to Integrating we have dx dy dz0 x y z x dx y dy z dz x + y-+ z + + C C x y z + + C x y z u + + x y z Similary choosing + + x y z vx y z + +, xyz 0 x y z as Lagrange s multipliers we get

11 Solve : zcos(x+y) (AUC Jun 0) The A.E is m 3 +m +4m+40 (m+) (m +4) 0 m-, m ±i synthetic division C.F y-x y+ix y-ix Now, P.I cos x+y cos x+y 3 is. - Cos(x+y) 8 + Re place 4,, Cos (x+y) (X and by ) - 8 (+ ) Cos (x+y) sin (x+y) sin (x+y) 48 sin( x y) 4 z y-x y+ix 3 y-ix sin(x+y) 4

12 5. Solve the p.d.e. x( y z) p y( z x) q z( x y) (AUC ec 0 Solution : Lagrange s type P p +Q q R The S.E is dx dy dz P Q R P x(y-z) Q y(z-x) R z(x-y) dx dy dz x(y-z) y(z-x) z(x-y) to Choosing,, as lagrange s multipliers, each of above ratio is equal dx+dy+dz dx+dy+dz xy-xz+yz-yx+zx-zy 0 dx+dy+dz0 ux+y+z Integrating, d(x+y+z)0 x+y+z c choosing,, x y z as Lagrange s multipliers dx+ dy+ dz dx+ dy+ dz x y z x y z y-z+z-x+x-y 0 dx + dy + dz 0 x y z Integrating, log x +log y +log z log C l og(xyz)logc (xyz)c x+y+z, xyz 0 vxyz

13 x-z + z-y q y-x 6. Solve: p P p +Q q R The equation is of the form P p +Q q R P x-z, Q z-y, Ry-x The S.E dx dy dz P Q R ie, dx dy dz x-z z-y y-x Using multipliers as,, Each ratio dx+dy+dz dx+dy+dy x-z+z-y+y-x 0 ie, dx+dy+dx0 Integrating x+y+z C u x+y+z Next, using multipliers as y, x, z Each ratio ydx+xdy+zdz yx-yz+xz-xy+yz-xz ie ydx+xdy+zdz 0 ie, ydx+xdy+zdz0 d(xy)+zdz 0 integrating, xy+ z C xy+z C v xy+ z (x+y+z, xy+z )0

14 7. x yz p y zx q z xy (AUC May 00) The equation is of the form P p +Q q R P x -yz,qy -zx,rz -xy Lagrange s subsidiary equations are dx dy dz P Q R dx dy dz ie, x -yz y -zx z -xy Using lagrange s multipliers x,y,z we have xdx+ydy+zdz dx+dy+dz x +y +z -3xyz x +y +z -xy-yz-zx xdx+ydy+zdz x+y+z (x +y +z -xy-yz-zx) dx+dy+dz x +y +z -xy-yz-zx xdx+ydy+zdz dx+dy+dz x+y+z xdx+ydy+zdz(x+y+z)(dx+dy+dz) Integrating x + y + z x+y+z x +y +z x +y +z +xy+yz+zx (xy+yz+zx)0 uxy+yz+zxc u (x,y,z) xy+yz+zx

15 Now, dx-dy dy-dz x -yz -y -zx y -zx -z -xy d y-z dx-dy x -y +z(x-y) y+z y-z +x y-z d(x-y) x-y (x+y+z) d(x-y) x-y d(y-z) y-z d(y-z) (y-z)(x+y+z) log(x-y)log(y-z)+logc x-y log logc y-z x-y C, ie, y-z x-y v y-z x y The general solution is xy yz zx, 0 y z 8. Solve : x(y -z )p+y(z -x )qzx -y It is of the form P p +Q q R (AUC May 03) Here Px y -z, Qy z -x, R z (x -y ) The S.E is dx dy dz p Q R dx dy dz x(y -z ) y z -x z x -y Use lagrange s multipliers x,y,z Each ratio xdx+ydy+zdz xdx+ydy+zdz x (y -z )+y (z -x )+z x -y 0

