Travel time Sensitivity Kernels
|
|
- Ἀλκαῖος Μελετόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Trave time Sensitivity Kernes in ocean acoustic propagation Manois Skarsouis Institute of Appied & Computationa Mathematics Foundation for Research & Technoogy - Heas Herakion, Crete, Greece In coaboration with Bruce Cornuee, Matt Dzieciuch Scripps Institution of Oceanography, University of Caifornia, San Diego, La Joa, Caifornia, USA FORTH - IACM - Wave Propagation Group - Underwater Acoustics
2 pressure Source Muti path propagation Receiver temperature sound speed range Typica measurement Arriva structure time (sec) time
3 Ray arrivas 250 c c + Δc τ = Γ 1 c () d τ τ +Δτ t Typica measurement depth d Γ c(z) range Time (sec) 1 Δ τ = Δcd () 2 c () Γ Ray theoretic trave time sensitivity kerne
4 Ocean Acoustic Tomography Low frequency O(100 Hz) transmissions / ong range O(1000 km) propagation Ray theory, commony used for data anaysis, is a highfrequency asymptotic approximation How good are ray theoretic (high frequency) methods for the anaysis of ow frequency data? How do sensitivity kernes of ow frequency trave times compare with the corresponding ray theoretic kernes?
5 Outine Wave theoretic propagation modeing + notion of peak arrivas Finite frequency trave time sensitivity kernes (TSKs) Effects of increasing frequency / range on TSKs 3D vs. 2D kernes Vertica trave time sensitivity kernes (VTSKs) Effects of increasing range on VTSKs Concusions
6 Propagation modeing The pressure at the receiver in the time domain p r + 1 i t pr(; t c) = ω Ps( ω) G( xr xs; c; ω) e dω 2π P ( ω; c) Ps( ω ) :the emitted (source) signa in the frequency domain Gx ( x; cω ; ) : the Green s function of the acoustic channe s r ω cx ( ) x, x s r : the circuar frequency : the sound speed distribution : the source / receiver ocations
7 Green s function Hemhotz equation (in cyindrica coordinates), c=c(z) 2 2 G 1 G G = r2 r r z2 cz () 2 ω δ δ G 2 ()( r z zs) 2πr Boundary interface radiation conditions Pressure reease (Dirichet) condition at the sea surface Continuity of pressure & vertica veocity at the interfaces Radiation condition (outgoing waves at infinity)
8 Norma mode representation of the Green s function (far fied) Grz (, z) s e iπ /4 ϕ ( z ) ϕ ( z) M m s m = 8π m= 1 kr m e ik r m k m, ϕ m( z) : rea eigenvaues and associated eigenfunctions of the Sturm Liouvie probem d ϕ ( z) ω + ϕ = ϕ dz c ( z) 2 2 m m( z) km m( z) with appropriate boundary interface conditions
9 Trave time modeing Peak arriva times (oca maxima of arriva pattern atc (; ) = p(; tc) : a& ( τ ; c) = 0 Arriva time perturbations (due to sound speed perturbations): a& ( τ +Δ τ ; c+δ c) = 0 r a(t;c) τ τ c c + Δτ + Δc t Linear approximation: Δ τ = u& Δ u + u Δ u& + w& Δ w + wδw& 2 2 u& + u u&& + w& + ww&& p = u+ iw Δ p =Δ u+ iδw u = u( τ ; c) where,,, r r
