Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Teor imov r. ta matem. statist. Vip. 94, 2016, stor"

Transcript

1 eor imov r. ta matem. statist. Vip. 94, 6, stor Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process or Cox-Ingersoll-Ross process. We study te question of exact price of uropean option. e form of te density function of te random variable, wic expresses te average of te volatility over time to maturity is establised using Malliavin calculus. e result allows us to calculate te price of te option wit respect to minimum martingale measure wen te Wiener process driving te evolution of asset price and te Wiener process, wic defines volatility, are uncorrelated.

2 dy t = Y t y αy t dt + ky 3/ t dw t

3 Ω, F, F = F W,W t,t, P W t, W t, t B t =e rt r> S t, t ds t = μs t dt + σy t S t dw t, dy t = αy t dt + kd W t. S Y X t =,X t =,e rt S t W W σ : R R + c σx q + x l x R c q l α k S t = S exp μt X t = S exp μ rt σ Y s + σ Y s + σy s dw s. σy s dw s dx t =μ rdt + σy s X s dw s.

4 S + M t + A t μ σt X t = M t = σy sx s dw s A t = [Y t =Y e αt, Var[Y t = k α e αt. Y t = Y e αt +k e αt s d W s. B t =e rt r> ds t = μs t dt + Z t S t dw t, Z > dz t =b Z t dt + k Z t d W t. A b k k < b S t = S exp μt + Zs dw s. [Z t =Z e t +b e t, Z Var[Z t =Z k e t e t + bk e t. k < b X t NA g g, X t g t [,

5 Q P Q NA g Q F t dq dp Ft =exp r μ/σy s dw s + r μ /σ Y s +ν s, ν s d W s ν =ν t t ν s < P ν Q Q S t,y t ds t = rs t dt + σy t S t dw Q t, dy t = αy t kνt dt + kd W Q t, Wt Q μ r = W t + σy s, W t Q = W t + νs, Q νs P X X = X + M + A M P A Q P Q = P F P M Q X = S M t = σy sx s dw s A t =μ rt Q ds t = rs t dt + σy t S t dwt Q, dy t = αy t dt + kd W Q t,

6 W Q μ r t = W t + σy s, W Q t = W t, Q F t dq =exp dp Ft r μ Zs dw s + ν,s d W s Q r μ + ν,s, ν =ν,t t ν,s < P ν,s = dq r μ = L,t := exp dw s r μ, dp Ft Zs [L,t = Q X t =exp Zs d W s Q Q NA g Q S t,z t ds t = rs t dt + Z t S t dw Q t, dz t = b Z t dt + k Z t d W Q t, W Q μ r t = W t +, Zs W t Q = W t, Q V C C =S K + K V C =e r Q S Q K+ =e r Q Q S Q K+ Y s, s. Y s, s

7 σ := σ σ σ := Q S Q K+ Y s, s ln = S e r S +r + Φ σ ln K σ ln S +r KΦ σ ln K σ, σ Y s Φ σ σ := σ Z s σ σ W = W t,t [, Ω, F F = F W t,t [,, P Ω=C[,, R Ĉ R F = fw t,...,wt n, f = fx,...,x n Ĉ R n t,...t n [, S t D t F = n i= F S f x i W t,...,wt n [,tit, D, F t [,. D : L Ω L [,, R F D, F, G, = FG+ DF, DG H, L Ω S F, =[ F + DF H /. D L Ω H = L [,.

8 i L [,, R δ u L [,, R δ L Ω D DF, u H CF /, F D, C u ii u δ δu L Ω F D, Fδu = DF, u H δ Dom δ L, = L [,, D, L, u L = u, t dt + D s u t dt. u L, δu u u t dw t u L, δu = δu u t dw t. D, DF DF H F [ DF px = F>x δ DF. H F δ ut,, ω L [, Ω [ ut, Dom δ δut, dt < ut, dt, [, Dom δ ut, dtdw = ut, dw dt. t [,

9 σ = Z s σ = σ Y s νx =σxσ x σ σ Y σ [ p σ x = σ> x η t e αs dw s dt e α D η t d dt, [ η t = α k e αt νy t [ e α t t e αt+t νy t νy t dt dt, D η t 6k <b Z σ p σ x = [ σ>x k Zt Ψ,t dw dt Ψ,t ψ,t d dt, ψ,t := exp t b t k 8 [ t Ψ,t = ψ,t Zt Zt, ψ,t ψ,t d dt dt. D Y t = α t D Y s + k <t. D Y t = k e αt <t. σ σ D σ Y t =σy t σ Y t D Y t =k e αt νy t <t, I σ = σ Y t dt