16 ie, xdx +ydy+zdz 0 x +y +z a ie, u x +y +z integrating, x + y + z a Similarly, taking,, x y z as L.M we get dx dy dz x y z y z z x x y Each ratio ie, dx dy dz x y z 0 dx dy dz 0, integrating, logx+logy+logz log b x y z ie, log (xyz) logb bxyz ie, vxyz (x +y +z,xyz)0 9. ( 3 - )z e x +3x y (AUC ec 0) The A.E is m 3 -m 0 m (m-) 0 m0,0, C.F (y+ox) x (y+ox) 3 (y+x) x+oy e P.I - 3 e x 8-0 e x 4 a, b0 Replace 0 3 P.I - 3x y

17 .3x y x y x y x y 3 3 x x y+ 3 3 x y +6 (x ) x x y x y x x 5 6 e x y x zf y+ox +xf y+ox +f3 y+x Solve z z x x y 3 3 x+y e 4sin ( x y) 3 3 The given equation can be written as ( 3 - ) ze x+y +4sin (x+y) The A.E is m 3 -m 0 m (m-)0 m0,0 (or) m C.F f (y) + xf (y)+f 3 (y+x)

18 P.I x+y e + 4sin (x+y) a, b m, n x+y e + 4sin(x+y) 4sin(x+y) 3 -+ x+y - e + 4(sin(x+y)) x+y - e + x+y 4cos(x+y) - e x+y - e -4cos(x+y) x+y zf (y)+xf (y)+f 3(y+x)- e -4cos(x+y) 3 Replace. Solve: ( + -6 ) zy cosx (AUC May 03) m +m-60 m, -3 C.F (y+x) (y-3x) P.I ycosx ycosx ycosx + - ycosx ycosx 6 ycosx - ycosx + ycosx 6 ycosx - cosx + (0)

19 ycosx -sinx (ycosx -sinx) ysinx+cosx -y cos x + sin x z C.F+P.I. Solve: P (+q) qz Give that p(+q) qz It is of the form f (z,p,q) 0 Let u x+ay Now u u, a x y dz dz p,qa du du dz dz dz () +a a.z du du du dz +a az du dz a az- du dz az- du a du dz a az- adz du az- Integrating on b.s u log (az-) +logc

20 Hence the complete solution is (since the number of a.c no.of. I.V) x+aylog [c(az-)] 3. Solve zpx+qy+ p +q + (AUC ec 0, May 03) Given that zpx+qy+ p +q + It is of the form z px+qy+f(p,q) (Clairaut s form) Hence the complete integral is zax+by+ a +b + To find singular solution: (a and b are arbitrary constants) zax+by+ a +b d () p.w.r. to a, a -a ox+ x a +b + a +b + d () p.w.r. to b, b -b oy+ y a +b + a +b + a +b x +y +a +b a +b -x +y - +a +b -x -y +a +b i -x -y +a +b ii +a +b -x -y

21 () x-a -x -y by (i) (3) y-b -x -y by (ii) Now -x -y a, b -x -y -x -y Substitute in () -x y z - + -x -y -x -y -x -y by(ii) -x -y -x -y z -x -y z -x -y x +y +z is the singular solution To find the general integral Put b (a) in (), zax+ (a)y+ +a + (a) d. (4) p.w.r to a ox+ '(a)y+ a+ (a) (a) )\ +a + (a) Eliminate a between (4) and (5) we get the general solution 4. Solve : p +q x +y Solution : Give that p +q x +y It is of the form F (x,p) F (y,q) Let p -x y -q a constant p -x a p a +x p x +a