10 Born approximation r r r r r r r Δcx ( ') r Δ Gx x = Gx x Gx x dvx 2 ( r s) 2 ω ( ' s) ( r ') ( ') 3 c ( z') V The perturbation sequence Δ c Δ G Δ p,i.e.( Δu, Δ w ) Δτ Trave time sensitivity kerne Representation of Δτ in terms of r r r r r r Δ τ = K ( x' x ; x ; c) Δ c( x') dv( x') V s Δc r Wave theoretic trave time sensitivity kerne
11 Trave time sensitivity kerne { r r r u iw r r r iωτ K ( x' xs; xr; c) =R iωq( x' xs; xr; ω; c) e dω 2π b u& iw& r r r iωτ + Qx ( ' xs; xr; ω; ce ) dω 2π b } & && & && 2 2 b = u + uu + w + ww where and 2 2 ω Ps ( ω) s r = 3 s r r r r r r r r Qx ( ' x; x; ω; c) Gx ( ' x; ω; cgx ) ( x'; ω; c) c ( z')
12 Numerica resuts Ray theory 150 m Source 1503 m/s Receiver 2.5 km 1547 m/s 52 km
13 Numerica resuts Ray theory 150 m Source 1503 m/s Receiver 2.5 km 1547 m/s 52 km
14 Numerica resuts Wave theory (400 Hz) 150 m Source 1503 m/s Receiver 2.5 km 1547 m/s 52 km
15 Numerica resuts Wave theory (100 Hz) 150 m Source 1503 m/s Receiver 2.5 km 1547 m/s 52 km
16 Effects of increasing range (100 Hz)
17 Cross section at mid range (100 Hz)
18 3D vs. 2D TSK G 3D e (, r z z ) = s iπ /4 M ϕm( zs) ϕm( z) ikmr e G2 D 8π m= 1 kr m 3D iπ /2 M e ϕm( zs) ϕm( z) ( x, z zs) = e 2 k m= 1 m ikmx 2D
19 3D vs. 2D TSK iπ /4 M ϕm( zs) ϕm( z) ikmr 3D(, r z zs) = e 8π m= 1 kr m Horizonta cross range G e m s m m G2 D( x, z zs) = 3D 2 m= 1 km 2D margina of the 3D TSK e iπ /2 M ϕ ( z ) ϕ ( z) e ik x
20 3D vs. 2D TSK (Cross range marginas)
21 3D vs. 2D TSK (Horizonta marginas)
22 Vertica sensitivity kerne (VTSK) Δ τ = D ( z) Δc( z) dz c c + Δc Ray arrivas dz 1 Δ τ = Δczdz ( ) 2 cz (( z) )sin( ψ (( z )) )) Γ τ τ +Δτ 0 t Source Γ depth z s ψ(z) z r Receiver c(z) range R D ( z)
23 Vertica sensitivity kerne (VTSK) Δ τ = D ( z) Δc( z) dz Peak arrivas a(t;c) atc (; ) = p(; tc) r c c + Δc + 1 iωt pr(; t c) = Ps( ω) Gsr( ω; c) e dω 2π τ τ +Δτ t u& Δ u + u Δ u& + w& Δ w + wδw& Δ τ = 2 2 u& + u u&& + w& + ww&& Norma mode representation ( ; ; ) ( ; ; ) Gsr ( ω; c) = e iπ /4 M e ϕn ω zs c ϕn ω zr c 8 π n= 1 kn ( ω; c) R ik n ( ω; ) c R
24 Vertica sensitivity kerne (VTSK) Eigenvaue/eigenfunction perturbations 2 ω Δ k = n h Δcz ( ) 2 ϕn( z ) dz ( ) 3 kn c z 0, Δ ϕ ( z) = 2ω n h 2 0 Δc( z ) ϕ ( z ) ϕ ( z ) ϕ ( z) dz c z k k M n m m ( ) m= 1 n m m n Green s function perturbation iπ /4 h M M 2 e Unmϕn ( z ) ϕm( z ) Δ G = ω ir U ( ) 2 2 nnϕn z 2π R n= 1 m= 1 kn km kn 2kn m n e kc ik R n n 3 Δcz ( ) dz ( z ) where U nm ϕn( zs) ϕm( zr) + ϕm( zs) ϕn( zr), m n = 1 ϕn( zs) ϕn( zr), m= n 2
25 Vertica sensitivity kerne (VTSK) iπ /4 1 e iωτ D( z) = R ( u iw ) L( z; ) e d 3 & & ω ω bc ( z) 2π R 2π + + iπ /4 e iωτ + ( u iw ) iωl(; z ω) e dω 2π 2 M M ikmr 2 ϕm( z) ϕn( z) U mn 1 Ummϕm ( z) e Lz (; ω) = ω Ps ( ω) ir + + m= 1 n= 1 Λmn 2km k m kmr n m { ( τ ; )} u = R p c r { ( τ ; )} w = I p c r b u& u u&& w& w w&& 2 2 = Λ = k k 2 2 nm n m U nm ϕn( zs) ϕm( zr) + ϕm( zs) ϕn( zr), m n = 1 ϕn( zs) ϕn( zr), m= n 2
26 North Pacific environment SD=RD=1100 m