10 σ = I σ D I σ = D σ Y t dt =k e αt νy t dt,. Dσ δ := δ Dσ, H Dσ H = = 4k = k α D σ = k t D σ d = 4k e αt νy t dt, e αt νy t dt d e αt νy t e αt νy t ddt dt [ e α t t e αt+t νy t νy t dt dt. ζ =e α η t dt = ζ := D σ Dσ ut, dt, ut, :=η t e α <t. ζ L, ζ δ ut, [ u t, ddt ut,, ω L [, Ω [ u t, d + [ = η t e α <t d + eα α [ eα α ηt dt <, t [, D s ut, d e α <t D s η t d ηt + [ D s η t C. ut, t [, [ [δut, u t, d + D s ut, d C,

11 [ δut, dt < δ = e α η t <t dtdw δ = = δ = η t η t e α η t <t dw dt. e α <t dw e α D η t <t d dt e α dw e α D η t ddt. dt σ D Z t = k exp [ b k Zt 8 = k exp t b t k Zt = kψ,t Zt. 8 D I Z t = I Z t = Z t dt D Z t dt = k ψ,t Zt dt,. D σ δ := δ D σ. D σ = k ψ,t Zt dt, D σ = = k D σ d = k ψ,t Zt dt d t Zt Zt ψ,t ψ,t ddt dt. ζ := D σ D σ ζ = k Zt Ψ,t dt = k ũt, dt, ũt, := Z t Ψ,t.

12 ζ δ [ ũt,, ω L [, Ω [, ũt, Dom δ ũ t, dtd = Z t Ψ,tddt < t = [ [ δũt, dt ũ t, dt + D s ũt, D t ũs, dt <, = k δ = k Zt Ψ,t <t dtdw = Zt Ψ,t <t dw dt k Zt Ψ,t <t dw Ψ,t D Zt <t d dt = k = k Zt Ψ,t dw dt Zt Ψ,t dw dt D Z t Ψ,t ddt Z t Ψ,t ψ,t ddt. K V C = C =S K + ln S +r + x ln K S Φ x ln K e r S +r x ln K Φ pxdx, x px = p σ x, p σ x, p σ x p σ x

13 Y Z Y R x [Y a, Y + a σ x σ Y σ Y τ =inft >: Y t Y a τ = τ Z > τ =inft >: Z t Z Z τ = τ τ p < τ p < p> K> X = X t,t X t = X + M t + A t, M t = αs A t = βs αs K βs K a> τ a [X a, X +a a λ, K τ N >τ a Pτ a <λ 4 exp a. πa 8Kλ Y t = Y α Y s + kw t W N>a+ Y τ N =inft >: Y t N Ŷ t := Y t τn = Y α Y s τn s τn + k s τn dw s, C C 3 Ŷ t K = N α k τ N a =inft >: Ỹt Y a τ N a = τ a τ C Pτ a <λ C exp C, <λ<c 3, λ τ D η t

14 D η t = α [ [ k e αt e αt <t ν Y t e α t t e αt+t [ [ νy t νy t dt dt νyt e α t t e αt+t [ νy t νy t dt dt e α t t e αt+t νy t e αt <tν Y t +νy t e αt <tν Y t dt dt. η t D η t = α k e αt [ [ D νy t e α t t e αt+t νy t νy t dt dt [ = α k e αt D νy t [ +νy t D = D α k e αt Y t ν Y t νy t [ [ e α t t e αt+t νy t νy t dt dt [ e α t t e αt+t νy t νy t dt dt [ e α t t e αt+t νy t νy t dt dt [ e α t t e αt+t νy t νy t dt dt [ e α t t [ e αt+t νy t D Y t ν Y t +νy t D Y t ν Y t dt dt. D Y t =e αt <t [, η t <t L, η t L, [ η t L = η, t dt + D η t dtd <.

15 A = x R : σ x σ Y σ Y / τ =inft : Y t A τ = τ [ e α t t e αt+t νy t νy t c> νy t c σ Y t,τ η t = α k e αt νy t σx c> x e α t t e αt+t νy t νy t dt dt α k e αt νy t [ τ τ [ e α t t e αt+t νy t νy t dt dt 4α kcσ Y e αt νy t C x> C [ τ τ x x e α t t e αt+t dt dt. e α t t e αt+t dt dt ψx := = α x x d e αs = x e α x e α x + d α = e αx + + e αx + x α α α = C4 e αx e αx +αx 3. ψ = ψx = C4 e αx e αx +αx 3/4α R e αx αx e αx x ψ : ψ x = α e αx Cx e αx. ψx = x ψ s C x e αs s > C x 3. σ x e α t t e αt+t νy t νy t dt dt Cτ 3 ν x C + x m C> m σx η t C e αt νy t τ 3 C + Y t m τ 3.