22 y q a q y a z pdx qdy Substitute () and () in (3) z x a dx y -a dy x x x +a y y -a a y - a - sin h cos h +b a a Which is the complete integral 5. Solve :p (-q ) q(-z) (AU Nov/ec 009) Given p(-q ) q(-z) It is of the form F (z,p,q) 0 Let z f (x+ay) be the solution of () Put x+ay u Z f(u) u u, a x y (*) z dz u dz p.. x du x du z dz u dz q..a y du y du Using (*) 3 Substituting (3) in () dz dz dz du du du -a a -z

23 dz -a a(-z) du dz a -a+az du dz du a az+(-a) dz du az+(-a) a - az+(-a dz u+b a - + az+ -a x+ay +b - + a a az+ -a x+ay +b a a az+(-a) (x+ay)+b a a which is complete integral 5.Solve: z ( )z ysinx (or) z z ysinx x xy y m -5m+60 (m-3) (m-) 0 m3, C.F (y+x)+ (y+3x) P.I ysinx ysinx ysinx -

24 y sinx 5 6 ysinx+ (ysinx)- ysinx 5 6 ysinx+ sinx- (0) ysin x sin x ysinx 0 ysinx+5(-cosx) -cosx.y-5sinx -ysinx+5cosx The general solution is Z C.F +P.I 3 7. Solve zsin(x+y) m 3-7 m-60 m-, -, 3 (AUC May 03) C.F (y-x)+ (y-x)+ 3(y+3x) P.I sin(x+y) by - - sin(x+y) ( ) by- -4 sin(x+y) (-)-7(-) -6(-4) by-()()- sin(x+y) sin(x+y) -+38

25 --38 sin(x+y) sin(x+y) --444(-4) -cos(x+y)-38cos(x+y) cos(x+y)+76cos(x+y) cos(x+y) cos(x+y) Find the singular integral of zpx+qy+p +pq+q (AUC ec 0) Z px+qy+p +pq+q It is of the form zpx+qy+f(p,q) (clairaut s form) Hence the complete soln is z ax+by+a +ab+b (since the number of a.c number of I.V) To find the singular integral d.(). p.w.r.to a and b we get 0 x+a+b y+b+a () x a+b+x (3)x a+4b+y (4) (5) -3b+x-y 0

26 3b x-y b x y 3 Similarly, y (3) 0y+ x- +a 3 x-y y-x a- a 3 3 Substitute a,,b in () y-x x-y y-x y-x x-y x-y z x+ y Simplifying, z -x -y +xy z -x -y +xy 3z-x -y +xy 3z+x +y -xy0 which is the singular integral. y 9. ( )zxe (AU June 0 ) Given ( ) The solution of -m -α -m -α z0 is αx αx ze f (y+m x)+e f y+m x Here α 0, m - α -3, m ox -3x C.Fe fy- x +e fy+x P.I xe y +O

27 (+0) -(+0)( +)-( +) +6(+0)+3( +) ox+y e x y e x ) y e x y e x 0. Solve : y e x - e y x y e 5 x- z C.F +P.I x-y ( )ze (AU ec 0) The given equation can be written as ze C.F: x-y -m -α -m -α z0 is αx αx ze f (y+m x)+e f (y+m x) Here α, α, m, m Replace x x C.Fe f (y+x)+e f (y+x)

28 P.I x-y e +- (+-) x-y e z C.F +P.I x-y e x-y x x e f (y+x)+e f (y+x)+ e. 3 4 z cos( x y) xy Give that +3-4 z0 (AU Nov/ec 0) The A.E is m +3m-40 (m-) (m+4) 0 m, -4 C.F (y-4x) (y+x) P.I +3-4 cos(x+y) cos(x+y) -4+3(-)-4(-) - cos(x+y) 6 P.I xy xy

29 xy xy xy xy 3 xy- xy 3 xy- x 3x xy- 3x xy- 3 3 x 3x x y x y x x y Solve: ( - +)z e x+y +4 (AU ec 0) Here m 0, c 0 m, c - C.F. f (y)+e -x f (y+x)