27 Wave theoretic VTSK (100 Hz)? : Wave theoretic VTSK : Ray theoretic VTSK D ( z)/ R (smoothed)
28 Effects of increasing range (100 Hz) : Wave theoretic VTSK : Ray theoretic VTSK D ( z)/ R (smoothed)
29 Effects of increasing range (100 Hz) : Wave theoretic VTSK : Ray theoretic VTSK D ( z)/ R (smoothed)
30 Long range asymptotics M + 2 iπ /4 2 ( ) = R ( ) ( ) 3/2 3 & & 3/2 ( 2 π ) bc ( z) m= 1 km 1 ( ) D z u iw e S e d Ummϕm z i( ωτ kmr ω ω ) ω ( ) M + 2 iπ /4 3 Ummϕm ( z) i( ωτ kmr) + ( u iw ) e iω S( ω) e dω 3/2 m= 1 ( km )
31 Long range asymptotics Stationary Phase Approach i( km ) ( ) ( ) iδmπ/4 ωτ ω R 2π e ˆ ωτ Χm ω e dω = Χ ( ˆ m ωm) e 2 2 r d k ( ˆ ω ) dω m m ( ( ˆ ω ) ) i k R m m m dkm R ( ˆ ωm) = τ d ω Stationary point for mode m : δ ( 2 ( ˆ ) 2 m = sign d km ωm dω ) ˆ D z u iw e M 2 2 ˆ π 1 ˆ ωmsm ˆ ϕm( z) ˆ ϕm( zs) ˆ ϕm( zr) i ˆ ωτ m ikmr i( δm 1) ( ) ( ) 4 = R 3 & & 4 πbc ( z) 3/2 2 2 m= 1 kˆ ˆ m d km dω ˆ ( u iw ) e M 3 2 ˆ ˆ π ˆ ωmsm ˆ ϕm( z) ˆ ϕm( zs) ˆ ϕm( zr) iωτ m ikmr i( δm+ 1) 4 3/2 2 2 m= 1 kˆ ˆ m d km dω
32 Long range asymptotics Stationary Phase Approach : Wave theoretic VTSK : Ray theoretic VTSK : Stationary Phase approximation
33 Long range asymptotics Stationary Phase Approach : Wave theoretic VTSK : Ray theoretic VTSK : Stationary Phase approximation
34 Long range asymptotics + 2 mm ( ωϕ ) m ( z; ω) i( ωτ km ( ω) R) 3/2 km ( ω) 2 U I( z) = ω S( ω) e dω
35 Long range asymptotics Condition for SP approximation: 2 (; z ) smooth function of, ϕ ω ω m compared to i( km ( ) R e ωτ ω ) ϕm ( z) 2 2 ϕm ( z) << ϕm ( z) τ ω e km R ω e R=50 km, T=33.52 sec, f=100 Hz
36 Long range asymptotics Condition for SP approximation: 2 (; z ) smooth function of, ϕ ω ω m compared to i( km ( ) R e ωτ ω ) ϕm ( z) 2 2 ϕm ( z) << ϕm ( z) τ ω e km R ω e R=50 km, T=33.52 sec, f=100 Hz
37 R=100 km, T=67.04 sec, f=100, f=100 Hz Hz R=200 km, T= sec, f=100 Hz
38 Concusions The wave theoretic VTSK approaches the ray theoretic VTSK as the range increases The stationary phase approximation confirms ong range asymptotic behavior The condition for vaidity of the stationary phase approximation can be used as a measure of wave/ray theoretic proximity. From eigenfunction/eigenvaue characteristics a minimum range for ray theoretic behavior can be inferred on.
39 References H. Marquering, Dahen, Noet, Three dimensiona waveform sensitivity kernes, Geophys. J. Int., Vo. 132, pp , Marquering, Noet, Dahen, Three dimensiona sensitivity kernes for finitefrequency trave times: the banana doughnut paradox, Geophys. J. Int.,Vo. 137, pp , Skarsouis, Cornuee, Trave time sensitivity kernes in ocean acoustic tomography, J. Acoust. Soc. Am., Vo. 116, pp , Skarsouis, Cornuee, Dzieciuch, Trave time sensitivity kernes in ong range propagation, J. Acoust. Soc. Am., Vo. 126, pp , Skarsouis, Cornuee, Dzieciuch, Second order sensitivity of acoustic trave times to sound speed perturbations, Acta Acustica, Vo. 97, pp , 2011.
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Dan Censor Ben Gurion University of the Negev Department of Electrical and Computer Engineering Beer Sheva,
1.8 Paul Mother Wavelet Real Part Imaginary Part Magnitude.6.4 Amplitude.2.2.4.6.8 1 8 6 4 2 2 4 6 8 1 t .8.6 Real Part of Three Scaled Wavelets a = 1 a = 5 a = 1 1.2 1 Imaginary Part of Three Scaled Wavelets
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling
1th AIAA/CEAS Aeroacoustics Conference, May 006 interactions Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Interaction M. Glesser 1, A. Billon 1, V. Valeau, and A. Sakout 1 mglesser@univ-lr.fr
4.4 Superposition of Linear Plane Progressive Waves
.0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]
Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl
Topic 4 Linear Wire and Small Circular Loop Antennas Tamer Abuelfadl Electronics and Electrical Communications Department Faculty of Engineering Cairo University Tamer Abuelfadl (EEC, Cairo University)
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Low Frequency Plasma Conductivity in the Average-Atom Approximation
Low Frequency Plasma Conductivity in the Average-Atom Approximation Walter Johnson & Michael Kuchiev Physical Review E 78, 026401 (2008) 1. Review of Average-Atom Linear Response Theory 2. Demonstration
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
Note: Please use the actual date you accessed this material in your citation.
MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011
2.019 Design of Ocean Systems Lecture 6 Seakeeping (II) February 21, 2011 ω, λ,v p,v g Wave adiation Problem z ζ 3 (t) = ζ 3 cos(ωt) ζ 3 (t) = ω ζ 3 sin(ωt) ζ 3 (t) = ω 2 ζ3 cos(ωt) x 2a ~n Total: P (t)
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Seria : 0. T_ME_(+B)_Strength of Materia_9078 Dehi Noida Bhopa Hyderabad Jaipur Luckno Indore une Bhubanesar Kokata atna Web: E-mai: info@madeeasy.in h: 0-56 CLSS TEST 08-9 MECHNICL ENGINEERING Subject
( ) Sine wave travelling to the right side
SOUND WAVES (1) Sound wave: Varia2on of density of air Change in density at posi2on x and 2me t: Δρ(x,t) = Δρ m sin kx ωt (2) Sound wave: Varia2on of pressure Bulk modulus B is defined as: B = V dp dv
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Sampling Basics (1B) Young Won Lim 9/21/13
Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
ECE 468: Digital Image Processing. Lecture 8
ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions
3.5 - Boundary Conditions for Potential Flow
13.021 Marine Hydrodynamics, Fall 2004 Lecture 10 Copyright c 2004 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hydrodynamics Lecture 10 3.5 - Boundary Conditions for Potential
38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4
Fig. A-1-1. Te(OH) NH H PO (NH ) HPO (TAAP). Projection of the crystal structure along the b direction [Ave]. 9 1. 7.5 ( a a )/ a [1 ] ( b b )/ b [1 ] 5..5 1.5 1 1.5 ( c c )/ c [1 ].5 1. 1.5. Angle β 1.
Finish: Anticorrosive finish in polyester. Number of motor poles 4=1400 r/min. 50 Hz 6=900 r/min. 50 Hz 8=750 r/min. 50 Hz
HEP HEPT HEP: Wall-mounted axial fans, with IP65 motor HEPT: Long-cased axial fans, with IP65 motor Wall-mounted axial (HEP) and long-cased (HEPT) fans, with fibreglass-reinforced plastic impeller. Fan:
A method of seeking eigen-rays in shallow water with an irregular seabed
32 2 Vol 32 2 20 2 Journal of Harbin Engineering University Dec 20 doi 0 3969 /j issn 006-7043 20 2 004 5000 2 TB566 A 006-7043 20 2-544-05 A method of seeking eigen-rays in shallow water with an irregular
of the methanol-dimethylamine complex
Electronic Supplementary Information for: Fundamental and overtone virational spectroscopy, enthalpy of hydrogen ond formation and equilirium constant determination of the methanol-dimethylamine complex
NMBTC.COM /
Common Common Vibration Test:... Conforms to JIS C 60068-2-6, Amplitude: 1.5mm, Frequency 10 to 55 Hz, 1 hour in each of the X, Y and Z directions. Shock Test:...Conforms to JIS C 60068-2-27, Acceleration
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
ΠΑΡΑΡΤΗΜΑ Β. Πίνακας επιλεγμένων βιογραφικών στοιχείων
ΠΑΡΑΡΤΗΜΑ Β Σύντομο Βιογραφικό Σημείωμα Συμπληρώνονται ο πίνακας βιογραφικών στοιχείων και ο πίνακας δημοσιεύσεων από τα μέλη της κύριας ερευνητικής ομάδας Πίνακας επιλεγμένων βιογραφικών στοιχείων Όνομα
SERIES DATASHEET INDUCTORS RF INDUCTORS (MRFI SERIES)
SERIES DATASHEET INDUCTORS RF INDUCTORS (MRFI SERIES) (8) 95-8365 venkel.com Features: RoHS Compliant and Halogen Free Good Q values High SRF range: 1nH to 47uH Tolerance: ±.2nH, ±.3nH, ±2%, ±5%, ±1% High
The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points
Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model
1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΜΖΜΑ
Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)
Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα
Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα Βασίλειος Α. Ζαφρανάς Παναγιώτης Σ. Καραμπατζάκης ΠΕΡΙΛΗΨΗ H εργασία αφορά μία σειρά μετρήσεων του χρόνου αντήχησης της υπόγειας κρύπτης του «Νεκρομαντείου»
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Surface Mount Multilayer Chip Capacitors for Commodity Solutions
Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF
is like multiplying by the conversion factor of. Dividing by 2π gives you the
Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Distributed by: www.jameco.com -800-83-4242 The content and copyrights of the attached material are the property of its owner. φ δ δ φ φφ φ 86 δ φ δ An explanation of the taping dimensions can be found
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Introduction to Time Series Analysis. Lecture 16.
Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral
Part 4 RAYLEIGH AND LAMB WAVES
Part 4 RAYLEIGH AND LAMB WAVES Rayleigh Surfae Wave x x 1 x 3 urfae wave x 1 x 3 Partial Wave Deompoition Diplaement potential: u = ϕ + ψ Wave equation: 1 ϕ 1 ψ ϕ = = k ϕ an ψ = = k t t ψ Wave veloitie:
YJM-L Series Chip Varistor
Features 1. RoHS & Halogen Free (HF) compliant 2. EIA size: 0402 ~ 2220 3. Operating voltage: 5.5Vdc ~ 85Vdc 4. High surge suppress capability 5. Bidirectional and symmetrical V/I characteristics 6. Multilayer
ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ
ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
High Current Chip Ferrite Bead MHC Series
High Current Chip Ferrite Bead MHC Series Features Combination of high frequency noise suppression with capability of handing high current. The current rating up to 6 Amps with low DC. Applications High
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Oscillatory Gap Damping
Oscillatory Gap Damping Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: ) Find the motion in a gap due to an oscillating external force; ) Recast the solution
CT Correlation (2B) Young Won Lim 8/15/14
CT Correlation (2B) 8/5/4 Copyright (c) 2-24 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any
Creative TEchnology Provider
1 Oil pplication Capacitors are intended for the improvement of Power Factor in low voltage power networks. Used advanced technology consists of metallized PP film with extremely low loss factor and dielectric
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Surface Mount Aluminum Electrolytic Capacitors
FEATURES CYLINDRICAL V-CHIP CONSTRUCTION LOW COST, GENERAL PURPOSE, 2000 HOURS AT 85 O C NEW EXPANDED CV RANGE (up to 6800µF) ANTI-SOLVENT (2 MINUTES) DESIGNED FOR AUTOMATIC MOUNTING AND REFLOW SOLDERING
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices
No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by
LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO
ol. 6, No.3 7/(7) IU UNGOO ontrol Engineering for Development of a Mechanical entilator for IU Use Spontaneous Breathing ung Simulator UNGOO Kenji OZAKI*yoji IIDA*Kazutoshi SOGA* and Yasuhiro UENO* A lung
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Computing Gradient. Hung-yi Lee 李宏毅
Computing Gradient Hung-yi Lee 李宏毅 Introduction Backpropagation: an efficient way to compute the gradient Prerequisite Backpropagation for feedforward net: http://speech.ee.ntu.edu.tw/~tkagk/courses/mlds_05_/lecture/
5. Since the range of the radius is small, R dτ. dr >> 1, atmosphere is eectively plane parallel.
Stellar Atmospheres 1. Until now, we've worried mostly about the interiors of stars where the mean free path of a photon is small compared to the distance to the surface. Photons nearly isotropic. 2. As
ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ
Παραμετρική ανάλυση του συντελεστή ανάκλασης από στρωματοποιημένο πυθμένα δύο στρωμάτων με επικλινή διεπιφάνεια 1
4 93 Παραμετρική ανάλυση του συντελεστή ανάκλασης από στρωματοποιημένο πυθμένα δύο στρωμάτων με επικλινή διεπιφάνεια Π. Παπαδάκης,a, Γ. Πιπεράκης,b & Μ. Καλογεράκης,,c Ινστιτούτο Υπολογιστικών Μαθηματικών
Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution
Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution Jim Dai Joint work with Masakiyo Miyazawa July 8, 211 211 INFORMS APS conference at Stockholm Jim Dai (Georgia
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
TODA-ISU Corporation. SMD Power Inductor. SPI series. SMD Team
SMD Power Inductor SPI series TODA-ISU Corporation Advantages & Applications Advantages Low profile High current capability & Low DCR Low temperature rise Increased thermal efficiency Patent (Coil Integrated
26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section
SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln
The Spiral of Theodorus, Numerical Analysis, and Special Functions
Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6
Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan
3 2015 12 GLOBAL GEOLOGY Vol. 3 No. Dec. 2015 100 5589 2015 0 1106 07 L BFGS Q 130026 Q 2D L BFGS Marmousi Q L BFGS P631. 3 A doi 10. 3969 /j. issn. 1005589. 2015. 0. 02 Method of Q through full waveform
ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ & ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ
,,, (, 100875) 1989 12 25 1990 2 23, - 2-4 ;,,, ; -
25 3 2003 5 RESOURCES SCIENCE Vol. 25 No. 3 May 2003 ( 100875) : 500L - 2-4 - 6-8 - 10 114h - 120h 6h 1989 12 25 1990 2 23-2 - 4 : ; ; - 4 1186cm d - 1 10cm 514d ; : 714 13 317 714 119 317 : ; ; ; :P731
Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.
upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation
4 Way Reversing Valve
STANDARD 4 Way Reversing Valve SHF series four-way reversing valves are applicable for heat pump systems such as central, unitary and room air conditioners to realize switching between cooling mode and
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Local Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider
SMBJ SERIES. SMBG Plastic-Encapsulate Diodes. Transient Voltage Suppressor Diodes. Peak pulse current I PPM A with a 10/1000us waveform See Next Table
SMBJ SERIES SMBG Plastic-Encapsulate Diodes HD BK 7 Transient Suppressor Diodes Features P PP 6W V RWM 5.V- 44V Glass passivated chip Applications Clamping Marking SMBJ XXCA/XXA/XX XX : From 5. To 44 SMBG
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
Bulletin 1489 UL489 Circuit Breakers
Bulletin 489 UL489 Circuit Breakers Tech Data 489-A Standard AC Circuit Breaker 489-D DC Circuit Breaker 489-A, AC Circuit Breakers 489-D, DC Circuit Breakers Bulletin 489-A Industrial Circuit Breaker
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
DATA SHEET Surface mount NTC thermistors. BCcomponents
DATA SHEET 2322 615 1... Surface mount N thermistors Supersedes data of 17th May 1999 File under BCcomponents, BC02 2001 Mar 27 FEATURES High sensitivity High accuracy over a wide temperature range Taped
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF)
Snap-in Terminal Type, 85 C Standard Withstanding 3000 hours application of rated ripple current at 85 C. Compliant to the RoHS directive (2011/65/EU). LS Smaller LG Specifications Item Category Temperature
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Multilayer Chip Inductor
Features -Monolithic structure for high reliability -High self-resonant frequency -Excellent solderability and high heat resistance Construction Applications -RF circuit in telecommunication and other