16 sup t ηt C sup + Y t m τ 6 C. t [ ηt dt <. D η t C τ 3 ν Y t +τ 6 ν Y t m C + Y t m τ 3 + τ 6 C> sup D η t C t η t L, νy s ν Y u du D η t dtd <, ζ L, [ ζ L = e α η, s d [ + t D e αt η s dtd <. [ e α η s d [ e α ηs d <, = [ D e αt η s dtd t [ e αt D η s t<s dtd [ e αt D η s dtd <. sup [, Z p t < b p> k 6k <b Zt Ψ,t L, Zt Ψ,t dt L,

17 Zt Ψ,t dt L, = Zt Ψ,t dt d + D l Zt Ψ,t dt dld <. Zt Ψ,t = Z t ψ,t [ t t Zt Zt ψ,t ψ,t d dt dt. I := I Z = Z = t Zt Zt ψ,t ψ,t d dt dt t Zt Zt exp t τ τ t τ τ t exp t τ := inf t : Z t Z > Z q> exp t Z t < exp t b k t 8 b k t d dt dt. 8 τ = τ q := b k 8 exp t Z exp t < I Z exp Z +4q τ 3. Z C C t d dt dt Z t t Z d dt dt. ψ,t I C τ 3, Ψ,t C τ 3. p Z t Ψ,t Zt Ψ,t C Zt τ 6. sup t [, Z p t < τ 6 C> sup Z t Ψ,t C. t, [,

18 Zt Ψ,t dt d Z t Ψ,t dtd C. = D l Zt Ψ,t dt dld D l Z t Ψ,t dt dld D l Z t Ψ,t dt dl d. D l Z t Ψ,t =D l [ Z t ψ,t Zt Zt t ψ,t ψ,t d dt dt Zt = D l exp t [ [ t exp Zt Zt exp t t = D l Zt exp t t t d dt dt t Zt Zt exp t exp t d dt dt + Z t exp t D l [ t Zt Zt exp t exp t d dt dt

19 =exp t [ Z t exp t [ Dl Z t + q Z t Z t t t Zt Zt exp t exp t Zt Zt Zt exp D l Zs t exp t t exp t D l Z t + q Z t Z t + D l Z t Z t D l Z t ψ,t I D l ψ t l,t Z t Ψ,t =kψ,t + q Z t k Z t ψ,t I t d dt dt exp t t D l Z t + q Z t ψ l,s Z 3 s I Zs + d dt dt D l Zs Zt ψ l,t ψ,t ψ,t + q Z t + Z t ψl,t + q Z t ψ l,s Zs d dt dt. ψ l,s Z 3 s + d dt dt. [ sup D l Z t Ψ,t <. l,,t [ D l Z t Ψ,t ψ t l,t = [kψ,t + q Z t k Z t ψ,t I t ψ l,s Z 3 s I Zt ψ l,t ψ,t ψ,t + q Z t + Z t ψl,t + q Z t ψ l,s Zs ψ l,s Z 3 s + d dt dt

20 k +k ψ,t [ Zt ψ,ti ψ t l,t + q Z t ψ l,s Z 3 s t ψ,t < I ψ,t ψ,t Zt ψ l,t + Z t ψl,t [ D l Z t Ψ,t k + q Z t +k [ Zt I t + Z t + q Z t + q Z t I Z 3 s + q Z t ψ l,s Zs Zt + q Z t ψ l,s Z 3 s + d dt dt. + Z 3 s d dt dt =k I +k I. Z s a + b n n a n + b n I := t 4 / + q Z t I t Z 3 + q I Z t 4 / s Z 3 s C Zt 4 t +8q4 τ. τ Z 3 s Zt 4 t Zt 4 Z 3 s 7 t Z 4 t C I C I I := [ Zt I t 8 t Zs, Z 3 s Zt t + q Z t + Z 3 s + Z t + q Z t [ Zt Z 3 s 4 d dt dt Z s

21 Zt I 8 [ 9 Z 4 4 t I 6 4 C Z 4 4 t τ 48 4 C = 4 9 Z 4 [ Zt Zt t exp 4 Z+4q Z + q Z t + q Z t 3 Z s Zt t + q Z t + Z t + q Z t t t [ Zt + Z t + q Z t [ Zt + Z t + q Z t + Z t + q Z t 4 Zt 4 Z 3 s Z s + Z 3 s t + q Z t d dt dt 4 Z s t + q Z t Z s + Z 3 s 4 d dt dt + Z 3 s 4 d dt dt, τ 48 Z 4 t 4 Zs + q Z t 8 Z 3 s Zt 4 Zt 8 t + 8 q8 6k <b <d< b 6k Z 3 s d > b k. p p + d = Zt 8 t Z 3 s 8d d sup Zt d <. t [, Z 4p t I C Z 4p t p p 8d t Z 3 s Zs d d <. d

22 Ø

23

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i) Χρηματοοικονομικά Μαθηματικά Το συνεχές μοντέλο συνεχούς χρόνου Σ. Ξανθόπουλος Παν. Αιγαίου Χειμερινό Εξάμηνο 2015-2016 Χειμερινό Εξάμηνο 2015-2016 1 / Σύνοψη 1 Προκαταρκτικά 2 Διαδικασία Wiener ή Κίνηση

Διαβάστε περισσότερα

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 1 IV. Hedging of credit derivatives 1. Two default free assets, one defaultable asset 1.1 Two

Διαβάστε περισσότερα

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D

Διαβάστε περισσότερα

A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations

A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations A Probabilistic Numerical Metod for Fully Non-linear Parabolic Partial Differential Equations Aras Faim To cite tis version: Aras Faim. A Probabilistic Numerical Metod for Fully Non-linear Parabolic Partial

Διαβάστε περισσότερα

Διαφορικές εξισώσεις 302.

Διαφορικές εξισώσεις 302. Διαφορικές εξισώσεις 32. Μαθηματικό Αθήνας Συλλογή ασκήσεων 1 Λύτες: Βουλγαρίδου Εύα Ορμάνογλου Στράβων Παπαμικρούλη Ελένη Παπανίκου Μυρτώ Καθηγητές: Αθανασιάδου - Μπαρμπάτης Επιμέλεια L A TEX: Βώβος Μάριος

Διαβάστε περισσότερα

Z = 1.2 X 1 + 1, 4 X 2 + 3, 3 X 3 + 0, 6 X 4 + 0, 999 X 5. X 1 X 2 X 2 X 3 X 4 X 4 X 5 X 4 X 4 Z = 0.717 X 1 + 0.847 X 2 + 3.107 X 3 + 0.420 X 4 + 0.998 X 5. X 5 X 4 Z = 6.56 X 1 + 3.26 X 2 + 6.72 X 3

Διαβάστε περισσότερα

Alterazioni del sistema cardiovascolare nel volo spaziale

Alterazioni del sistema cardiovascolare nel volo spaziale POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016

Διαβάστε περισσότερα

d 2 y dt 2 xdy dt + d2 x

d 2 y dt 2 xdy dt + d2 x y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

Slides 4. Matthieu Gomez Fall 2017

Slides 4. Matthieu Gomez Fall 2017 Slides 4 Matthieu Gomez Fall 2017 Portfolio Problem Optimization A typical optimization problem has the form { + } J(x t ) = maxe t e ρ(τ t) h(u τ )dτ u t t s.t. dx = µ(x, u)dt + σ(x, u)dz t Bellman s

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ Όνομα: Επίθετο: Ημερομηνία: Πρωί: x Απόγευμα: Θεματική ενότητα: 1. Το βήτα (beta) της μετοχής Α είναι 1,62 ενώ το βήτα (beta) της μετοχής Β είναι -1,62. Αν το ακίνδυνο επιτόκιο είναι 0,6%, η απόδοση της

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ

ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ ÌÏÌÄÍÔÉÓÀ ÃÀ ÃÀÂÅÉÀÍÄÁÄÁÉÓ ÛÄÛ ÏÈÄÁÉÓ Ä ÄØÔÉ, ÀÂÒÄÈÅÄ

Διαβάστε περισσότερα

Solutions - Chapter 4

Solutions - Chapter 4 Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]

Διαβάστε περισσότερα

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A 2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein

Διαβάστε περισσότερα

, P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No.

, P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No. 212 2 28 1 Pure and Applied Mathematics Feb. 212 Vol. 28 No. 1 P bkc (c[, 1]) P bkc (L p [, 1]) (1) ( (), 364) (G, β, u),,, P bkc (c[, 1]) P bkc (L p [, 1]),. ; ; O174.12 A 18-5513(212)1-99-1 1, [2]. 1965,

Διαβάστε περισσότερα

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Κεφ. I Εισαγωγή.. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Η ανάγκη µαθηµατικής περιγραφής και µοντελοποίησης συστηµάτων τα οποία εξελίσσονται χρονικά κατά τρόπο που περιέχει, σε µικρό ή µεγάλο βαθµό, τυχαιότητα,

Διαβάστε περισσότερα

(1.1) y (t) = f ( t, y(t) ), a t b, y(a) = y 0.

(1.1) y (t) = f ( t, y(t) ), a t b, y(a) = y 0. 1. Προβλήματα αρχικών τιμών Στο μεγαλύτερο μέρος αυτού του βιβλίου θα ασχοληθούμε με μεθόδους αριθμητικής επίλυσης προβλημάτων αρχικών τιμών για Συνήθεις Διαφορικές Εξισώσεις (Σ.Δ.Ε.). Στο πρώτο κεφάλαιο

Διαβάστε περισσότερα

UNIVtrRSITA DEGLI STUDI DI TRIESTE

UNIVtrRSITA DEGLI STUDI DI TRIESTE UNIVtrRSITA DEGLI STUDI DI TRIESTE XXVNI CICLO DEL DOTTORATO DI RICERCA IN ASSICURAZIONE E FINANZA: MATEMATICA E GESTIONE PRICING AND HEDGING GLWB AND GMWB IN THE HESTON AND IN THE BLACK-SCHOLES \MITH

Διαβάστε περισσότερα

Coupling strategies for compressible - low Mach number flows

Coupling strategies for compressible - low Mach number flows Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies

Διαβάστε περισσότερα

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2 F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =

Διαβάστε περισσότερα

Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!!

Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!! Όνομα: Επίθετο: Ημερομηνία: Πρωί: x Απόγευμα: Θεματική ενότητα:χρηματοοικονομικά πρότυπα, ΚΩΔ Αε Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!! 1/10 1. Ο κίνδυνος της αγοράς είναι σ Μ = 28%. Τέσσερις μετοχές

Διαβάστε περισσότερα

Mean-Variance Hedging on uncertain time horizon in a market with a jump

Mean-Variance Hedging on uncertain time horizon in a market with a jump Mean-Variance Hedging on uncertain time horizon in a market with a jump Thomas LIM 1 ENSIIE and Laboratoire Analyse et Probabilités d Evry Young Researchers Meeting on BSDEs, Numerics and Finance, Oxford

Διαβάστε περισσότερα

TeSys contactors a.c. coils for 3-pole contactors LC1-D

TeSys contactors a.c. coils for 3-pole contactors LC1-D References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and

Διαβάστε περισσότερα

ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t

ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t Ô P ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

On Hilbert s 8th Problem

On Hilbert s 8th Problem On Hilbert s 8th Problem Nick Polson University of Chicago August, 8th 17 Riemann ζ-function Hadamard factorisation of Xi-function to characterize the zeros of the zeta function Hilbert s 8th Problem Riemann

Διαβάστε περισσότερα

Part III - Pricing A Down-And-Out Call Option

Part III - Pricing A Down-And-Out Call Option Part III - Pricing A Down-And-Out Call Option Gary Schurman MBE, CFA March 202 In Part I we examined the reflection principle and a scaled random walk in discrete time and then extended the reflection

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du =

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du = ΛΥΣΕΙΣ. Οι ασκήσεις από το βιβλίο των Marsden - Tromba. 1. 7.1.()(b) σ (t) (cos t sin t 1) οπότε σ (t) και σ f(x y z) ds π (c) σ (t) i + tj οπότε σ (t) 1 + 4t και σ f(x y z) ds 1 t cos 1 + 4t dt 1 8 cos

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( ) 3 3 Vol.3.3 0 3 JournalofHarbinEngineeringUniversity Mar.0 doi:0.3969/j.isn.006-7043.0.03.0 ARIMA GARCH,, 5000 :!""#$%&' *+&,$-.,/0 ' 3$,456$*+7&'89 $:;,/0 ?4@A$ ARI MA GARCHBCDE FG%&HIJKL$ B

Διαβάστε περισσότερα

σ (t) = (sin t + t cos t) 2 + (cos t t sin t) = t )) 5 = log 1 + r (t) = 2 + e 2t + e 2t = e t + e t

σ (t) = (sin t + t cos t) 2 + (cos t t sin t) = t )) 5 = log 1 + r (t) = 2 + e 2t + e 2t = e t + e t ΛΥΣΕΙΣ. Οι ακήεις από το βιβλίο των Mrsden - Tromb.. 3.)e) Είναι t) sin t + t os t, os t t sin t, 3) οπότε t) sin t + t os t) + os t t sin t) + 3 t + 4 και το μήκος είναι ίο με t t) dt t + 4 dt t + 4 +

Διαβάστε περισσότερα

σ (9) = i + j + 3 k, σ (9) = 1 6 k.

σ (9) = i + j + 3 k, σ (9) = 1 6 k. Ασκήσεις από το Διανυσματικός Λογισμός των Marsden - romba και από το alculus του Apostol. 1. Βρείτε τα διανύσματα της ταχύτητας και της επιτάχυνσης και την εξίσωση της εφαπτομένης για κάθε μία από τις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Επιµέλεια: Ι. Σπηλιώτης Άσκηση.3 σελ.45 Εξάγονται δύο σφαίρες από την Α και τοποθετούνται στην Β. Υπάρχουν τρία δυνατά ενδεχόµενα: Ε : εξάγονται δύο

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5.4: Στατιστικοί Μέσοι Όροι 5.5 Στοχαστικές Ανελίξεις (Stochastic Processes)

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ). Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Μερική Παράγωγος και Εφαρµογές ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 19 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των µε- ϱικών

Διαβάστε περισσότερα

Επίλυση Δ.Ε. με Laplace

Επίλυση Δ.Ε. με Laplace Επίλυση Δ.Ε. με Laplace Ν. Παπαδάκης 24 Οκτωβρίου 2015 Ν. Παπαδάκης Επίλυση Δ.Ε. με Laplace 24 Οκτωβρίου 2015 1 / 78 Περιεχόμενα 1 Παρουσίαση Προβλήματος Επίλυση διαϕορικής εξίσωσης Ορισμός Άλλες μορϕή

Διαβάστε περισσότερα

1 I X (f) := f(x t ) dt. f B

1 I X (f) := f(x t ) dt. f B 8 7!"$#!%') ""! -/.$ -324654 )! 98/:/; < E <

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς

Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων

Διαβάστε περισσότερα

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø

Διαβάστε περισσότερα

Déformation et quantification par groupoïde des variétés toriques

Déformation et quantification par groupoïde des variétés toriques Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 26/10/2017. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 26/10/2017. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Συνθεις Διαφορικές Εξισώσεις Ι Ασκσεις - 26/0/207 Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων πρώτης τάξης της

Διαβάστε περισσότερα

B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20

Διαβάστε περισσότερα

Chapter 2. Stress, Principal Stresses, Strain Energy

Chapter 2. Stress, Principal Stresses, Strain Energy Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the

Διαβάστε περισσότερα

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω

Διαβάστε περισσότερα

MAJHMATIKH QRHMATOOIKONOMIA I

MAJHMATIKH QRHMATOOIKONOMIA I MAJHMAIKH QRHMAOOIKONOMIA I MHMA EFARMOSMENWN MAJHMAIKWN 6 o upìdeigma tou Vasicek: Το υπόδειγµα του Black για την τιµο όγηση παραγώγων του επιτοκίου είναι απ ό και ευρέω χρησιµοποιούµενο. Ενα βασικό του

Διαβάστε περισσότερα

Consommation marchande et contraintes non monétaires au Canada ( )

Consommation marchande et contraintes non monétaires au Canada ( ) Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes

Διαβάστε περισσότερα

IR Futures Effective Asset Class ก Efficient Frontier

IR Futures Effective Asset Class ก Efficient Frontier Interest Futures* ก * ก ก ก. ก ก 11 ก ก ก ก ก ( ) ก ก * Interest Futures ก ก ก ก ก ก ก ก ก ก (Synthetic Portfolio) ก * ก ก ก 2 กก IR Futures ก ก (Asset Class) IR Futures Supposedly Most Efficient and Effective

Διαβάστε περισσότερα

Premia 14 Closed Formula Methods

Premia 14 Closed Formula Methods 19 pages 1 Premia 14 Closed Formula Methods Routine cf_spm_nig.c Routine cf_hullwhite1d_zbputeuro.c Routine cf_hullwhite1d_zcbond.c Routine cf_hullwhite1d_payerswaption.c Routine cf_hullwhite1d_zbcalleuro.c

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13 ENGR 69/69 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework : Bayesian Decision Theory (solutions) Due: Septemer 3 Prolem : ( pts) Let the conditional densities for a two-category one-dimensional

Διαβάστε περισσότερα

Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!!

Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!! Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: x Θεματική ενότητα:χρηματοοικονομικά πρότυπα, ΚΩΔ Αε Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!! 1/6 1. Η μετοχή Sέχει σημερινή τιμή S 0 και οι μελλοντικές της

Διαβάστε περισσότερα

A pricing measure for non-tradable assets with mean-reverting dynamics

A pricing measure for non-tradable assets with mean-reverting dynamics A pricing measure for non-tradable assets with mean-reverting dynamics Salvador Ortiz-Latorre, UiO joint work with Fred E. Benth AMAMEF & Swiss Quote Conference EPFL, Laussane 7-10 September 2015 Support

Διαβάστε περισσότερα

Analysis of a discrete element method and coupling with a compressible fluid flow method

Analysis of a discrete element method and coupling with a compressible fluid flow method Analysis of a discrete element method and coupling with a compressible fluid flow method Laurent Monasse To cite this version: Laurent Monasse. Analysis of a discrete element method and coupling with a

Διαβάστε περισσότερα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,

Διαβάστε περισσότερα

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 2: Pricing Defaultable Assets. Μιχάλης Ανθρωπέλος

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 2: Pricing Defaultable Assets. Μιχάλης Ανθρωπέλος ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Πιστωτικός Κίνδυνος Διάλεξη 2: Pricing Defaultable Assets Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos Μιχάλης

Διαβάστε περισσότερα

Feynman-Kac OPTIONS) PUT OPTIONS) CRANK-NICOLSON... 42

Feynman-Kac OPTIONS) PUT OPTIONS) CRANK-NICOLSON... 42 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Διπλωματική Εργασία με θέμα : Αποτίμηση της αξίας των Αμερικανικών options με Αριθμητικές μεθόδους. του φοιτητή Βακερούδη

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Δπηθακπύιηα Οινθιεξώκαηα Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Επηθακπύιηα Οινθιεξώκαηα θαη εθαξκνγέο. Επηθακπύιην Οινθιήξωκα. Έζηω όηη ε βαζκωηή ζπλάξηεζε f(x,y,z) είλαη νξηζκέλε πάλω ζε κία

Διαβάστε περισσότερα

JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama

JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama MAK by T.Koyama MAK MAK f () = exp{ fex () = exp (') v(, ') ' () (') ' v (, ') ' f (), (), v (, ') f () () f () () v (, ') f () () v (, ') f () () () = + {exp( A) () f () = exp( K ) () K,,, A *** ***************************************************************************

Διαβάστε περισσότερα

DISTRIBUTIONS OF OCCUPATION TIMES OF BROWNIAN MOTION WITH DRIFT

DISTRIBUTIONS OF OCCUPATION TIMES OF BROWNIAN MOTION WITH DRIFT c Journal of Applied Mathematics & Decision Sciences, 3, 4 6 999 Reprints Available directly from the Editor. Printed in New Zealand. DISTRIBUTIONS OF OCCUPATION TIMES OF BROWNIAN MOTION WITH DRIFT ANDREAS

Διαβάστε περισσότερα

Additional Results for the Pareto/NBD Model

Additional Results for the Pareto/NBD Model Additional Results for the Pareto/NBD Model Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com January 24 Abstract This note derives expressions for i) the raw moments of the posterior

Διαβάστε περισσότερα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246). Vol. 34 ( 2014 ) No. 4 J. of Math. (PRC) (, 710123) :. -,,, [8].,,. : ; - ; ; MR(2010) : 91A30; 91B30 : O225 : A : 0255-7797(2014)04-0779-08 1,. [1],. [2],.,,,. [3],.,,,.,,,,.., [4].,.. [5] -,. [6] Markov.

Διαβάστε περισσότερα

, 11 1 / 49

, 11 1 / 49 ÍÚÈÔ (È È È Ï Ê Ø2017 ÏÑ) Ñ(1) È 2017 10 4, 11 1 / 49 ÏÑÒ ØËÌÙ Õ Õ Ø 2 / 49 ÏÑÒ ØËÌÙ ÏÑÒ ØËÌÙ Õ Õ Ø (I) Í(Ù ) ØÙ Ù ÚÓ (II) Black-Scholes-Merton Ð Ú ÌÑØÎÔ Ð Ô Black-Scholes (III) ØÕÊÔ ÕÚÔÍ(ÓÙÊØ Ú ) È ÎÑØÎÔ

Διαβάστε περισσότερα

Μαθηματική και υπολογιστική μοντελοποίηση βιολογικών συστημάτων και εφαρμογές Μέρος Ι: Εισαγωγή στη Στοχαστική Ανάλυση Βακερουδης Σταυρος E-mail: stavros.vakeroudis@gmail.com Ιστοσελίδα: https://svakeroudis.wordpress.com/

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr - f= f= f t+ 0 ) max

Διαβάστε περισσότερα

[1] F(g(x)) = F(z) = f(z) dz Εξάλλου, γνωρίζουμε από τον κανόνα της αλυσίδας ότι df(g(x)) dx

[1] F(g(x)) = F(z) = f(z) dz Εξάλλου, γνωρίζουμε από τον κανόνα της αλυσίδας ότι df(g(x)) dx .4. Ολοκλήρωση με Αντικατάσταση Η μέθοδος ολοκλήρωσης με αντικατάσταση (method of substitution) βασίζεται στον κανόνα της αλυσίδας. Ουσιαστικά με τη μέθοδο της αντικατάστασης το αόριστο ολοκλήρωμα υπολογίζεται

Διαβάστε περισσότερα

Computing Gradient. Hung-yi Lee 李宏毅

Computing Gradient. Hung-yi Lee 李宏毅 Computing Gradient Hung-yi Lee 李宏毅 Introduction Backpropagation: an efficient way to compute the gradient Prerequisite Backpropagation for feedforward net: http://speech.ee.ntu.edu.tw/~tkagk/courses/mlds_05_/lecture/

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017 Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V

Διαβάστε περισσότερα

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim 9çB$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 6. Ημερομηνία Παράδοσης: 29/6/09

ΕΡΓΑΣΙΑ 6. Ημερομηνία Παράδοσης: 29/6/09 ΕΡΓΑΣΙΑ 6 Ημερομηνία Παράδοσης: 9/6/9 1. Ένας ομογενώς φορτισμένος μονωτικός κυκλικός δίσκος ακτίνας με συνολικό φορτίο τοποθετείται στο επίπεδο xy. Να βρείτε το ηλεκτρικό πεδίο σε σημείο P που βρίσκεται

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Εξισώσεις οριακού στρώματος και μη συνεκτικής ροής Το διακριτό πρόβλημα

Εξισώσεις οριακού στρώματος και μη συνεκτικής ροής Το διακριτό πρόβλημα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διάσκων: Δ. Ριζιώτης Βασίλης Εξισώσεις οιακού στώματος και μη συνεκτικής οής

Διαβάστε περισσότερα

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx. Numerical Metods for Civil Engineers Lecture Ordinar Differential Equations -Basic Ideas -Euler s Metod -Higer Order One-step Metods -Predictor-Corrector Approac -Runge-Kutta Metods -Adaptive Stepsize

Διαβάστε περισσότερα

Hartree-Fock Theory. Solving electronic structure problem on computers

Hartree-Fock Theory. Solving electronic structure problem on computers Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli

Διαβάστε περισσότερα

Μαθηματική Ανάλυση ΙI

Μαθηματική Ανάλυση ΙI Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση ΙI Ενότητα 5: Αλυσιδωτή παραγώγιση, διαφορίσιμες συναρτήσεις, διαφορικό Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα

Διαβάστε περισσότερα

An Asymptotic Expansion Approach to Computing Greeks

An Asymptotic Expansion Approach to Computing Greeks An Asymptotic Expansion Approach to Computing Greeks Ryosuke Matsuoka and Akihiko Takahashi Abstract We developed a new scheme for computing Greeks of derivatives by an asymptotic expansion approach. In

Διαβάστε περισσότερα

dc(x) kc(x) = 0 d 2 c(x) dx d 4 v(x) + kv(x) = p(x) dx 4 p(t) du(t) + ω 0 u(t) = dt d 4 X(x) d 2 q(t) dq(t) d q(t) = p θ(x) = v (x) κ(x) = θ (x)

dc(x) kc(x) = 0 d 2 c(x) dx d 4 v(x) + kv(x) = p(x) dx 4 p(t) du(t) + ω 0 u(t) = dt d 4 X(x) d 2 q(t) dq(t) d q(t) = p θ(x) = v (x) κ(x) = θ (x) T/5: -9-8 6: Εφαρμοσμένα Μαθηματικά. Να γίνει κατανοητό σε πολύ μεγαλύτερο αθμό απ τα γνωστά διδακτικά συγγράμματα Συνήθων Διαφορικών Εξισώσεων ότι οι εξισώσεις αυτές έχουν ευρεία χρησιμότητα σε ποικίλα

Διαβάστε περισσότερα