30 P.I e e x+y x+y e x+y P.I 4e e - + x 4 e ox+oy x z C.F+P.I ox+oy ox+oy -x x+y f (y)+e f (y+x)+ e +x 6 3.Find the p.d.e of all planes which are at a Constant distance from the origin (AU May 00) The equation of a plane which is at a distance k from the origin is l x+my+nzk where l +m +n Let l a ; m b ; nc we get ax+by+czk () a +b +c c -a -b c -a -b Substitute (3) in () ax+by+ -a -b zk d.p.w.r to x z a+ -a -b 0 x

31 -a -a -b p a p -a -b d (4) p.w.r to y z b+ -a -b 0 y -b q -a -b Now, a p b q - -a -b (say) ap ; bq and -a -b -λ -p λ -q λ -λ Squaring on b.s -p λ -q λ λ - p +q λ λ λ +λ (p +q )λ +p +q +p +q +p +q λ ± λ - +P +q λis-ve (*) (4) pλx+qλy-λzk (px+qy-z)λk k px+qy-z λ zpx+qy- k λ px+qy+k +p +q ***** [by (*)]

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant CHAPTER 7 DOUBLE AND TRIPLE INTEGRALS EXERCISE 78 Page 755. Evaluate: dxd y. is integrated with respect to x between x = and x =, with y regarded as a constant dx= [ x] = [ 8 ] = [ ] ( ) ( ) d x d y =

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim 9çB$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Προβολές και Μετασχηματισμοί Παρατήρησης

Προβολές και Μετασχηματισμοί Παρατήρησης Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Author : Πιθανώς έχει κάποιο λάθος Supervisor : Πιθανώς έχει καποιο λάθος.

Author : Πιθανώς έχει κάποιο λάθος Supervisor : Πιθανώς έχει καποιο λάθος. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Τμήμα Φυσικής 1ο Σετ Ασκήσεων Γενικών Μαθηματικών ΙΙ Author : Βρετινάρης Γεώργιος Πιθανώς έχει κάποιο λάθος Supervisor : Χ.Τσάγκας 19 Φεβρουαρίου 217 ΑΕΜ: 14638 Πιθανώς

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης.

Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης. Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο 2016-17. Φυλλάδιο ασκήσεων επανάληψης. 1. Για καθεμία από τις παρακάτω συναρτήσεις ελέγξτε βάσει του ορισμού της παραγωγισιμότητας αν είναι παραγωγίσιμη στο αντίστοιχο

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du) . Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

A METHOD OF SOLVING LAGRANGE S FIRST-ORDER PARTIAL DIFFERENTIAL EQUATION WHOSE COEFFICIENTS ARE LINEAR FUNCTIONS

A METHOD OF SOLVING LAGRANGE S FIRST-ORDER PARTIAL DIFFERENTIAL EQUATION WHOSE COEFFICIENTS ARE LINEAR FUNCTIONS International Journal of Differential Equations and Applications Volume 14 No. 2 2015, 65-79 ISSN: 1311-2872 url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijdea.v14i2.2091 PA acadpubl.eu A METHOD

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Fourier Analysis of Waves

Fourier Analysis of Waves Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

UNIT-1 SQUARE ROOT EXERCISE 1.1.1 UNIT-1 SQUARE ROOT EXERCISE 1.1.1 1. Find the square root of the following numbers by the factorization method (i) 82944 2 10 x 3 4 = (2 5 ) 2 x (3 2 ) 2 2 82944 2 41472 2 20736 2 10368 2 5184 2 2592 2

Διαβάστε περισσότερα

y = x h = x+ a 1 or x = y a 1

y = x h = x+ a 1 or x = y a 1 Lecture 6 Solution Of Bi-quadratic Equations By Using Descartes Method Let the given Bi-quadratic equation be x 4 +4a x 3 +6a x +4a 3 x+a 4 = 0. Now to remove the second term, we have to diminish the roots

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα